*
 

iForest - Biogeosciences and Forestry

*

Identification and characterization of gaps and roads in the Amazon rainforest with LiDAR data

José Augusto Spiazzi Favarin (1)   , Mateus Sabadi Schuh (2), Juliana Marchesan (2), Elisiane Alba (3), Rudiney Soares Pereira (4)

iForest - Biogeosciences and Forestry, Volume 17, Issue 4, Pages 229-235 (2024)
doi: https://doi.org/10.3832/ifor4295-017
Published: Aug 03, 2024 - Copyright © 2024 SISEF

Research Articles


Gap formations in the forest canopy have natural causes, such as bad weather, and anthropic ones, such as sustainable selective extraction of trees and illegal logging, which can already be detected through orbital remote sensing. However, the Amazon region is under frequent cloud cover, which makes it challenging to detect gaps using passive sensors. This study aimed to identify and delimit gaps in the Amazon forest canopy through airborne LiDAR (Light Detection and Ranging) sensor application while testing six different return densities. LiDAR and forest inventory data were obtained over an Amazon rainforest region, defining the minimum area as a forest canopy gap. The point cloud was processed to obtain six return densities with the generation of their respective CHM (Canopy Height Model), which were applied for segmentation and subsequent identification of gap areas and roads. The minimum gap area found was 34 m2, and the Kruskal Wallis test showed no significant difference among the six densities in gap detection; however, road identification decreased as the return density decreased. We concluded that LiDAR data proved promising as point clouds with low return density can be used without impairing gap identification. However, reducing the return density for road identification is not recommended.

  Keywords


Forest Canopy Gaps, Aerial Laser Scanning, Point Density, Remote Sensing

Authors’ address

(1)
José Augusto Spiazzi Favarin 0000-0001-8870-5942
Postgraduate Program in Forest Sciences, Federal University of Paraná /UFPR, Lothário Meissner Avenue, 632, Jardim Botnico, 80210-170, Curitiba, PR (Brazil)
(2)
Mateus Sabadi Schuh 0000-0003-4996-0902
Juliana Marchesan 0000-0002-2167-5862
Postgraduate Program in Forest Engineering, Federal University of Santa Maria/UFSM, Roraima Avenue, 1000, Camobi, 97105-900, Santa Maria, RS (Brazil)
(3)
Elisiane Alba 0000-0001-6210-4559
Academic Unity of Serra Talhada, Federal Rural University of Pernambuco/UFRPE, Gregório Ferraz Nogueira Av., 56909-535, Serra Talhada, PE (Brazil)
(4)
Rudiney Soares Pereira 0000-0002-9846-4879
Rural Engineering Department, Federal University of Santa Maria/UFSM, Roraima Avenue, 1000, Camobi, 97105-900, Santa Maria, RS (Brazil)

Corresponding author

 
José Augusto Spiazzi Favarin
jaspiazzi@gmail.com

Citation

Spiazzi Favarin JA, Sabadi Schuh M, Marchesan J, Alba E, Soares Pereira R (2024). Identification and characterization of gaps and roads in the Amazon rainforest with LiDAR data. iForest 17: 229-235. - doi: 10.3832/ifor4295-017

Academic Editor

Matteo Garbarino

Paper history

Received: Dec 27, 2022
Accepted: Jun 11, 2024

First online: Aug 03, 2024
Publication Date: Aug 31, 2024
Publication Time: 1.77 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 1493
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 1026
Abstract Page Views: 176
PDF Downloads: 256
Citation/Reference Downloads: 0
XML Downloads: 35

Web Metrics
Days since publication: 36
Overall contacts: 1493
Avg. contacts per week: 290.31

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013)
Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728.
CrossRef | Gscholar
(2)
Araki K, Awaya Y (2021)
Analysis and prediction of gap dynamics in a secondary deciduous broadleaf forest of Central Japan using airborne multi-LiDAR observations. Remote Sensing 13: 100.
Gscholar
(3)
Aricak B (2015)
Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: a case study in Kastamonu Regional Forest Directorate (Turkey). Environment Monitoring Assessment 187 (417): 1-10.
CrossRef | Gscholar
(4)
Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005)
Selective logging in the Brazilian Amazon. Science 310 (5747): 480-482.
CrossRef | Gscholar
(5)
Azizi Z, Najafi A, Sadeghian S (2014)
Forest road detection using LiDAR data. Journal of Forestry Research 25 (4): 975-980.
CrossRef | Gscholar
(6)
Blackburn GA, Abd Latif Z, Boyd DS (2014)
Forest disturbance and regeneration: a mosaic of discrete gap dynamics and open matrix regimes? Journal of Vegetation Science 25: 1341-1354.
CrossRef | Gscholar
(7)
Brokaw NVL (1982)
Treefalls: frequency, time, and consequences. In: “The Ecology of a Tropical Forest: Seasonal Rhythms and Long-Term Changes” (Leight EG, JR, Rand AS, Windsor DM eds). Smithsonian Institute Press, Washington, DC, USA, pp. 101-108.
Gscholar
(8)
Brokaw NVL (1985)
Gap-phase regeneration in a tropical forest. Ecology 66 (3): 682-687.
CrossRef | Gscholar
(9)
Cardona MAQ (2012)
Efeitos do manejo florestal na estrutura da avifauna na floresta Amazônica de Paragominas (Pará) [Effects of forest management on the structure of the avifauna in the Amazon forest of Paragominas (Pará)]. PhD thesis, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil, pp. 108. [in Portuguese]
Gscholar
(10)
Carvalho AL, De Oliveira MVN, Putz FE, Oliveira LC (2017)
Natural regeneration of trees in selectively logged forest in western Amazonia. Forest Ecology and Management 392: 36-44.
CrossRef | Gscholar
(11)
Chazdon RL (2016)
Renascimento de florestas: regeneração da era do desmatamento [Rebirth of forests: regeneration from the era of deforestation]. Oficina de Textos, São Paulo, Brazil, pp. 430. [in Portuguese]
Gscholar
(12)
Costa Filho PP, Da Costa HB (1980)
Construção de estradas florestais e transporte florestal rodoviário na região amazônica. Circular Técnica 6 [Construction of forest roads and road forest transport in the Amazon region. Technical Circular 6]. EMBRAPA/CPATU, Belém, PA, Brazil, pp. 30. [in Portuguese]
Gscholar
(13)
Dalagnol R, Philips O, Gloor E, Galvão L, Wagner FH, Locks CJ, Aragão LEOC (2019)
Quantifying canopy tree loss and gap recovery in tropical forests under low-intensity logging using VHR satellite imagery and airborne LiDAR. Remote Sensing 11 (7): 817.
CrossRef | Gscholar
(14)
Dalla Corte AP, De Vasconcellos BN, Rex FE, Sanquetta CR, Mohan M, Silva CA, Klauberg C, De Almeida DRA, Zambrano AMA, Trautenmüller JW, Leite RV, Amaral CH, Veras HFP, Rocha KS, Moraes A, Karasinski MA, Sanquetta MNI, Broadbent EN (2022)
Applying high-resolution UAV-LiDAR and quantitative structure modelling for estimating tree attributes in a crop-livestock-forest system. Land 11 (4): 507.
CrossRef | Gscholar
(15)
Dietmaier A, Mcdermid GJ, Rahman MM, Linke J, Ludwig R (2019)
Comparison of LiDAR and digital aerial photogrammetry for characterizing canopy openings in the boreal forest of Northern Alberta. Remote Sensing 11 (16): 1919.
CrossRef | Gscholar
(16)
DNPM (1973)
Levantamento de recursos minerais. Folha SA. 23 - São Luís e parte da folha SA. 24 - Fortaleza. Geologia, geomorfologia, solos, vegetação e uso potencial da terra - vol. 3 [Survey of mineral resources. Sheet SA. 23 - São Luís and part of sheet SA. 24 - Fortaleza. Geology, geomorphology, soils, vegetation, and potential land use - vol. 3]. Departamento Nacional de Produção Mineral - DNPM, Ministério de Minas e Energia, Rio de Janeiro, Brazil. [in Portuguese]
Gscholar
(17)
EMBRAPA (2014)
Programa internacional reúne cientistas em evento sobre uso de dados LiDAR e inventários florestais [International program brings together scientists at an event on the use of LiDAR data and forest inventories]. Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Brasília, Brazil, web site. - [in Portuguese]
Online | Gscholar
(18)
EMBRAPA (2016)
Paisagens sustentáveis [Sustainable landscapes]. Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Brasília, Brazil, web site. [in Portuguese]
Online | Gscholar
(19)
Gandolfi S (2007)
Sucessão florestal e as florestas brasileiras: Conceitos e problemas [Forest succession and Brazilian forests: Concepts and problems]. In: Proceedings of the “VIII Congresso de Ecologia do Brasil”. Caxambu (MG, Brazil) 23-28 Sept 2007. Sociedade de Ecologia do Brasil, Caxambu, MG, Brazil, pp. 2. [in Portuguese]
Online | Gscholar
(20)
Gomes JM, Carvalho JOP, Silva MG, Nobre DNV, Taffarel M, Ferreira JER, Santos RNJ (2010)
Sobrevivência de espécies arbóreas plantadas em clareiras causadas pela colheita de madeira em uma floresta de terra firme no município de Paragominas na Amazônia brasileira [Survival of seedlings planted in gaps after harvesting in a terra firme rain forest in Paragominas region in the Brazilian Amazon]. Acta Amazonica 40 (1): 171-178.
CrossRef | Gscholar
(21)
Grigolato S, Pellegrini M, Cavalli R (2013)
Temporal analysis of the traffic loads on forest road networks. iForest - Biogeosciences and Forestry 6 (4): 255-261.
CrossRef | Gscholar
(22)
Hunter MO, Keller M, Morton D, Cook B, Lefsky M, Ducey M, Saleska S, Oliveira Jr RC, Schietti J (2015)
Structural dynamics of tropical moist forest gaps. PLoS One 10 (7): e0132144.
CrossRef | Gscholar
(23)
Jakubowski MK, Guo Q, Kelly M (2013)
Tradeoffs between LiDAR pulse density and forest measurement accuracy. Remote Sensing of Environment 130: 245-253.
CrossRef | Gscholar
(24)
Joyce MJ, Erb JD, Sampson BA, Moen RA (2019)
Detection of coarse woody debris using airborne light detection and ranging (LiDAR). Forest Ecology and Management 433: 678-689.
CrossRef | Gscholar
(25)
Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu J-C (2012)
An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing 4 (4): 950-974.
CrossRef | Gscholar
(26)
Kiss K, Malinen J, Tokola T (2016)
Comparison of high and low density airborne LiDAR data for forest road quality assessment. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. III-8, Prague, Czech Republic, pp. 167-172.
CrossRef | Gscholar
(27)
Lima RAF (2005)
Gap size measurement: the proposal of a new field method. Forest Ecology and Management 214: 413-419.
CrossRef | Gscholar
(28)
Mao X, Hou J (2019)
Object-based forest gaps classification using airborne LiDAR data. Journal of Forest Research 30: 617-627.
CrossRef | Gscholar
(29)
Mao X, Zhu L, Wenyi F (2020)
Object-oriented automatic identification of forest gaps using digital orthophoto maps and LiDAR data. Canadian Journal of Remote Sensing 46 (2): 177-192.
CrossRef | Gscholar
(30)
Marchesan J, Alba E, Schuh MS, Favarin JAS, Pereira RS (2020)
Aboveground biomass estimation in a tropical forest with selective logging using random forest and LiDAR data. Floresta 50 (4): 1873-1882.
CrossRef | Gscholar
(31)
Martins SV, Rodrigues RR (2002)
Gap-phase regeneration in a semideciduous mesophytic forest, South-eastern Brazil. Plant Ecology 163 (1): 51-62.
CrossRef | Gscholar
(32)
Martins SV, Júnior RC, Rodrigues RR, Gandolfi S (2004)
Colonization of gaps produced by death of bamboo clumps in a semideciduous mesophytic forest in south-eastern Brazil. Plant Ecology 172: 121-131.
CrossRef | Gscholar
(33)
Matinnia B, Parsakhoo A, Mohamadi J, Shataee Jouibary S (2017)
Monitoring geometric properties of an existing forest road using airborne LiDAR data. Journal of Forest Science 63 (11): 490-495.
CrossRef | Gscholar
(34)
Matinnia B, Parsakhoo A, Mohamadi J, Shataee Jouibary S (2018)
Study of the LiDAR accuracy in mapping forest road alignments and estimating the earthwork volume. Journal of Forest Science 64 (11): 469-477.
CrossRef | Gscholar
(35)
McGaughey RJ (2016)
FUSION/LDV: software for LIDAR data analysis and visualization. USDA Forest Service, Washington, DC, USA.
Gscholar
(36)
Melendy L, Hagen SC, Sullivan FB, Pearson TRH, Walker SM, Ellis P, Kusiyo Sambodo AK, Roswintiarti O, Hanson MA, Klassen AW, Palace MW, Braswell BH, Delgado GM (2018)
Automated method for measuring the extent of selective logging damage with airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing 139: 228-240.
CrossRef | Gscholar
(37)
Mello MP, Peternelli LA (2013)
Conhecendo o R - Uma visão mais que Estatística [Knowing R - A vision more than Statistics]. UFV, Viçosa, MG, Brazil, pp. 222. [in Portuguese]
Gscholar
(38)
Neto EMC, Rex FE, Veras HFP, Moura MM, Sanquetta CR, Käfer PS, Sanquetta MNI, Zambrano AMA, Broadbent EM, Dalla Corte AP (2021)
Using high-density UAV-LiDAR for deriving tree height of Araucaria angustifolia in an urban Atlantic rain forest. Urban Forestry and Urban Greening 63: 127197.
CrossRef | Gscholar
(39)
Nobre CA, Sampaio G, Salazar L (2007)
Mudanças climáticas e Amazônia [Climate change and the Amazon]. Ciência e Cultura 59: 22-27. [in Portuguese]
Gscholar
(40)
Pinage ER, Keller M, Duffy P, Longo M, Dos-Santos MN, Morton DC (2019)
Long-term impacts of selective logging on Amazon forest dynamics from multi-temporal airborne LiDAR. Remote Sensing 11 (6): 709.
CrossRef | Gscholar
(41)
Popescu SC, Zhao K, Neuenschwander A, Lin C (2011)
Satellite LiDAR vs. small footprint airborne LiDAR: comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sensing of Environment 115 (11): 2786-2797.
CrossRef | Gscholar
(42)
Prendes C, Buján S, Ordoñez C, Canga E (2019)
Large scale semi-automatic detection of forest roads from low density LiDAR data on steep terrain in Northern Spain. iForest - Biogeosciences and Forestry 12: 366-374.
CrossRef | Gscholar
(43)
Radambrasil (1983)
Levantamento de Recursos Naturais - Folhas SF. 23/24 Rio de Janeiro/Vitória: geologia, geomofologia, pedologia, vegetação e uso potencial da terra [Survey of Natural Resources - Sheets SF. 23/24 Rio de Janeiro/ Vitória: geology, geomorphology, pedology, vegetation, and potential land use]. Ministério de Minas e Energia, Rio de Janeiro, Brazil, pp. 775. [in Portuguese]
Gscholar
(44)
RStudio Team (2020)
RStudio: integrated development for R. RStudio, PBC, Boston, MA, USA.
Online | Gscholar
(45)
Santos MJ, Disney M, Chave J (2018)
Detecting human presence and influence on Neotropical forests with remote sensing. Remote Sensing 10 (10): 1593.
CrossRef | Gscholar
(46)
St-Onge B, Vepakomma U (2012)
Assessing forest gap dynamics and growth using multi-temporal laser-scanner data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34 (8-W2): 173-178.
Gscholar
(47)
St-Onge B, Vepakoma U, Senacal JF, Kneeshaw D, Doyon F (2014)
Canopy gap detection and analysis with airborne laser scanning. In: “Forestry Applications of Airborne Laser Scanning”, vol. 27 (Maltamo M, Næsset E, Vauhkonen J eds). Springer, Dordrecht, Netherlands, pp. 419-437.
Gscholar
(48)
Tabarelli M, Mantovani W (2000)
Gap-phase regeneration in a tropical montane forest: the effects of gap structure and bamboo species. Plant Ecology 148: 149-155.
CrossRef | Gscholar
(49)
Treitz P, Lim K, Woods M, Pitt D, Nesbitt D, Etheridge D (2012)
LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sensing 4 (4): 830-848.
CrossRef | Gscholar
(50)
Vepakomma U, St-Onge B, Kneeshaw D (2008)
Spatially explicit characterization of boreal forest gap dynamics using multi-temporal LiDAR data. Remote Sensing of Environment 112: 2326-2340.
CrossRef | Gscholar
(51)
Yoga S, Bégin J, St-Onge B, Riopel M (2017)
Modeling the effect of the spatial pattern of airborne LiDAR returns on the prediction and the uncertainty of timber merchantable volume. Remote Sensing 9 (8): 808.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info