This paper reviews the current state of knowledge in the field of urban forest inventory and specific tree parameters derived by remote sensing. The paper discusses the possibilities and limitations of using remote sensing to determine the following characteristics of individual trees acquired during the inventory: position (coordinates), tree height, breast height diameter, tree crown parameters (crown span, height of tree crown basis, crown projection surface), health condition, and tree species. A total of 543 papers published in scientific databases (Scopus® and ScienceDirect®) from the year 2000 to December 2017 have been analyzed; 86 of them were used for the review. The most important outcomes are: (a) the integration of many datasets, in particular spectral data (aerial images and satellite imageries) and structural data (LIDAR), allows the most complex use of remote sensing data and helps to improve the accuracy of parameter estimations as well as the correct identification of tree species; (b) the highest precision of measurement is characteristic of TLS, while ALS data has the largest operating system; (c) remote sensing data applications are associated with a large number of sophisticated processing on very large datasets using often proprietary elaborations; (d) the use of remote sensing data makes it possible to determine the characteristics of urban vegetation at various levels of detail and at different scales.
Keywords
, , , , ,
Citation
Ciesielski M, Sterenczak K (2019). Accuracy of determining specific parameters of the urban forest using remote sensing. iForest 12: 498-510. - doi: 10.3832/ifor3024-012
Academic Editor
Raffaele Lafortezza
Paper history
Received: Dec 19, 2018
Accepted: Aug 28, 2019
First online: Dec 02, 2019
Publication Date: Dec 31, 2019
Publication Time: 3.20 months
© SISEF - The Italian Society of Silviculture and Forest Ecology 2019
Open Access
This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Breakdown by View Type
(Waiting for server response...)
Article Usage
Total Article Views: 40614
(from publication date up to now)
Breakdown by View Type
HTML Page Views: 33759
Abstract Page Views: 3167
PDF Downloads: 3116
Citation/Reference Downloads: 7
XML Downloads: 565
Web Metrics
Days since publication: 1816
Overall contacts: 40614
Avg. contacts per week: 156.55
Article Citations
Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)
Total number of cites (since 2019): 9
Average cites per year: 1.80
Publication Metrics
by Dimensions ©
Articles citing this article
List of the papers citing this article based on CrossRef Cited-by.
(1)
Abd-Elrahman A, Thornnill M, Andreu M, Escobedo F (2010)A community-based urban forest inventory using online mapping services and consumer-grade digital images. International Journal of Applied Earth Observation and Geoinformation 12: 249-260.
CrossRef |
Gscholar
(2)
Alonzo M, Bookhagen B, Roberts D (2014)Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environmental 148: 70-83.
CrossRef |
Gscholar
(3)
Alonzo M, McFadden J, Nowak D, Roberts D (2016)Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban Forestry and Urban Greening 17: 135-147.
CrossRef |
Gscholar
(4)
Anderson L, Cordell H (1988)Influence of trees on residential property values in Athens Georgia (USA): a survey based on actual sales prices. Landscape and Urban Planning 15 (1-2): 153-164.
CrossRef |
Gscholar
(5)
Ardila J, Bijker W, Tolpekin V, Stein A (2012)Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images. International Journal of Applied Earth Observation and Geoinformation 15: 57-69.
CrossRef |
Gscholar
(6)
Banskota A, Kayastha N, Falkowski M, Wulder M, Forese R, White J (2014)Forest monitoring using Landsat time series data: a review. Canadian Journal of Remote Sensing 40 (5): 362-384.
CrossRef |
Gscholar
(7)
Banzhaf E, Kollai H (2015)Monitoring the urban tree cover for urban ecosystem services - The case of Leipzig, Germany. In: Proceedings of the “36th International Symposium on Remote Sensing of Environment”, Berlin (Germany) 11-15 May 2015. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7/W3: 301-305.
CrossRef |
Gscholar
(8)
Bazezew M (2018)Integrating airborne LiDAR and terrestrial laser scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia. International Journal of Applied Earth Observation and Geoinformation 73: 638-652.
CrossRef |
Gscholar
(9)
Bentsen P, Lindholst A, Konijnendijk CC (2010)Reviewing eight years of urban forestry and urban greening: taking stock, looking ahead. Urban Forestry and Urban Greening 9 (4): 273-280.
CrossRef |
Gscholar
(10)
Berland A, Lange D (2017)Google Street View shows promise for virtual street tree surveys. Urban Forestry and Urban Greening 21: 11-15.
CrossRef |
Gscholar
(11)
Bickmore CJ, Hall T (1983)Computerisation of tree inventories. AB Academic Publisher, Berkhamsted, UK.
Gscholar
(12)
Brack CL (2006)Updating urban forest inventories: an example pf the DISMUT model. Urban Forestry and Urban Greening 5: 189-194.
CrossRef |
Gscholar
(13)
Chi M, Plaza A, Benediktsson J, Sun Z, Shen J, Zhu Y (2016)Big data for remote sensing: challenges and opportunities. Proceedings of the IEEE 104 (11): 2207-2219.
Online |
Gscholar
(14)
Clarke L, Jenerette D, Davila A (2013)The luxury of vegetation and the legacy of tree biodiversity in Los Angeles, CA. Landscape and Urban Planning 116: 48-59.
CrossRef |
Gscholar
(15)
Cumming A, Galvin M, Rabaglia R, Cumming J, Twardus D (2001)Forest health monitoring protocol applied to roadside trees in Maryland. Journal of Arboriculture 27 (3): 126-138.
Online |
Gscholar
(16)
Cumming A, Twardus D, Nowak D (2008)Urban forest health monitoring: large-scale assessments in the United States. Arboriculture and Urban Forestry 34 (6): 341-346.
Online |
Gscholar
(17)
Dian Y, Pang Y, Dong Y, Li Z (2016)Urban tree species mapping using airborne LiDAR and hyperspectral data. Journal of the Indian Society of Remote Sensing 44 (4): 595-603.
CrossRef |
Gscholar
(18)
Escobedo F, Andreu M (2008)A community guide to urban forest inventories. IFAS Extension, University of Florida, Gainesville, FL, USA, pp. 1-4.
Online |
Gscholar
(19)
Forzieri G, Tanteri L, Moser G, Catani F (2013)Mapping natural and urban environments using airborne multi-sensor ADS40-MIVIS-LiDAR synergies. International Journal of Applied Earth Observation and Geoinformation 23: 313-323.
CrossRef |
Gscholar
(20)
Franke J, Roberts D, Halligan K, Menz G (2009)Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sensing of Environmental 113: 1712-1723.
CrossRef |
Gscholar
(21)
Ghosh A, Fassnacht F, Joshi PK, Koch B (2014)A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales. International Journal of Applied Earth Observation and Geoinformation 26: 49-63.
CrossRef |
Gscholar
(22)
Giles-Corti B, Broomhall M, Knuiman M, Collins C, Douglas K, Ng K, Lange A, Donovan R (2005)Increasing walking: how important is distance to, attractiveness, and size of public open space? American Journal of Preventive Medicine 28: 169-176.
CrossRef |
Gscholar
(23)
Gill SJ, Biging GS, Murphy EC (2000)Modelling conifer tree crown radius and estimating canopy cover. Forest Ecology and Management 126: 2416-2433.
CrossRef |
Gscholar
(24)
Gupta K, Kumar P, Pathan SK, Sharma KP (2012)Urban neighbourhood green index - a measure of green spaces in urban areas. Landscape and Urban Planning 105: 325-335.
CrossRef |
Gscholar
(25)
Hanou I (2010)2010 Town of Oakville hyperspectral EAB analysis. Town of Oakville Parks and Open Space, Denver, CO, USA, pp. 9.
Gscholar
(26)
Holopainen M, Leino O, Kämäri H, Talvitie M (2006)Drought damage in the park forests of the city of Helsinki. Urban Forestry and Urban Greening 4: 75-83.
CrossRef |
Gscholar
(27)
Holopainen M, Kankare V, Vastaranta M, Liang X, Lin Y, Vaaja M, Yu X, Hyyppä J, Hyyppä H, Kaartinen H (2013)Tree mapping using airborne, terrestrial and mobile laser scanning: a case study in a heterogeneous urban forest. Urban Forestry and Urban Greening 12: 546-553.
CrossRef |
Gscholar
(28)
Horbaczewska J (2016)Wykonanie inwentaryzacji dendrologicznej wybranych terenów zieleni miasta Kolobrzeg oraz ekspertyzy dendrologicznej wskazanych egzemplarzy drzew [Making a dendrological inventory of selected green areas of the city of Kolobrzeg and dendrological expertise of selected specimens of trees]. Documents of City of Kolobrzeg, Poland, pp. 5-6. [in Polish]
Gscholar
(29)
Hu B, Li J, Wang J, Hall B (2014)The early detection of the Emerald Ash Borer (EAB) using advanced geospatial technologies. In: Proceedings of the “ISPRS Technical Commission II Symposium”, Toronto (Canada) 6-8 Oct 2014. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XL-2, pp. 213-219.
Online |
Gscholar
(30)
Höfle B, Hollaus M, Hagenauer J (2012)Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPR Journal of Photogrammetry and Remote Sensing 67: 134-147.
CrossRef |
Gscholar
(31)
Iovan C, Boldo D, Cord M (2008)Detection, characterization, and modeling vegetation in urban areas from high-resolution aerial imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1 (3): 206-213.
CrossRef |
Gscholar
(32)
Jarocinska A, Robak A, Kopeć D, Niedzielko J, Slawik L, Ochtyra A, Marcinkowska-Ochtyra A, Zagajewski B, Walesiak J (2016)Ocena i monitorowanie stanu zieleni miejskiej badana metodami teledetekcyjnymi. Informacja o efektywnosci funkcjonowania przestrzeni zielonej w miescie [Assessment and monitoring of the urban greenery condition by remote sensing methods. Information on the effectiveness of green space in the city]. In: Proceedings of the “Information Environment Conference”. Warsaw (Poland) 21-22 Nov 2016. Ekoportal, Poland, pp. 13-14. [in Polish]
Gscholar
(33)
Ju J, Roy D (2008)The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sensing of Environment 112: 1196-1211.
CrossRef |
Gscholar
(34)
Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschugl M, Morsdorf F, Naesset E, Pitkänen J, Popescu S, Solberg S, Bernd M, Wu J (2012)An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing 4 (4): 950-974.
CrossRef |
Gscholar
(35)
Kaminska A, Sterenczak K, Lisiewicz M, Kraszewski B, Sadkowski R (2018)Species-related single dead tree detection using multi-temporal ALS data and CIR imagery. Remote Sensing of Environment 219: 31-43.
CrossRef |
Gscholar
(36)
Keller J, Konijnendijk CC (2012)A comparative analysis of municipal urban tree inventories of selected major cities in North America and Europe. Arboriculture and Urban Forestry 38 (1): 24-30.
Online |
Gscholar
(37)
Kempeneers P, Soille P (2017)Optimizing Sentinel-2 image selection in a big data context. Big Earth Data 1 (1-2): 145-158.
CrossRef |
Gscholar
(38)
Kerr J, Sallis J, Saelens B, Cain K, Conway T, Frank L, King A (2012)Outdoor physical activity and self-rated health in older adults living in two regions of the US. International Journal of Behavioral Nutrition and Physical Activity 9 (1): 89.
CrossRef |
Gscholar
(39)
Konijnendijk CC, Ricard R, Kenney A, Randrup T (2006)Defining urban forestry - A comparative perspective of North America and Europe. Urban Forestry and Urban Greening 4 (3-4): 93-103.
CrossRef |
Gscholar
(40)
Kronenberg J (2012)Bariery dla utrzymania drzew w miastach i sposoby pokonywania tych barier [Barriers for maintaining trees in cities and ways to overcome these barriers]. Zrównowazony rozwój - zastosowania 3 (2012): 31-49. [in Polish]
Gscholar
(41)
Lamprecht S, Stoffels J, Dotzler S, Ha E, Udelhoven T (2012)aTrunk - An ALS-based trunk detection algorithm. Remote Sensing 7 (8): 9975-9997.
CrossRef |
Gscholar
(42)
Latif Z, Zamri I, Omar H (2012)Determination of tree species using Woldview-2 data. In: Proceedings of the “IEEE 8th International Colloquium on Signal Processing and its Applications”. Melaka (Malaysia), 23-25 Mar 2012. IEEE Explore Digital Library, Piscataway, NJ, USA, pp. 383-387.
CrossRef |
Gscholar
(43)
Lee J-H, Ko Y, McPherson E (2016)The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban Forestry and Urban Greening 16: 208-220.
CrossRef |
Gscholar
(44)
Liu L, Coops N, Aven N, Pang Y (2017)Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sensing of Environmental 200: 170-182.
CrossRef |
Gscholar
(45)
Malthus T, Younger C (2000)Remote sensing stress in street trees using high spatial resolution data. In: Proceedings of the “2nd International Geospatial Information in Agriculture and Forestry Conference”. Lake Buena Vista (FL, USA) 10-12 Jan 2000. pp. 326-333.
Gscholar
(46)
Maruthaveeran S, Yaman A (2010)The identification of criteria and indicators to evaluate hazardous street trees of Kuala Lumpur, Malaysia: a Delphi study. Journal of Forestry 108 (7): 360-364.
Online |
Gscholar
(47)
McPherson E, Nowak D, Heisler G, Grimmond S, Souch C, Grant R, Rowntree R (1997)Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project. Urban Ecosystems 1 (1): 49-61.
CrossRef |
Gscholar
(48)
MIAA (2011)Regulation of the Minister of Internal Affairs and Administration of November 9, 2011 on technical standards of performing detailed surveys and working out and sending results of these surveys to National Geodetic and Cartographic Database. Journal of Laws No. 263, item 1572, Dziennik Ustaw Rzeczypospolitej Polskiej, Warsaw, Poland.
Gscholar
(49)
Mielcarek M, Balazy R, Zawila-Niedzwiecki T (2015)Comparison of the accuracy of remote methods tree-height estimation. Sylwan 159 (9): 714-721.
Gscholar
(50)
Mielcarek M, Sterenczak K, Khosravipour A (2018)Testing and evaluating different LiDAR - derived canopy height model generation methods for tree height estimation. International Journal of Applied Earth Observation and Geoinformation 71: 132-143.
CrossRef |
Gscholar
(51)
Miller R (1997)Urban forestry: planning and managing urban green spaces (2nd edn). Prentice Hall, New Jersey, USA, pp. 4-8.
Gscholar
(52)
Mincey S, Schmitt-Harsh M, Thurau R (2013)Zoning, land use, and urban tree canopy cover: the importance of scale. Urban Forestry and Urban Greening 12: 191-199.
CrossRef |
Gscholar
(53)
Morgenroth J, Gomez C (2014)Assessment of tree structure using a 3D image analysis technique - a proof of concept. Urban Forestry and Urban Greening 13: 198-203.
CrossRef |
Gscholar
(54)
Morsdorf F, Frey O, Meier E, Itten K, Allgöwer B (2008)Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning. International Journal of Remote Sensing 29 (5): 1387-1406.
CrossRef |
Gscholar
(55)
Moskal M, Zheng G (2012)Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous forest. Remote Sensing 4: 1-20.
CrossRef |
Gscholar
(56)
Muthulingam U, Thangavel S (2012)Density, diversity and richness of woody plants in urban green spaces: a case study in Chennai metropolitan city. Urban Forestry and Urban Greening 11: 450-459.
CrossRef |
Gscholar
(57)
Myint S, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011)Per-pixel
vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment 115: 1145-1161.
CrossRef |
Gscholar
(58)
Nielsen A, Östberg J, Delshammar T (2014)Review of urban tree inventory methods used to collect data at single-tree level. Arboriculture and Urban Forestry 40 (2): 96-111.
Online |
Gscholar
(59)
Nowak D, Heisler G (2010)Air quality effects of urban trees and parks. National Recreation and Park Association, Ashburn, VA, USA, pp. 6.
Online |
Gscholar
(60)
Nowak D, Noble N, Sisinni S, Dwyer J (2001)People and trees assessing the US urban forest resource. Journal of Forestry 99 (3): 37-42.
Online |
Gscholar
(61)
Nowak D, Crane D, Stevens J (2006)Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening 4: 111-123.
CrossRef |
Gscholar
(62)
Olofsson K, Holmgren J, Olsson H (2014)Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sensing 6 (5): 4323-4344.
CrossRef |
Gscholar
(63)
Orka H, Bollandsås O (2010)Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning. Remote Sensing of Environment 114 (7): 1445-1461.
CrossRef |
Gscholar
(64)
Östberg J, Delshammar T, Fransson A, Nielsen A (2012a)Standard for tree inventories in urban environments. Department of Landscape Management, Design and Construction, Alnarp, Sweden, pp. 4-7.
Gscholar
(65)
Östberg J, Martinsson M, Stål O, Fransson A (2012b)Risk of root intrusion by tree and shrub species into sewer pipes in Swedish urban areas. Urban Forestry and Urban Greening 1: 65-71.
CrossRef |
Gscholar
(66)
Östberg J, Delshammar T, Wiström B, Nielsen A (2013)Grading of parameters for urban tree inventories by city officials, arborists, and academics using the Delphi method. Environmental Management 51: 694-708.
CrossRef |
Gscholar
(67)
Patterson M, Wiseman E, Winn M, Lee S-M, Araman P (2011)Effects of photographic distance on tree crown attributes calculated using UrbanCrowns image analysis software. Arboriculture and Urban Forestry 37 (4): 137-179.
Online |
Gscholar
(68)
Phu La H, Dam Eo Y, Chang A, Kim CH (2015)Extraction of individual tree crown using hyperspectral image and LiDAR data. KSCE Journal of Civil Engineering 19 (4): 1078-1087.
CrossRef |
Gscholar
(69)
Plowright A, Coops N, Eskelson B, Sheppar S, Aven N (2016)Assessing urban tree condition using airborne light detection and ranging. Urban Forestry and Urban Greening 19: 140-150.
CrossRef |
Gscholar
(70)
Pontius J, Hanavan R, Hallett R, Cook B, Corp L (2017)High spatial resolution spectral unmixing for mapping ash species across urban environment. Remote Sensing of Environment 199: 360-369.
CrossRef |
Gscholar
(71)
Popescu SC, Wynne RH, Nelson RF (2003)Measuring infividual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing 29: 564-577.
CrossRef |
Gscholar
(72)
Pu R, Liu D (2011)Segmented canonical discriminant analysis of
in situ hyperspectral data for identifying 13 urban tree species. International Journal of Remote Sensing 32: 2207-2226.
CrossRef |
Gscholar
(73)
Pu R, Landry S (2012)A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment 124: 516-533.
CrossRef |
Gscholar
(74)
Pueschel P, Newnham G, Rock G, Udelhoven T, Werner W, Hill J (2013)The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS Journal of Photogrammetry and Remote Sensing 77: 44-56.
CrossRef |
Gscholar
(75)
Pullin A, Stewart G (2006)Guidelines for systematic review in conservation and environmental management. Conservation Biology 20 (6): 1647-1656.
CrossRef |
Gscholar
(76)
Putut Ash Shidiq I, Wibowo A, Kusratmoko E, Indratmoko S, Ardhianto R, Prasetyo Nugroho B (2017)Urban forest topographical mapping using UAV Lidar. In: Proceedings of the “5th Geoinformation Science Symposium (GSS 2017)”. Yogyakarta (Indonesia) 27-28 Sept 2017. IOP Conference Series: Earth and Environmental Science 98: 012034.
CrossRef |
Gscholar
(77)
Rahman M, Rashed T (2015)Urban tree damage estimation using airborne laser scanner data and geographic information systems: an example from 2007 Oklahoma ice storm. Urban Forestry and Urban Greening 14: 562-572.
CrossRef |
Gscholar
(78)
Randrup T, Konijnendijk CC, Dobbertin M, Prüller R (2005)The concepts of urban forestry in Europe. In: “Urban Forests and Trees” (Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J eds). Springer, Berlin, Heidelberg, pp. 9-21.
CrossRef |
Gscholar
(79)
Rutzinger M, Pratihast A, Elberink S (2011)Tree modeling from mobile laser scanning data-sets. The Photogrammetric Record 26 (135): 361-372.
CrossRef |
Gscholar
(80)
Saarinen N, Vastaranta M, Kankare V, Tanhuanpää T, Holopainen M, Hyyppä J, Hyyppä H (2014)Urban-tree-attribute update using multisource single-tree inventory. Forests 5: 1032-1052.
CrossRef |
Gscholar
(81)
Shrestha R, Wynne R (2012)Estimating biophysical parameters of individual trees in an urban environment using small footprint discret-return imaging Lidar. Remote Sensing 4: 484-508.
CrossRef |
Gscholar
(82)
Sjöman H, Östberg J, Bühler O (2012)Diversity and distribution of the urban tree population in ten major Nordic cities. Urban Forestry and Urban Greening 11 (1): 1-39.
CrossRef |
Gscholar
(83)
Sobczynski L, Sitarski M, Stawowska-Carewicz N, Pstragowska M (2011)Inventory of green areas on the example of Warsaw and Gliwice - field measurements. Czlowiek i Srodowisko 35 (3-4): 123-132.
Gscholar
(84)
Sterenczak K, Bedkowski K, Weinacker H (2008)Accuracy of crown segmentation and estimation of selected trees and forest stand parameters in order to resolution of used DSM and nDSM models generated from dense small footprint LIDAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Youth Forum, vol. XXXVIII, Part B6b, pp. 27-33.
Online |
Gscholar
(85)
Sterenczak K (2013)Czynniki warunkujace proces detekcji pojedynczych drzew w oparciu o dane pozyskane w wyniku lotniczego skanowania laserowego [Factors influencing individual tree crowns detection based on airborne laser scanning data]. Lesne Prace Badawcze 74 (4): 323-333. [in Polish]
Gscholar
(86)
Stigsdotter U, Ekholm O, Schipperijn J, Toftager M, Kamper-Jorgensen F, Randrup T (2010)Health promoting outdoor environments - associations between green space, and health, health related quality of life and stress based on a Danish national representative survey. Scandinavian Journal of Public Health 38: 411-417.
CrossRef |
Gscholar
(87)
Strunk J, Mills J, Ries P, Temesgen H, Jeroue L (2016)An urban forest-inventory-and-analysis investigation in Oregon and Washington. Urban Forestry and Urban Greening 18: 100-109.
CrossRef |
Gscholar
(88)
Takebayashi H, Moriyama M (2007)Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment 42: 2971-2979.
CrossRef |
Gscholar
(89)
Tanhuanpää T, Vastaranta M, Kankare V, Holopainen M, Hyppä J, Hyppä H, Alho P, Raisio J (2014)Mapping of urban roadside trees - A case study in the tree register update process in Helsinki city. Urban Forestry and Urban Greening 13: 562-570.
CrossRef |
Gscholar
(90)
Tate R (1985)Uses of street tree inventory data. Journal of Arboriculture 11 (7): 210-213.
Gscholar
(91)
Thaiutsa B, Puangchit L, Kjelgren R, Arunpraparut W (2008)Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban Forestry and Urban Greening 7: 219-229.
CrossRef |
Gscholar
(92)
Tigges J, Lakes T, Hostert P (2013)Urban vegetation classification: benefits of multitemporal RapidEye satellite data. Remote Sensing of Environment 136: 66-75.
CrossRef |
Gscholar
(93)
Tompalski P (2009)Naziemny skaning laserowy w inwentaryzacji zieleni miejskiej na przykladzie plant w Krakowie [Terrestrial laser scanning for an urban green inventory]. Archiwum Fotogrametrii, Kartografii i Teledetekcji 20: 421-431. [in Polish]
Gscholar
(94)
Tompalski P (2013)Wykorzystanie technik geomatycznych w inwentaryzacji szaty roslinnej obszarów poprzemyslowych Krakowa w aspekcie ich rewitalizacji [The use of geomatic techniques in the inventory of plant cover of post-industrial areas in Krakow in the aspect of their revitalization]. PhD thesis, Wydzial Lesny, Katedra Ekologii Lasu, Uniwersytet Rolniczy im. Hugona Kollataja, Poland, pp. 127-155. [in Polish]
Gscholar
(95)
Tooke T, Coops N, Goodwin N, Voogt J (2009)Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sensing of Environment 113: 398-407.
CrossRef |
Gscholar
(96)
Ucar Z, Bettinger P, Merry K, Siry J, Bowker JM, Akbulut R (2016)A comparison of two sampling approaches for assessing the urban forest canopy cover from aerial photography. Urban Forestry and Urban Greening 16: 221-230.
CrossRef |
Gscholar
(97)
UNRI (2010)A field guide standards for urban forestry data collection. Draft 2.0, Web site.
Online |
Gscholar
(98)
Verlič A, Durič N, Kokalj Z, Marsetič A, Simončič P, Oštir K (2014)Tree species classification using Worldview-2 satellite images and laser scanning data in a natural urban forest. Prethodno priopćenje - Preliminary communication. Šumarski list 9-10: 477-488.
Gscholar
(99)
Vonderach C, Voegtle T, Adler P (2012)Voxel-based approach for estimating urban tree volume from terrestrial laser scanning data. In: Proceedings of the “XXII ISPRS Congress”. Melbourne (Australia) 25 Aug - 1 Sept 2012. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B8: 451-456.
CrossRef |
Gscholar
(100)
Voss M, Sugumaran R (2008)Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object- oriented approach. Sensors 8: 3020-3036.
CrossRef |
Gscholar
(101)
Wu B, Yu B, Yue W, Shu S, Tan W, Hu Ch Huang Y, Wu J, Liu H (2013)A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sensing 5: 584-611.
CrossRef |
Gscholar
(102)
Wulder M, White J, Loveland T, Woodcock C, Belward A, Cohen W, Fosnight E, Shaw J, Masek J, Roy D (2016)The global Landsat archive: status, consolidation and direction. Remote Sensing of Environment 185: 271-283.
CrossRef |
Gscholar
(103)
Xiao Q, McPherson E (2005)Tree health mapping with multispectral remote sensing data at UC Davis, California. Urban Ecosystems 8: 349-361.
CrossRef |
Gscholar
(104)
Xiao Q, Ustin SL, McPherson EG (2004)Using AVIRIS data and multiple-masking techniques to map urban forest tree species. International Journal of Remote Sensing 25: 5637-5654.
CrossRef |
Gscholar
(105)
Yu X, Hyppa J, Huppa H, Maltamo M (2004)Effects of flight altitude on tree height estimation using airborne laser scanning. In: Proceedings of the “ISPRS working group VIII/2”. Freiburg (Germany) Oct 3-6 2004. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (8/W2): 96-101.
Gscholar
(106)
Zhang K, Hu B (2012)Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles. Remote Sensing 4: 1741-1757.
CrossRef |
Gscholar
(107)
Zhang C, Qiu F (2012)Mapping individual tree species in an urban forest using airborne lidar data and hyperspectral imagery. Photogrammetric Engineering and Remote Sensing 78 (10): 1079-1087.
CrossRef |
Gscholar
(108)
Zhang K, Hu B, Robinson J (2014)Early detection of emerald ash borer infestation using multisourced data: a case study in the town of Oakville, Ontario, Canada. Journal of Applied Remote Sensing 8 (1): 083602.
CrossRef |
Gscholar
(109)
Zhang C, Zhou Y, Qiu F (2015)Individual tree segmentation from LiDAR point clouds for urban forest inventory. Remote Sensing 7: 7892-7913.
CrossRef |
Gscholar
(110)
Zupancic T, Westmacott C, Bulthius M (2015)The Impact of green space on heat and air pollution in urban communities: a meta-narrative systematic review. David Suzuki Foundation, Vancouver, BC, Canada, pp. 68.
Gscholar
(111)
Zygmunt R, Banas J, Zieba S (2014)Urban forests stability on the example of “Las Wolski” in Cracow. Proceedings of the Center for Nature and Forestry Education 16 (39): 106-119.
Gscholar