*
 

iForest - Biogeosciences and Forestry

*

High resolution biomass mapping in tropical forests with LiDAR-derived Digital Models: Poás Volcano National Park (Costa Rica)

Alfredo Fernández-Landa (1)   , José Antonio Navarro (1-2), Sonia Condés (2), Nur Algeet-Abarquero (1-3), Miguel Marchamalo (3)

iForest - Biogeosciences and Forestry, Volume 10, Issue 1, Pages 259-266 (2017)
doi: https://doi.org/10.3832/ifor1744-009
Published: Feb 23, 2017 - Copyright © 2017 SISEF

Research Articles


Tropical forests play a key role in global carbon cycle. Reducing Emissions from Deforestation and forest Degradation (REDD+) program requires reliable mechanisms for Monitoring, Reporting and Verification (MRV). In this regard, new methods must be developed using updated technologies to assess carbon stocks. The combination of LiDAR technology and in situ forest networks allows the estimation of biomass with high resolution in low data environments, such as tropical countries. However, the evaluation of current LiDAR methods of biomass inventory, and the development of new methodologies to reduce uncertainty and increase accuracy, is still needed. Our aim is to evaluate new methodologies of spatially explicit LiDAR biomass inventories based on local and general plot-aggregate allometry. For this purpose, 25 field plots were inventoried, covering the structural and ecological variability of Poás Volcano National Park (Costa Rica). Important differences were detected in the estimation of aboveground biomass (92.74 t ha-1 considering the mean value of plot sample) depending on the chosen tree allometry. We validated the general aboveground biomass plot-aggregate allometry proposed by Asner & Mascaro (2014) in our study area, and we fitted two specific models for Poás forests. Both locals and general models depend on LiDAR top-of-canopy height (TCH), basal area (BA) and wood density. Small deviations in the wood density plot sample (0.60 ± 0.05) indicated that a single wood density constant value could be used throughout the study area. A BA-TCH origin forced linear model was fitted to estimate basal area, as suggested by the general methodology. Poás forest has a larger biomass density for the same THC compared to the rest of the forests previously studied, and shows that the BA-TCH relationship might have different trends in each life zone. Our results confirm that the general plot-aggregate methodology can be easily and reliably applied as aboveground biomass in a new area could be estimated by only measuring BA in field plots to obtain a local BA-TCH regression. For both local and general methods, the estimation of BA is critical. Therefore, the definition of precise basal area field measurement procedures is decisive to achieve reliable results in future studies.

  Keywords


Carbon, Remote Sensing, REDD, LiDAR, Plot-level Allometry, Biomass, Basal Area

Authors’ address

(1)
Alfredo Fernández-Landa
José Antonio Navarro
Nur Algeet-Abarquero
Agresta Soc. Coop, C/ Duque de Fernán Núñez 2, Madrid 28012 (Spain)
(2)
José Antonio Navarro
Sonia Condés
Dept. Natural Systems and Resources, Technical University of Madrid. School of Forestry, Ciudad Universitaria, Madrid 28040 (Spain)
(3)
Nur Algeet-Abarquero
Miguel Marchamalo
Dept. of Land Morphology and Engineering, Technical University of Madrid, Ciudad Universitaria, Madrid 28040 (Spain)

Corresponding author

 
Alfredo Fernández-Landa
afernandez@agresta.org

Citation

Fernández-Landa A, Navarro JA, Condés S, Algeet-Abarquero N, Marchamalo M (2017). High resolution biomass mapping in tropical forests with LiDAR-derived Digital Models: Poás Volcano National Park (Costa Rica). iForest 10: 259-266. - doi: 10.3832/ifor1744-009

Academic Editor

Davide Travaglini

Paper history

Received: Jun 18, 2015
Accepted: Oct 20, 2016

First online: Feb 23, 2017
Publication Date: Feb 28, 2017
Publication Time: 4.20 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 47173
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 40490
Abstract Page Views: 2616
PDF Downloads: 3001
Citation/Reference Downloads: 27
XML Downloads: 1039

Web Metrics
Days since publication: 2828
Overall contacts: 47173
Avg. contacts per week: 116.76

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2017): 2
Average cites per year: 0.29

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Asner GP, Hughes RF, Varga TA, Knapp DE, Kennedy-Bowdoin T (2009)
Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 12 (2): 261-278.
CrossRef | Gscholar
(2)
Asner GP, Hughes RF, Mascaro J, Uowolo AL, Knapp DE, Jacobson J, Kennedy-Bowdoin T, Clark JK (2011)
High-resolution carbon mapping on the million hectare Island of Hawaii. Frontiers in Ecology and the Environment 9 (8): 434-439.
CrossRef | Gscholar
(3)
Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Van Breugel M (2012a)
A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168 (4): 1147-1160.
CrossRef | Gscholar
(4)
Asner GP, Clark JK, Mascaro J, García GA, Chadwick KD, Encinales DA, Paez-Acosta G, Cabrera E, Kennedy-Bowdoin T, Duque A, Balaji A, Von Hildebrand P, Maatoug L, Phillips JF, Knapp DE, Dávila MC, Jacobson J, Ordóñez MF (2012b)
High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences Discussions 9 (3): 2683-2696.
CrossRef | Gscholar
(5)
Asner GP, Mascaro J, Anderson C, Knapp DE, Martin RE, Kennedy-Bowdoin T, Van Breugel M, Davies S, Hall JS, Muller-Landau HC, Potvi C, Sousa W, Wright J, Bermingham E (2013)
High-fidelity national carbon mapping for resource management and REDD+. Carbon balance and management 8 (1): 1-14.
CrossRef | Gscholar
(6)
Asner GP, Mascaro J (2014)
Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment 140: 614-624.
CrossRef | Gscholar
(7)
Bolaños R, Watson V, Tosi J (2005)
Mapa ecológico de Costa Rica (Zonas de Vida), según el sistema de clasificación de zonas de vida del mundo de L.R. Holdridge), Escala 1: 750 000. [Ecological map of Costa Rica (Life Zones) according to the classification system of Holdridge life zones in the world, Scale 1:750.000]. Centro Científico Tropical, San José, Costa Rica. [in Spanish]
Gscholar
(8)
Bonan GB (2008)
Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320 (5882): 1444-1449.
CrossRef | Gscholar
(9)
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005)
Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (1): 87-99.
CrossRef | Gscholar
(10)
Chave J, Coomes DA, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009)
Towards a worldwide wood economics spectrum. Ecology Letters 12 (4): 351-366.
CrossRef | Gscholar
(11)
Clark ML, Clark DB, Roberts DA (2004)
Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment 91 (1): 68-89.
CrossRef | Gscholar
(12)
Clark ML, Roberts DA, Ewel JJ, Clark DB (2011)
Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. Remote Sensing of Environment 115 (11): 2931-2942.
CrossRef | Gscholar
(13)
Ediriweera S, Pathirana S, Danaher T, Nichols D (2014)
LiDAR remote sensing of structural properties of subtropical rainforest and eucalypt forest in complex terrain in North-eastern Australia. Journal of Tropical Forest Science 26 (3): 397-408.
Online | Gscholar
(14)
Frangi JL, Lugo AE (1985)
Ecosystem dynamics of a subtropical floodplain forest. Ecological Monographs 55 (3): 351-369.
CrossRef | Gscholar
(15)
Gibbs HK, Brown S, Niles JO, Foley JA (2007)
Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters 2 (4): 045023.
CrossRef | Gscholar
(16)
Girardin CAJ, Malhi Y, Aragao LEOC, Mamani M, Huaraca Huasco W, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ (2010)
Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16 (12): 3176-3192.
CrossRef | Gscholar
(17)
Houghton RA (2005)
Tropical deforestation as a source of greenhouse gas emissions. In: “Tropical deforestation and climate change” (Moutinho P, Schwartzman S eds). Instituto de Pesquisa Ambiental da Amazônia and Environmental Defense Fund, Belém, Pará, Brazil, pp. 13-22.
Online | Gscholar
(18)
IPCC (2005)
Orientación sobre las buenas prácticas para uso de la tierra, cambio de uso de la tierra y silvicultura [Good practices guidance on land use, land use change and silviculture]. Programa del IPCC sobre inventarios nacionales de gases de efecto invernadero. IPCC, Geneve, Switzerland, pp. 628. [In Spanish]
Gscholar
(19)
IPCC (2007)
Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Synthesis Report (Pachauri RK, Reisinger A eds). IPCC, Geneva, Switzerland, pp. 104.
Gscholar
(20)
Magnussen S, Boudewyn P (1998)
Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research 28 (7): 1016-1031.
CrossRef | Gscholar
(21)
Martin AR, Thomas SC (2011)
A reassessment of carbon content in tropical trees. PLoS ONE 6 (8): e23533.
CrossRef | Gscholar
(22)
Mauya EW, Hansen EH, Gobakken T, Bollandsas OM, Malimbwi RE, Naesset E (2015)
Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance and Management 10 (1): 1003.
CrossRef | Gscholar
(23)
Meyer V, Saatchi SS, Chave J, Dalling JW, Bohlman S, Fricker GA, Robinson C, Neumann M, Hubbell S (2013)
Detecting tropical forest biomass dynamics from repeated airborne Lidar measurements. Biogeosciences 10 (8): 5421-5438.
CrossRef | Gscholar
(24)
MINAET/FONAFIFO (2010)
Propuesta para la preparación de readiness R-PP Costa Rica [Costa Rica readiness preparation proposal]. Forest Carbon Partnership Facility, Ministerio de Ambiente, Energía y Telecomunicaciones (MINAET), Fondo Financiación Forestal (FONAFIFO), San José, Costa Rica, pp. 150. [In Spanish]
Gscholar
(25)
Mitchard ETA, Saatchi SS, White LJT, Abernethy KA, Jeffery KJ, Lewis SL, Collins M, Lefsky MA, Leal ME, Woodhouse IH, Meir P (2012)
Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud. Biogeosciences Discussions 8 (4): 8781-8815.
CrossRef | Gscholar
(26)
Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011)
Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Global Change Biology 17 (6): 2211-2226.
CrossRef | Gscholar
(27)
Murdiyarso D, Skutsch M, Guariguata M, Kanninen M, Luttrell C, Verweij P, Stella O (2008)
Measuring and monitoring forest degradation for REDD: implications of country circumstances. Tijdschrift: tijdelijk onbekend 16.
Online | Gscholar
(28)
Phillips OL, Mahli Y, Higuchi N, Laurance WF, Nuñez PV, Vázquez RM, Laurance SG, Fereira LV, Stern M, Brown S, Grace J (1998)
Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282: 439-42.
CrossRef | Gscholar
(29)
Pirotti F (2011)
Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods. iForest - Biogeosciences and Forestry 4 (3): 100-106.
CrossRef | Gscholar
(30)
R Core Team (2013)
R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
Online | Gscholar
(31)
Réjou-Méchain M, Muller-Landau HC, Detto M, Thomas SC, Toan TL, Saatchi SS, Brockelman WY (2014)
Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences Discussions 11: 5711.
Online | Gscholar
(32)
Sasaki N, Putz FE (2009)
Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conservation Letters 2: 226-232.
CrossRef | Gscholar
(33)
Sexton JO, Bax T, Siqueira P, Swenson JJ, Hensley S (2009)
A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America. Forest Ecology and Management 257 (3): 1136-1147.
CrossRef | Gscholar
(34)
Simonian L, Hernández Munguía JG, Arana Noguera GA, Thomas L, Middleton J, Phillips A (2010)
Global forest resources assessment 2010: main report (No. FAO FP-163). FAO, Rome, Italy, pp. 340.
Gscholar
(35)
Solórzano X (1992)
La depreciación de los recursos naturales en Costa Rica y su relación con el Sistema de Cuentas Nacionales [Depreciation of Natural Resources in Costa Rica and its relationship with the System of National Accounts]. World Resources Institute (WRI), Centro Científico Tropical (CCT), San José, Costa Rica, pp. 152. [in Spanish]
Gscholar
(36)
Tiepolo G, Calmon M, Feretti AR (2002)
Measuring and monitoring carbon stocks at the Guaraquecaba climate action project, Parana, Brazil. In: Proceedings of the “International Symposium on Forest Carbon Sequestration and Monitoring” (Taiwan Forestry Research ed). Taipei (Taiwan) 11-15 Nov 2002, pp. 98-115.
Gscholar
(37)
Ulate CA (2010)
Análisis y comparación de la biomasa aérea de la cobertura forestal según zona de vida y tipo de bosque para Costa Rica [Analysis and comparison of aboveground biomass in different living areas and forest types in Costa Rica]. Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Forestal, Cartago, Costa Rica, pp. 60. [in Spanish]
Gscholar
(38)
Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009)
Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository.
CrossRef | Gscholar
(39)
Zolkos SG, Goetz SJ, Dubayah R (2013)
A meta-analysis of terrestrial aboveground biomass estimation using LiDAR remote sensing. Remote Sensing of Environment 128: 289-298.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info