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Estimation of aboveground forest biomass in Galicia (NW Spain) by the 
combined use of LiDAR, LANDSAT ETM+ and National Forest Inventory 
data
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Assessing biomass is critical for accounting bioenergy potentials and monitor-
ing  forest  ecosystem responses to global  change and disturbances.  Remote
sensing, especially Light Detection and Ranging (LiDAR) data combined with
field data, is being increasingly used for forest inventory purposes. We evalu-
ated the feasibility of the combined use of freely available data, both remote
sensing (LiDAR data provided by the Spanish National Plan for Aerial Ortopho-
tography – PNOA – and Landsat vegetation spectral indices) and field data (from
the  National  Forest  Inventory)  to  estimate  stand  dendrometric  and  above-
ground biomass variables of the most productive tree species in a pilot area in
Galicia (northwestern Spain). The results suggest that the models can accu-
rately predict  dendrometric  and biomass variables at  plot  level  with an R2

ranging from 0.49 to  0.65 for  basal  area,  from 0.65 to  0.95 for  dominant
height, from 0.48 to 0.68 for crown biomass and from 0.55 to 0.82 for stem
biomass. Our results support the use of this approach to reduce the cost of
forest  inventories  and provide a useful tool  for stakeholders to map forest
stand variables and biomass stocks.
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Introduction
Measurement  and  mapping  of  above-

ground forest biomass at diverse scales is
critical  for  estimating  global  carbon  stor-
age  and  assessing  those  ecosystem  re-
sponses to climate change and anthropo-
genic disturbance (Ni-Meister et al.  2010).
Estimation of forest biomass is of great im-
portance because of  the increasing value
of this renewable resource for energy pro-
duction (González-Ferreiro et al. 2013). Fur-
thermore,  biomass  estimation  and  map-
ping are used to quantify fuel loads for fire
risk  assessment  and  fire  prevention  plan-
ning  purposes  (González-Olabarria  et  al.
2012).

The method most commonly used to esti-
mate  aboveground  forest  biomass  is  the

forest inventory based on plot data. How-
ever, given the high costs and operational
difficulties  associated  with  this  method,
the use of remotely sensed data in combi-
nation with field-work is becoming increas-
ingly popular for forest inventory purposes
(Ji  et al.  2012).  Moreover,  remote-sensing
methods  enable  the  estimation  of  stand
dendrometric  and biomass values at each
pixel  location,  rather  than  estimation  of
average  or  total  biomass  within  a  given
area (Jenkins et al. 2001).

Most studies using remote-sensing meth-
ods  have  been  based  on  medium-to-high
resolution sensors, especially the Landsat-
TM  sensor,  given  the  good  compromise
between spectral and temporal resolution
of the data achieved (Ji et al. 2012,  López-

Serrano  et  al.  2015).  Remote-sensing  in-
dices have been used as explanatory vari-
ables  for  models  of  forest  biomass  and
productivity  (Manes  et  al.  2010).  LiDAR
(Light Detection and Ranging) technology
has been recognized as a much more effi-
cient, accurate and cost effective approach
to  sensing  aboveground  biomass.  This
technology is generally regarded as a more
accurate  method  because  LiDAR  sensors
provide  information  about  vertical  height
of individual pulses returns, which can then
be used to predict canopy attributes (Chen
2013). Previous studies have demonstrated
the success of LiDAR estimates of above-
ground biomass based on the relationship
between LiDAR metrics and field measure-
ments of biomass obtained from allometric
models (Zhao et al. 2009). In this study we
estimated aboveground forest biomass in
Galicia (NW Spain) by the combined use of
LiDAR, LANDSAT ETM+ and field data.

Two main types of statistical approaches
are applied  to  estimate  biomass  from re-
motely  sensed  data:  one  focused  on  the
data and the other on algorithms (Breiman
2001). The first assumes a stochastic model
(linear, nonlinear regressions) used both to
predict responses of population units not
in the sample and future responses (Ji et al.
2012,  González-Ferreiro  et  al.  2012,  2013).
The second approach (generally called ma-
chine-learning models)  has been reported
for  implicitly  inferring  unknown  relation-
ships underlying a given dataset, being ver-
satile enough to uncover complicated non-
linear relationships (Cortés et al.  2014). In
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the present study the first approach was
chosen.

Forest  inventories  based  on  remotely-
sensed data can be carried out at two dif-
ferent  spatial  scales:  the  individual  tree
level  (associated  with  spatially  dense  Li-
DAR data, > 5 points m-2 – Kaartinen et al.
2012)  and the area-based,  which can also
be used with low density LiDAR data (Zhao
et  al.  2009,  González-Ferreiro  et  al.  2012,
González-Ferreiro et al. 2013). In this study,
we focused on area-based forest invento-
ries,  as  we  used  low  density  LiDAR  data
provided by the Spanish National Plan for
Aerial  Ortophotography  (PNOA)  for  the
Spanish  territory  (0.5  pulse  m-2),  being
higher point densities required for the esti-
mation at individual tree level (Shendryk et
al.  2014).  The  use  of  LiDAR  for  above-
ground biomass estimations is still  consid-
ered  a  challenging  task,  especially  when
using low density scanning systems, due to
its  lower  accuracy  in  comprehensively  re-
flecting  the  canopy  structure  (Lin  et  al.
2010).  However,  low  density  LiDAR  has
been shown to be quite effective for pre-
dicting biomass and other variables in tem-
perate  forests  (Naesset  et  al.  2011,  Nord-
Larsen & Schumacher 2012,  McRoberts et
al. 2013).

For large areas covered by different types
of  vegetation,  models  based  on  remote
sensing  data  are  usually  developed  for
each vegetation type, as this kind of mod-
els  is  greatly  influenced  by  species  and
stand structure (Naesset et al. 2011,  Nord-
Larsen  &  Schumacher  2012,  Lafiti  et  al.
2015). Implementation of models for map-
ping stand dendrometric and biomass vari-
ables requires an accurate classification of
the area (Naesset et al. 2011, Nord-Larsen &
Schumacher 2012, Lafiti et al. 2015).

Galicia has one of the greatest potential
forest production rates in Europe, varying
from 6 to 12 m3 ha-1 year-1 depending on the
particular  species  (Chas-Amil  2007)  and
producing 45% of  Spain’s  timber and 4.5%
of Europe’s. The most productive and fast-
growing tree species in Galicia are Eucalyp-
tus spp.  (Eucalytus  globulus Labill.  and
Eucalyptus nitens Deane et Maiden),  Pinus
pinaster Ait. and Pinus radiata D. Don, all of
which are grown in extensive commercial
forest plantations to produce panelboard,
sawlog and pulpwood (Merino et al. 2005).
Stands  dominated  by  these  tree  species
account for 133,224,356 m3 of standing tim-
ber (69.1% of the total tree standing timber
volume)  in  Galicia,  and  cover  an  area  of
896,342 ha (62.9% of the total tree-covered

area) in the region (MARM 2011).
The objective of this study was to evalu-

ate the feasibility of the combined use of
freely  available remote sensing (low den-
sity LiDAR and Landsat) and National For-
est Inventory data combined with the Na-
tional  Forest  Map (based on PNOA aerial
ortophoto,  with  a  scale  of  1:25,000  and
minimum mapping unit of 1 ha) to estimate
stand  dendrometric  and  aboveground
biomass variables of  the most productive
tree species in a pilot area in Galicia. This is
the  first  study  using  this  freely  available
information  for  these  tree  species  in  the
NW Spain. The results may also be applica-
ble to similar areas covered by similar sen-
sors.

Material and methods
The study was conducted in the munici-

pality of Palas de Rei (Lugo), in northwest-
ern Spain (42° 52′ 23″ N; 07° 52′ 08″ W – Fig.
1).  The study area consisted of  a 60  × 60
km square, centered in Palas de Rei encom-
passing  parts  of  the  provinces  of  Lugo,
Pontevedra and A Coruña. The mean eleva-
tion of the area is 525 m (range 147-1179 m)
and the mean slope is 11.3%. The climate is
Mediterranean,  with  a  continental  influ-
ence. The average precipitation is 1188 mm
year-1, and the mean annual temperature is
12.3  °C,  with  maximum  temperatures  in
August  (19.0  °C)  and  minimum  tempera-
tures  in  January  (6.8  °C).  Forests  (more
than 20% of  tree cover)  occupy 150,396.6
ha of the total surface area. The main tree
species in the area are Pinus pinaster (cov-
ering 27.8% of the total forest area),  Pinus
radiata (22.7%),  Quercus robur (30.7%)  and
Eucalyptus spp. (mainly E. nitens and E. glo-
bulus – 13.8%).

Field data
The Fourth Spanish National Forest Inven-

tory (SNFI-4) plots were used as the source
of field data for this study. Plots within the
study  area  dominated  by  the  three  se-
lected tree species, with tree cover > 20%
and  presence  of  trees  with  diameter  at
breast height (dbh) > 7.5 cm, were selected
for the study (MARM 2011). The plots were
established at the intersections of  a 1  × 1
km grid, totaling 873 plots over the whole
study area. In 749 of these, tree cover was
> 20%, with presence of trees with dbh > 7.5
cm. In total, 159 plots were dominated by
Pinus pinaster, 142 by Pinus radiata and 109
by  Eucalyptus spp.  The  measurements
were  carried  out  during  2008  and  2009
(Tab. 1).

Sample plots consisted of four concentric
circles of radii 5, 10, 15 and 25 m, in which
dbh and total height were measured in all
trees of dbh > 7.5, 12.5, 22.5 and 42.5 cm,
respectively. Diameter at breast height was
measured  to  the  nearest  0.1  cm  with  a
graduated  caliper,  and  tree  height  was
measured to the nearest 0.1 m with a hyp-
someter.  The  number  of  stems  per  hec-
tare,  basal  area  and  dominant  height
(mean height of the 100 thickest trees per
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Fig. 1 - Location of the study area and National Forest Map polygons dominated by
Pinus pinaster, Pinus radiata and Eucalyptus spp.

Tab. 1 - Mean (± standard error) tree density, basal area (G), dominant height (H 0),
crown  biomass  (Wcr),  stem  biomass  (Wst)  per  sample  plot  of  the  National  Forest
Inventory within the study area for each species. 

Main
species

Density
(trees ha-1)

G
(m2 ha-1)

H0

(m)
Wcr

(Mg ha-1)
Wst

(Mg ha-1)

Eucalyptus spp. (n=109) 783 ± 48 17.0 ± 1.4 25.5 ± 1.1 17.1 ± 1.6 89.9 ± 10.0

Pinus pinaster (n=159) 579 ± 39 17.3 ± 1.1 20.6 ± 0.6 19.6 ± 1.2 58.4 ± 4.1

Pinus radiata (n=142) 646 ± 36 19.9 ± 1.1 20.4 ± 0.6 20.0 ± 1.1 70.8 ± 4.8
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hectare) were calculated from the tree var-
iable measurements by the use of  expan-
sion  factors.  These  factors  express  the
number  of  trees  per  hectare  that  each
measured tree represents in the inventory
in relation to the subplot radius.

Aboveground biomass per plot was esti-
mated by applying existing allometric mod-
els for each measured tree within the plot.
Specific  allometric  models  were  used  for
each species, and models constructed for
the same ecoregion (NW Spain)  were se-
lected. The explanatory variables included
in  the  models  were  tree  variables  mea-
sured in the National Forest Inventory (dbh
and tree height). The allometric models by
the  following  authors  were  used  for  the
different species: Jiménez et al. (2013) and
Gómez-Vázquez et al. (2013), for  Pinus pin-
aster; Balboa-Murias et al. (2006), for Pinus
radiata; Brañas et al. (2000) for Eucalyptus
globulus; and  Pérez-Cruzado & Rodríguez-
Soalleiro  (2011) for  Eucalyptus  nitens.  For
other tree species inside the plots, we used
the  model  by  Balboa-Murias  (2005) for
Quercus robur and those reported by Mon-
tero et al.  (2005) for other species.  After
applying the models, we estimated the bio-
mass  values  for  following  components  in
each  tree  measured:  leaves,  stem,  fine
branches  (diameter  <  2  cm)  and  coarse
branches (diameter ≥ 2 cm). To obtain the
aboveground  biomass  at  plot  level,  we
used the above-mentioned expansion fac-
tor.  Aboveground  biomass  at  plot  level
was subdivided in two components: crown
biomass  (leaves  and  branches)  and  stem
biomass (Tab. 1).

The National Forest Map, associated with
the  National  Forest  Inventory  was  ob-
tained  from  the  PNOA  aerial  ortophoto
(scale 1:25,000, minimum mapping unit of 1
ha)  and used to classify vegetation types
and  spatially  define  the  polygons  domi-
nated by each of the species under study
(Fig. 1).

LiDAR data
The  LiDAR  data  were  provided  by  the

PNOA. The study area was surveyed at two
different times: once in 2009 (province of
Lugo) and then in 2011 (provinces of Pon-
tevedra  and  A  Coruña).  Data  were  deliv-
ered in 2 × 2 km tiles of points in LAS binary
files. The resulting LiDAR point density for
the study area was 0.5 pulse m-2, with a ver-
tical accuracy greater than 0.2 m. A total of
961  LAS  files  were  required  in  order  to
cover the study area.

The LiDAR data were processed using the

software  FUSION  LDV  3.50  (McGaughey
2009). After eliminating the noise from the
point  cloud,  the  Digital  Elevation  Model
(DEM) of the study area was obtained. This
was  done  by  first  filtering  the  ground
returns (using the “GroundFilter” tool) by
implementing  a  filtering  algorithm,  adap-
ted from Kraus & Pfeiffer (1998). The DEM
(1 m spatial resolution) was then generated
using these returns through the “GridSur-
faceCreate” command and used to normal-
ize  the  heights  of  the  point  cloud.  The
LiDAR  height  and  intensity  statistics  for
each sample plot were obtained using the
“ClipData” and “CloudMetrics” commands
and the plot  boundaries  (25 m radius).  A
predefined  threshold  of  2  m  above  the
ground  was  applied  in  order  to  exclude
returns not corresponding to crowns (e.g.,
understory, rocks, shrubs).

Landsat ETM+ data
We obtained a  cloud-free Landsat  ETM+

scene corresponding to a date close to the
National  Forest  Inventory  and  LiDAR  sur-
vey  (1  June  2009).  Digital  numbers  were
converted  to  radiometric  values  by  using
the specific gain and offset of the sensor.
Reflectance was obtained using the meth-
od  of  NASA  (2011).  The  images  (SLC-off)
were fused using the method described by
Scaramuzza et al.  (2004). Reflectance val-
ues were used to obtain several vegetation
indices (Tab. 2) for each plot sampled.

Regression models
Linear,  power  function  and  exponential

models  were  used  to  estimate  how  plot
values (stand variables: basal area and do-
minant  height;  aboveground  biomass:
crown and stem biomass) were related to
LiDAR variables (height and intensity met-
rics) and Landsat vegetation indices. Mod-
els were obtained for each dominant spe-
cies (Pinus pinaster, Pinus radiata and Euca-
lyptus spp.) and for each LiDAR survey area
(2009  and  2011).  Separate  models  were
constructed for  different  species because
they have different  structural  characteris-
tics (e.g.,  tree architecture, canopy stratifi-
cation, canopy density, etc.) that generate
differences in the models (Chen 2013,  Cor-
tés et al. 2014), and because the accuracy
of prediction depends on the type of forest
(Chen 2013). The LiDAR surveys were sepa-
rated because the quality of laser-derived
data depends on flight height, scan angle,
point  density  and  footprint  size,  among
other  factors.  In  the  case  of  Eucalyptus
spp., we only used the LiDAR_2011, as only

a  few  of  the  National  Forest  Inventory
plots dominated by this species were sur-
veyed in 2009. The model expressions are
as follows (eqn. 1, eqn. 2, eqn. 3):

where  Y represents the field values (stand
dendrometric  and  aboveground  biomass
variables), Xi represents a set of m indepen-
dent variables (height and intensity LiDAR
variables and Landsat vegetation indices),
α and βi (i = 1, …, m) are parameters to be
estimated, and ε is the error term.

Linear models were fitted by stepwise re-
gression.  Power  and  exponential  models
were  fitted  by  nonlinear  regression  after
prior  linearization  (taking  natural  loga-
rithms) to select (by linear regression) the
most  significant  subset  of  independent
variables  to include in  the model.  To cor-
rect for bias in log-transformed allometric
equations, we adopted a correction factor
(Sprugel 1983). Heterocedasticity and mul-
ticollinearity  among  explanatory  variables
were checked. The presence of multicollin-
earity  among  variables  was  evaluated  by
the condition number (Belsley 1991), select-
ing  the  models  with  condition  number
smaller than 10 (collinearity is not a major
problem). For each dominant tree species
and LiDAR survey,  the selected model  in-
cluded  the  combination  of  independent
variables  with  the  largest  coefficient  of
determination  (R2,  defined  as  the  square
correlation  coefficient  between  the  mea-
sured and estimated values),  the smallest
values of the Akaike’s information criterion
(AIC – Burnham & Anderson 1998) and the
root  mean squared error  of  the estimate
(RMSE).

Raster  files  were  obtained  for  each  ex-
planatory  variable  (for  LiDAR  variables
through  the  “CSV2Grid”  FUSION  com-
mand) with a  spatial  resolution similar  to
the Landsat image (30 m). The constructed
models were used for spatial extrapolation
of  stand  dendrometric  and  aboveground
biomass  variables  to  the  study  area,  and
the Spanish Forest Map was used to iden-
tify  polygons  dominated  by  the  species
considered. To avoid the inclusion of bias in
the spatial extrapolation using model pre-
dictions,  model-assisted  estimators  were
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Tab. 2 - Landsat vegetation spectral indices employed in the study. (ρNIR): Near infrared; (ρR): Red; (ρB): Blue.

Index Equation Reference

Simple Ratio (SR) SR = ρNIR / ρR Jordan (1969)

Normalized Difference Vegetation Index (NDVI) NDVI = (ρNIR - ρR)/ (ρNIR + ρR) Rouse et al. (1973)

Soil-Adjusted Vegetation Index (SAVI) SAVI = (1+0.5) · (ρNIR - ρR)/ (ρNIR + ρR + 0.5) Huete (1988)

Normalized Ratio Vegetation Index (NRVI) NRVI = (ρR/ρNIR - 1)/ (ρR/ρNIR + 1) Baret & Guyot (1991)

Enhanced Vegetation Index (EVI) EVI = 2.5 · (ρNIR - ρR)/(ρNIR + 6 · ρR + 7.5 · ρB + 1) Liu & Huete (1995)

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

Linear: Y =α +∑
i=1

m

β i X i+ε

Exponential:Y =exp(α +∑
i=1

m

β i X i)+ε

Power:Y =α +∏
i=1

m

X i
β i

+ε



Jiménez E et al. - iForest 10: 590-596

employed to include a correction for esti-
mated  bias  (McRoberts  et  al.  2013).  This
estimate  is  adjusted  for  deviations  be-
tween the model  predictions and the ob-
served values in the sample (eqn. 4):

where  MA mean is  the model-assisted re-
gression estimator of means, N is the popu-
lation size,  ŷi  is obtained from the models
using the model parameters estimates and
ε = 0. The first term in the equation is the
mean of the model  predictions (ŷi) for all
population units, and the second term is an
estimate of bias calculated over the sample
units  and  compensates  for  systematic
model prediction errors.

Results
The models obtained for each dominant

species and LiDAR survey, the goodness-of-

fit-statistics for the most significant model
constructed  and  the  stand  dendrometric
and  aboveground  biomass  variables  are
shown  in  Tab.  3.  Linear  and  exponential
models were selected on the basis of their
performance.  Eucalyptus spp.  stands  pro-
duced the least quality of fit in terms of R2,
with  models  providing  values  of  49%  for
basal  area,  65%  for  dominant height,  48%
for  crown biomass and 55% for  stem bio-
mass.  By  contrast,  Pinus  radiata stands
(LiDAR_2011  data)  produced  the  greatest
quality  of  fit  for  basal  area  (65%),  crown
biomass  (68%)  and  stem  biomass  (82%)
(Fig. 2). The greatest quality of fit for domi-
nant  height  was  obtained  for  Pinus  pin-
aster  (LiDAR_2009 data),  with  a  value  of
95%.

Independent  variables  related  to  the
height  distribution  metrics  were  included
in  all  models  (Tab.  3).  Intensity  metrics
appeared as explanatory variables in  Euca-
lyptus spp.  (basal  area  and  dominant

height),  Pinus  pinaster (LiDAR_2011  data:
basal  area,  crown biomass  and  stem bio-
mass) and Pinus radiata (LiDAR_2009 data:
basal  area  and  crown  biomass  – Tab.  3).
Landsat  derived  vegetation  indices  were
explanatory  variables  in  Pinus  radiata (Li-
DAR_2011 data), with Simple Ratio (SR) in
basal  area,  dominant  height  and  crown
biomass models, and Soil-Adjusted Vegeta-
tion  Index  (SAVI)  in  the  stem  biomass
model. The inclusion of Landsat resulted in
an increase in the R2 values (from 0.64 to
0.65 for basal area, from 0.64 to 0.68 for
dominant  height,  from  0.66  to  0.68  for
crown biomass and from 0.60 to 0.82 for
stem  biomass),  and  reductions  in  RMSE
(from 5.6 to 5.5 m2 ha-1 for basal area, from
3.9 to 3.7 m for dominant height, from 5.4
to 5.2 Mg ha-1 for crown biomass and from
25.5 to 17.0 Mg ha-1 for stem biomass) and
AIC values (from 161 to 158 for basal area,
from 126 to 123 for dominant height, from
767 to 761 for crown biomass and from 899
to 869 for stem biomass).

Tab.  4 displays  the  model-assisted  esti-
mates for each species of the mean values
of basal area and dominant height, crown
and stem biomass which were obtained by
applying the models achieved to the poly-
gons dominated by each analyzed species
in  the  whole  study  area.  The  standard
errors  for  estimates  of  the  means  were
small,  ranging from 0.5  to 0.8 m2 ha-1 for
basal area, from 0.3 to 0.7 m for dominant
height, from 0.6 to 0.8 Mg ha -1 for crown
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Tab. 3 - Results of basal area (G), dominant height (H0), crown biomass (Wcr), stem biomass (Wst) modelling. (RMSE): root of mean
squared error; (AIC): Akaike’s information criterion; (LIN): linear models; (EXP): exponential models; (Elmax): Maximum height; (1 st

Ret above 2): Number of first return above 2 m; (IntL3): L3 moments of intensity; (Int L4): L4 moments of intensity; (Elp90): Height
90th pertencile value; (Elp95): Height 95th pertencile value; (Elskewness): Height skewness; (Perc Ret above mode): Percentage of
all returns above the mode height; (Ret above mean): number of returns above the mean value; (Ret above 2): number of returns
above 2 m; (Elp10): height 10th percentile value; (ElCURTmenaCUBE): Cubic mean; (Ret2): Number of second returns; (IntLskew-
ness): Moment ratio of intensity skewness; (ElCV): Coefficient of variation of height; (Ret3): Number of third returns; (Elp30): height
30th pertencile value; (Elp40): Height 40th pertencile value; (Intmode): Intensity mode; (Elp75): Height 75th pertencile value; (Elp01):
height 1st pertencile value; (Int01): Intensity 1st pertencile value; (SR): Landsat Simple Ratio; (SAVI): Landsat SAVI Index; (ElL4):
Moment L4 of height.

Main species Variable Model R2 RMSE AIC
Eucalyptus spp. 
LiDAR_2011 (n=85)

G (m2 ha-1) EXP (Elmax - 1st Ret above 2 - IntL3) 0.49 8.7 334
H0 (m) EXP (Elmax - IntL4) 0.65 5.9 273
Wcr (Mg ha-1) EXP (Elmax) 0.48 10.2 1390
Wst (Mg ha-1) LIN ( Elmax - Elp90 - Elp95 - Elskewness) 0.55 58.0 1657

Pinus pinaster 
LiDAR_2009 (n=54)

G (m2 ha-1) LIN (Elp95 - 1st Ret above 2) 0.62 9.2 168
H0 (m) LIN (Elp95 -Perc Ret above mode - Elp90) 0.95 1.3 27
Wcr (Mg ha-1) LIN (Elp95 - Ret above mean) 0.59 10.8 677
Wst (Mg ha-1) EXP (Elp95 -Ret above 2 - Elp10) 0.65 33.7 761

Pinus pinaster 
LiDAR_2011 (n=105)

G (m2 ha-1) EXP (ElCURTmeanCUBE - Ret2 - IntLskewness - ElCV) 0.61 7.2 406
H0 (m) LIN (Elmax - Elskewness) 0.73 3.9 283
Wcr (Mg ha-1) EXP (Elmax - Ret3 - IntLskewness - Elp30 - IntL4) 0.58 8.4 1822
Wst (Mg ha-1) EXP (Elmax - Ret2 - IntLskewness - Elp40) 0.60 27.4 2056

Pinus radiata 
LiDAR_2009 (n=82)

G (m2 ha-1) LIN (ElCURTmeanCUBE - Intmode - Elp75) 0.61 7.6 322
H0 (m) LIN (Elmax - Elp01 - Elp99 - Ret above 2) 0.86 2.4 147
Wcr (Mg ha-1) LIN (ElCURTmeanCUBE - Intmode - Elp75 - Intp01) 0.64 7.6 1388
Wst (Mg ha-1) LIN (Elp99 - ElCURTmeanCUBE) 0.62 34.2 1616

Pinus radiata 
LiDAR_2011 (n=60)

G (m2 ha-1) LIN (ElCURTmeanCUBE - SR) 0.65 5.5 158
H0 (m) EXP (Elmax - SR) 0.68 3.7 123
Wcr (Mg ha-1) LIN (ElCURTmeanCUBE - SR) 0.68 5.2 761
Wst (Mg ha-1) EXP (Elmax - SR - SAVI - ElL4) 0.82 17.0 869

Tab.  4 -  Estimates mean values (± standard error) of basal  area (Ĝ) and dominant
height (Ĥ0),  crown biomass (Ŵcr)  and stem biomass (Ŵst)  for each species for the
whole study area.

Main species Ĝ
(m2 ha-1)

Ĥ0

(m)
Ŵcr

(Mg ha-1)
Ŵst

(Mg ha-1)

Eucalyptus spp. 12.8 ± 0.8 19.0 ± 0.7 11.4 ± 0.8 32.6 ± 5.2
Pinus pinaster 13.9 ± 0.7 14.3 ± 0.4 11.0 ± 0.6 29.5 ± 2.7
Pinus radiata 13.6 ± 0.6 14.7 ± 0.3 14.5 ± 0.6 29.9 ± 2.5
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biomass  and  from  2.5  to  5.2  Mg  ha-1 for
stem biomass. Bias estimates for the mod-
el assisted estimator were also small, from
-0.08 to 0.08 m2 ha-1 for basal  area,  from
-0.01 to 1.40 m for dominant height, from
-0.01 to 0.01 Mg ha-1 for crown biomass and
from  -0.01  to  0.03  Mg  ha-1 for  stem  bio-
mass.

Discussion
The  findings  of  this  study  demonstrate

that stand dendrometric and biomass vari-
ables  can  be  predicted  with  reasonable
precision by using low density LiDAR vari-
ables  in  combination  with  Landsat  data.
The importance of  linear and exponential
models  has  previously  been  reported  in
studies  relating  LiDAR metrics  (combined
or not with spectral data) and stand den-
drometric  and  biomass  variables  (Gonzá-
lez-Ferreiro  et  al.  2012,  2013),  even  for
shrub vegetation (Estornell et al. 2012). The
R2 values  obtained  in  the  present  study
were of  the same order  of  magnitude or
slightly  smaller  than  those  previously  re-
ported for the same species (González-Ola-
barria  et  al.  2012,  González-Ferreiro  et  al.
2012,  2013), probably as a consequence of
the use of lower density LiDAR data, or (in
the  present  study),  the  use  of  field  data
from the National Forest Inventory rather
than specifically measured field data.

Previous studies have found that height
metrics  are  closely  correlated  with  stand
dendrometric  and  biomass  variables  for
the same species (González-Ferreiro et al.
2012,  2013) and others (Laurin et al. 2014).
However,  these  studies  were  carried  out
with higher density LiDAR data and specifi-
cally  measured  field  data.  The  most  fre-

quent height metric variables observed in
our models are maximum height, the cubic
mean of the height and diverse percentiles
of  height  distribution.  This  is  consistent
with  previously  reported  correlations  be-
tween stand dendrometric and/or biomass
variables and maximum height (Lim et al.
2003)  and  also  between  the  former  and
height percentiles (González-Ferreiro et al.
2012,  2013,  Laurin  et  al.  2014).  The  most
appropriate height metrics reported in the
literature  widely  differ  as  a  likely  conse-
quence  of  differences  in  the  vegetation
structure and data processing procedures
used (Chen 2013). The close correlation be-
tween  aboveground  biomass  values  and
maximum height and the higher LiDAR per-
centiles  observed  in  our  study  may  be  a
result of the regular structure of the forest
plantations surveyed (González-Ferreiro et
al. 2013).

Although  intensity  metrics  may  not  al-
ways  selected  as  explanatory  variables
(González-Ferreiro et al. 2013), some stud-
ies on pine stands have also reported that
the inclusion of intensity variables may im-
prove the predictive power of the models,
or may even be decisive if used in combina-
tion  with  density  or  height  LiDAR  values
(González-Olabarria  et  al.  2012,  González-
Ferreiro et al. 2012).

In  this  study the  least  quality  of  fit  ob-
served  for  Eucalyptus spp.  compared  to
Pinus species  is  consistent  with  previous
findings (Cortés et al. 2014) and is explain-
ed  by  the  sparser  canopies  of  Eucalyptus
trees, which result in less accurate digital
canopy models.

Although there were not previous studies
combining  LiDAR  and  satellite  data  for

these  species  in  NW  Spain,  an  improve-
ment in model accuracy by combining both
types of data has been previously observed
in other tree species (Chen et al. 2012, Cor-
tés  et  al.  2014).  Some authors  only  used
optical imagery for the first step in vegeta-
tion classification in  order  to  account  for
the  dependence  of  stand  dendrometric
and  biomass  estimation  on  vegetation
types  (Chen  et  al.  2012).  In  the  present
study, this classification was implemented
by using the Spanish Forest Map based on
the  analysis  of  aerial  photographs.  We
used Landsat derived vegetation indices as
explanatory variables in combination with
LiDAR variables to improve the stand den-
drometric  and biomass models (Cortés  et
al. 2014). In the present study Landsat de-
rived vegetation indices contributed to sig-
nificantly improve the quality of fit of the
model  to  the  data  for  Pinus  radiata (Li-
DAR_2011  data).  The  spectral  data  alone
had  a  small  explanatory  power,  as  previ-
ously observed for other tree species (Es-
tornell et al. 2012, Laurin et al. 2014). How-
ever,  the  improvement  in  model  perfor-
mance for  Pinus radiata (LiDAR_2011 data)
by the inclusion of Landsat derived vegeta-
tion  indices  is  consistent  with  previous
studies  in  which  forest  stand  structure
metrics  were  predicted  using  a  combina-
tion of LiDAR and remote sensing imagery
(Cortés  et  al.  2014,  Laurin  et  al.  2014),  al-
though  the  improvement  was  relatively
small in our case.

The standard error of the model-assisted
regression  estimates  were  smaller  than
those  obtained  by  field  sampling  (simple
random sampling estimates  – Tab. 1), con-
firming  that  remotely  sense  data  made

iForest 10: 590-596 594

Fig. 2 - Field vs. predicted 
measured values of basal 
area (a), dominant height 
(b), crown biomass (c) and 
stem biomass (d) for Pinus 
radiata.
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substantial contributions with greater pre-
cision, as compared with estimates based
only on plot observations (McRoberts et al.
2013).  Mean values  of  the  model-assisted
regression values were smaller than those
of  the  plot  observations  (Tab.  1),  likely
because field plots were characterized by
tree cover > 20% and the presence of trees
with dbh > 7.5 cm, while the area covered
by remotely sensed data also included loca-
tions with smaller tree cover and/or with-
out  the presence of  trees with dbh > 7.5
cm.

Conclusions
Our  findings  confirmed  the  potential  of

the  combined  use  of  freely  available  re-
mote sensing and regional forest invento-
ries to establish relationships that allow to
determine the spatial  distribution of  both
stand dendrometric and aboveground bio-
mass variables of stands dominated by dif-
ferent species in a large area (60 × 60 km)
in Galicia. This is the first study combining
this  freely available information for  these
species in this area. This information is criti-
cal  for  calibrating  and  validating  biogeo-
chemical models, quantifying carbon fluxes
and supporting the United Nations Frame-
work Convention on Climate Change pro-
gram (Chen 2013).

The future periodicity and availability  of
this information will enable spatial estima-
tion of stand, biomass and carbon tempo-
ral evolution in different vegetation types.
The findings of this study support the use
of this approach to reduce the cost of for-
est inventories, thus providing a useful tool
enabling stakeholders to map forest stand
variables and biomass stocks.
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