(1)
Balboa-Murias MA (2005)Biomasa arbórea y estabilidad nutricional de los sistemas forestales de
Pinus pinaster Ait.,
Eucalyptus globulus Labill. y
Quercus robur L. en Galicia [Aboveground biomass and nutritional stability of
Pinus pinaster Ait.,
Eucalyptus globulus Labill. and
Quercus robur L. forest systems in Galicia]. PhD Thesis, Universidad de Santiago de Compostela, Spain, pp. 256. [in Spanish]
Gscholar
(2)
Balboa-Murias M, Rodríguez-Soalleiro R, Merino A, Alvarez-González JG (2006)Temporal variations and distribution of carbon stocks in aboveground of radiata pine and maritime pine pure stands under different silvicultural alternatives. Forest Ecology and Management 237: 29-38.
CrossRef |
Gscholar
(3)
Baret F, Guyot G (1991)Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment 35: 161-173.
CrossRef |
Gscholar
(4)
Belsley DA (1991)Conditioning diagnostics, collinearity and weak data regression. Wiley Series in Probability, John Wiley and Sons, New York, USA, pp. 396.
Gscholar
(5)
Brañas J, González-Río F, Merino A (2000)Contenido y distribución de nutrientes en plantaciones de
Eucalyptus globulus del Nordeste de la Península Ibérica [Nutrients content and distribution in
Eucalyptus globulus plantations in northwestern Iberian peninsula]. Investigación Agraria: Sistemas y Recursos Forestales 9: 316-335. [in Spanish]
Gscholar
(6)
Breiman L (2001)Statistical modeling: the two cultures. Statistical Science 16: 199-301.
CrossRef |
Gscholar
(7)
Burnham KP, Anderson DR (1998)Model selection and inference. Springer-Verlag, New York, USA, pp. 515.
Gscholar
(8)
Chas-Amil ML (2007)Forest fires in Galicia (Spain): threats and challenges for the future. Journal of Forest Economics 13: 1-5.
CrossRef |
Gscholar
(9)
Chen Q, Laurin GV, Battles JJ, Saah D (2012)Integration of airborne LiDAR and vegetation types derived from aerial photography for mapping aboveground live biomass. Remote Sensing of Environment 121: 108-117.
CrossRef |
Gscholar
(10)
Chen Q (2013)Lidar remote sensing of vegetation biomass. In: “Remote Sensing of Natural Resources” (Weng Q, Wang G eds). CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, pp. 399-420.
Gscholar
(11)
Cortés L, Hernández J, Valencia D, Corvalán P (2014)Estimation of above-ground biomass using Landsat ETM+, Aster GDEM and LiDAR. Forest Research 3: 117.
Gscholar
(12)
Estornell J, Ruiz LA, Velázquez B, Hermosilla T (2012)Estimation of biomass and volume of shrub vegetation using LiDAR and spectral data in a Mediterranean environment. Biomass and Bioenergy 46: 710-721.
CrossRef |
Gscholar
(13)
Gómez-Vázquez I, Crecente-Campo F, Diéguez-Aranda U, Castedo-Dorado F (2013)Modelling canopy fuel variables in
Pinus pinaster Ait. and
Pinus radiata D. Don stands in Northwestern Spain. Annals of Forest Science 70: 161-172.
CrossRef |
Gscholar
(14)
González-Ferreiro E, Dieguez-Aranda U, Miranda D (2012)Estimation of stand variables in
Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry 85: 281-292.
CrossRef |
Gscholar
(15)
González-Ferreiro E, Miranda D, Barreiro-Fernández L, Bujan S, García-Gutierrez J, Dieguez-Aranda U (2013)Modelling stand biomass fractions in Galician
Eucalyptus globulus plantations by use of different LiDAR pulse densities. Forest Systems 22: 510-525.
CrossRef |
Gscholar
(16)
González-Olabarria JR, Rodríguez F, Fernández-Landa A, Mola-Yudego B (2012)Mapping fire risk in the model forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management 282: 149-156.
CrossRef |
Gscholar
(17)
Huete AR (1988)A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25: 259-309.
CrossRef |
Gscholar
(18)
Jenkins JC, Birdsey RA, Pan Y (2001)Biomass and NPP estimation for the mid-Atlantic Region (USA) using plot level forest inventory data. Ecological Applications 11: 1174-1193.
CrossRef |
Gscholar
(19)
Ji L, Wylie BK, Nossov DR, Peterson B, Waldrop MP, McFarland JW, Rover J, Hollingsworth TN (2012)Estimating aboveground biomass in interior Alaska with Landsat data and field measurements. International Journal of Applied Earth Observation and Geoinformation 18: 451-461.
CrossRef |
Gscholar
(20)
Jiménez E, Vega JA, Fernández-Alonso JM, Vega-Nieva D, González JG, Ruiz-González AD (2013)Allometric equations for estimating canopy fuel load and distribution of pole-size maritime pine trees in five Iberian provenances. Canadian Journal of Forest Research 43: 149-158.
CrossRef |
Gscholar
(21)
Jordan CF (1969)Derivation of leaf area index from quality of light in the forest floor. Ecology 50: 663-666.
CrossRef |
Gscholar
(22)
Kaartinen H, Hyyppa J, Yu X, Vastaranta M, Hyyppa H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F (2012)An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing 4: 950-974.
CrossRef |
Gscholar
(23)
Kraus K, Pfeiffer N (1998)Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 53: 193-203.
CrossRef |
Gscholar
(24)
Lafiti H, Fassnacht FE, Hartig F, Berger C, Hernández J, Corvalán P, Koch B (2015)Stratified aboveground forest biomass estimation by remote sensing data. International Journal of Applied Earth Observation and Geoinformation 38: 229-241.
CrossRef |
Gscholar
(25)
Laurin GV, Chen Q, Lindsell JA, Coomes DA, Frate F, Guerriero L, Pirotti F, Valentini R (2014)Above ground biomass estimation in an Africa tropical forest with LiDAR and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing 89: 49-58.
CrossRef |
Gscholar
(26)
Lim K, Treitz P, Wulder MA, St-Onge B, Flood M (2003)LiDAR remote sensing of forest structure. Progress in Physical Geography 27: 88-106.
CrossRef |
Gscholar
(27)
Lin Y, Jaakkola A, Hyyppä J, Kaartinen H (2010)From TLS to VLS: biomass estimation at individual tree level. Remote Sensing 2: 1864-1879.
CrossRef |
Gscholar
(28)
Liu HQ, Huete AR (1995)A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing 33: 457-465.
CrossRef |
Gscholar
(29)
López-Serrano PM, López-Sánchez CA, Díaz-Varela RA, Corral-Rivas JJ, Solís-Moreno R, Vargas-Larreta B, González JG (2015)Estimating biomass of mixed and unevenaged forests using spectral data and a hybrid model combining regression trees and linear models. iForest - Biogeosciences and Forestry 9 (2): 226-234.
CrossRef |
Gscholar
(30)
Manes F, Ricotta C, Salvatori E, Bajocco S, Blasi C (2010)A multiscale analysis of canopy structure in
Fagus sylvatica L. and
Quercus cerris L. old-growth forests in the Cilento and Vallo di Diano National Park. Plant Biosystems 144 (1): 202-210.
CrossRef |
Gscholar
(31)
MARM (2011)Cuarto Inventario Forestal Nacional. Comunidad Autónoma de Galicia [Fourth National Forest Inventory. Galicia]. Dirección General del Medio Natural y Política Forestal, Galicia, Madrid, Spain, pp. 52. [in Spanish]
Gscholar
(32)
McGaughey R (2009)FUSION/LDV: software for LIDAR data analysis and visualization. USDA Forest Service, Pacific Northwest Research Station, Seattle, WA, USA, pp. 123.
Gscholar
(33)
McRoberts RE, Naesset E, Gobakken T (2013)Inference for lidar-assisted estimation of forest growing stock volume. Remote Sensing of Environment 128: 268-275.
CrossRef |
Gscholar
(34)
Merino A, Balboa MA, Rodríguez-Soalleiro R, Alvarez-González JG (2005)Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. Forest Ecology and Management 207: 325-339.
CrossRef |
Gscholar
(35)
Montero G, Ruiz-Peinado R, Muñoz M (2005)Producción de biomasa y fijación de CO
2 por los bosques españoles [Spanish forest biomass production and CO
2 fixing]. Monografías INIA, Serie Forestal no. 13, Madrid, Spain, pp. 265. [in Spanish]
Gscholar
(36)
Naesset E, Gobakken T, Solberg S, Gregoire TG, Nelson R, Stahl G, Weydahl D (2011)Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area. Remote Sensing of Environment 115 (12): 3599-3614.
CrossRef |
Gscholar
(37)
NASA (2011)Landsat 7 science data users handbook. Landsat Project Science Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, pp. 186.
Gscholar
(38)
Ni-Meister W, Lee S, Strahler AH, Woodcock AH, Schaaf C, Ranson J, Sun G, Blair JB (2010)Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from vegetation lidar. Journal of Geophysical Research 115 (G2): 2156-2202.
CrossRef |
Gscholar
(39)
Nord-Larsen T, Schumacher J (2012)Estimation of forest resources from a country wide laser scanning survey and national inventory data. Remote Sensing of Environment 119: 148-157.
CrossRef |
Gscholar
(40)
Pérez-Cruzado C, Rodríguez-Soalleiro R (2011)Improvement in accuracy of aboveground biomass estimation in
Eucalyptus nitens plantations: effect of bole sampling intensity and explanatory variables. Forest Ecology and Management 261: 2016-2028.
CrossRef |
Gscholar
(41)
Rouse J, Haas R, Schell J, Deering D (1973)Monitoring vegetation system in the great plains with ERTS. In: Proceedings of the “3
rd ERTS Symposium”. NASA SP-351, NASA, Washington, DC, USA, pp. 309-317.
Gscholar
(42)
Scaramuzza P, Micijevic E, Chander G (2004)SLC gap-filled products, phase one methodology. Landsat Technical Notes, pp. 5.
Gscholar
(43)
Shendryk I, Hellström M, Klemedtsson L, Kljun N (2014)Low-density LiDAR and optical imagery for biomass estimation over boreal forest in Sweden. Forests 5: 992-1010.
Gscholar
(44)
Sprugel DG (1983)Correcting for bias in log-transformed allometric equations. Ecology 64: 209-210.
CrossRef |
Gscholar
(45)
Zhao K, Popescu S, Nelson R (2009)LiDAR remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sensing of Environment 113: 182-196.
CrossRef |
Gscholar