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Identification and characterization of gaps and roads in the Amazon 
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Gap formations in the forest canopy have natural causes, such as bad weather, 
and anthropic ones, such as sustainable selective extraction of trees and ille-
gal logging, which can already be detected through orbital remote sensing. 
However, the Amazon region is under frequent cloud cover, which makes it 
challenging to detect gaps using passive sensors. This study aimed to identify 
and delimit gaps in the Amazon forest canopy through airborne LiDAR (Light 
Detection and Ranging) sensor application while testing six different return 
densities. LiDAR and forest inventory data were obtained over an Amazon rain-
forest region, defining the minimum area as a forest canopy gap. The point 
cloud was processed to obtain six return densities with the generation of their 
respective CHM (Canopy Height Model), which were applied for segmentation 
and subsequent identification of gap areas and roads. The minimum gap area 
found was 34 m², and the Kruskal Wallis test showed no significant difference 
among the six  densities  in  gap detection;  however,  road identification de-
creased  as  the  return  density  decreased.  We  concluded  that  LiDAR  data 
proved promising as point clouds with low return density can be used without 
impairing gap identification. However, reducing the return density for road 
identification is not recommended.

Keywords: Forest Canopy Gaps, Aerial Laser Scanning, Point Density, Remote 
Sensing

Introduction
Rainforests are subject to natural distur-

bances of varying intensity,  duration,  and 
frequency,  making these ecosystems in  a 
continuous and dynamic change (Chazdon 
2016).  Forests  undergo  periodic  distur-
bances (such as fires, strong winds, intense 
storms, or simply senescence and falls  of 
large trees) that open different-sized gaps 
in the canopy, restarting a new process of 
secondary forest succession in these spe-
cific  sections  (Gandolfi  2007).  Additional 
disturbances  may occur  due to  anthropic 
causes,  such  as  global  warming,  forest 
fires, and deforestation (Nobre et al. 2007). 
The latter is widely used to convert land for 

the production of food crops or pastures, 
and  represents  the  most  significant  de-
structive factor in tropical forests (Asner et 
al. 2005). These actions leave behind large 
areas  without  forest  cover  and  openings 
within  the  forests.  Gaps  can  also  be 
opened by damage caused by insects and 
diseases (Araki & Awaya 2021) and logging 
activities (Carvalho et al. 2017).

Another significant anthropic disturbance 
is represented by the opening of roads in 
the forest, which results in vegetation sup-
pression.  According  to  Grigolato  et  al. 
(2013),  forest  road networks connect for-
ested areas  to the primary road network 
and  play  an  essential  role  in  fire-fighting 

support  and  logging  activities.  To  build/
open a main forest road, it is necessary to 
deforest  an  approximately  20-meter-wide 
forest section, considering the axis of the 
road to build (Costa Filho & Da Costa 1980). 
Mapping roads under the dense canopy of 
the tropical forest is still challenging (San-
tos et al. 2018). According to Aricak (2015), 
millions  of  dollars  are  spent  annually  to 
build and access roads for forestry activi-
ties.

Gaps  play  an  essential  role  in  forest  re-
generation since gap formation favors the 
growth  of  seedlings  on  the  forest  floor 
(Araki & Awaya 2021), and therefore affect-
ing the understory species diversity  (Mao 
et  al.  2020).  Knowing  the  gaps’  physical, 
floristic, and structural characteristics is es-
sential in studying gap dynamics, consider-
ing their interrelationship with the natural 
regeneration  process  in  the  disturbances 
(Martins & Rodrigues 2002). Indeed, these 
openings constitute ecologically important 
patches  of  pronounced  tree  recruitment 
and plant growth (Dietmaier et al. 2019). To 
perform fine-scale gap monitoring, includ-
ing small gaps caused by the fall or damage 
of single trees, it is necessary to obtain de-
tailed data on the structure of the forest 
canopy (Araki & Awaya 2021).

Orbital remote sensing techniques are al-
ready  used  in  forest  monitoring.  Passive 
optical remote sensing has been utilized to 
classify and quantify local changes in forest 
structures,  e.g.,  selective  logging  (Pinage 
et al. 2019). However, according to Hunter 
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et  al.  (2015),  passive optical  images must 
deal  with  the  problems  related  to  cloud 
formations, which are predominant in the 
humid  tropics.  The  limited  spatial  resolu-
tion provided by some sensors, like Land-
sat satellites, makes it difficult to detect all 
the  small-scale  disturbances  associated 
with logging, particularly those of low im-
pact (Dalagnol et al. 2019). 

LiDAR  (Light  Detection  and  Ranging) 
technique  use  active  sensors  based  on 
electromagnetic  signals  which  can  be 
mounted on an aircraft, thus collecting for-
est data below the cloud cover and over-
coming  the  limitations  inherent  to  forest 
inventory.  LiDAR has the potential  to ob-
tain direct three-dimensional forest canopy 
measurements which are used to estimate 
forest  inventory  parameters  such  as  tree 
height,  stem volume, and biomass (Pope-
scu et al. 2011, Marchesan et al. 2020, Neto 
et al. 2021,  Dalla Corte et al. 2022). For ex-
ample,  Melendy et  al.  (2018) recommend 
using LiDAR to monitor  and measure the 
impact caused by selective logging (open-
ing of gaps, roads, and draglines), whether 
performed  legally  or  illegally.  LiDAR  has 
been largely applied in forest canopy gap 
classification as accurate topographic data 
can be obtained and used in the construc-

tion of a canopy height model representing 
trees  or  vegetation  height  (Mao  &  Hou 
2019).  According  to  Joyce  et  al.  (2019), 
even individual pieces of coarse woody de-
bris on the forest ground can be detected 
regardless  of  canopy  density,  shrub  den-
sity, or forest type.

The accuracy in the reconstruction of the 
forest structure from LiDAR-acquired point 
clouds largely  depends on the point  den-
sity  (Vepakomma et  al.  2008,  Jakubowski 
et al. 2013). The point density is directly af-
fected  by  the  flight  height,  which  influ-
ences  the  area  covered by  the  sensor.  If 
the reduction in point density does not re-
sult  in  a  loss  of  accuracy  of  the  derived 
metrics, it will be possible to cover a larger 
forest  area.  This  will  enable  the  study  of 
the dynamics and regeneration of gaps, in-
cluding  detecting  gaps  created  by  illegal 
deforestation.

Due to the ecological importance of gaps, 
it  is  necessary  to  quantify  these  distur-
bances. In gaps, ecological succession be-
gins  with  increased solar  radiation in  the 
forest, causing seed germination in the soil 
(Gomes et  al.  2010).  Therefore,  gaps play 
an  essential  role  in  forest  regeneration, 
species turnover, and the dynamics of for-
est  ecosystems (St-Onge et  al.  2014).  For 

this reason, according to Yoga et al. (2017), 
it is necessary to investigate whether fac-
tors such as the spatial distribution of re-
turns may influence the prediction or  un-
certainty of forest attribute models.

This study did not aim to evaluate the ac-
curacy of gap detection using LiDAR data 
but rather the possibility of their detection 
using a low density of points, starting from 
the initial  density of the point cloud. Our 
main goal was to identify and delimit gaps 
and roads in tropical forests using process-
ing  techniques  applied  to  active  remote 
sensing  data  obtained  by  LiDAR  sensor, 
with six distinct point densities,  under the 
hypothesis that differences might exist  in 
gap detection using different point density 
data.  Additionally, we aimed to assess the 
carbon  dioxide  emissions  from  the  de-
tected gaps.

Methodology and data

Study area
The study area is  located at 03°  44′ 59″ 

South latitude and 48° 28′ 51″ West longi-
tude, in Cauaxi Farm, comprising an area of 
1216 ha. The farm belongs to the Rio Capim 
farm complex,  located in the municipality 
of Paragominas, state of Pará, Brazil, which 
is part of the Cikel Group domain area (Fig.
1).

The Köppen climate classification for the 
region is “Awi” type, which is tropical rainy 
with a well-defined dry season. Annual pre-
cipitation is around 1800 mm, the average 
yearly temperature is 26.3 °C, and relative 
air humidity is 81% (Alvares et al. 2013).

The  topography  of  the  studied  area 
ranges from flat to gently undulating, and 
belongs  to  the  Pará-Maranhão  Northern 
Plateau Geomorphological  Region (DNPM 
1973). According to Radambrasil (1983), the 
soils  are  classified  as  Dystrophic  Yellow 
Latosol.

The dense forest of the high plateau sub-
region of Pará-Maranhão, the dense flood-
plain forest, and the terraces characterize 
the original landscape of the area. Today, it 
consists  of  extensive  secondary  forests 
characterized by capoeira in various stages 
of development (Cardona 2012).

Ground and LiDAR data acquisition
LiDAR data were obtained from the “Sus-

tainable Landscapes” project of the Brazil-
ian Agricultural Research Corporation (EM-
BRAPA),  which is  a  technical  cooperation 
project funded by the US Agency for Inter-
national Development and the US Depart-
ment of State, and involves the USDA For-
est Service and  EMBRAPA (2014) with the 
aim  to  generate  detailed  information  on 
the land surface and vegetation, thus con-
tributing  to  the  measurement  of  carbon 
dioxide  and  other  greenhouse  gases  as 
well  as  to the development of  mitigation 
techniques. The project has implemented a 
WebGIS  (https://www.paisagenslidar.cnpti 
a.embrapa.br/webgis/)  that  makes  avail-
able the LiDAR data and the forest inven-
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Fig. 1 – Location of the study area (Cauaxi farm) in Paragominas, Pará, Brazil.  The 
study area can be accessed via secondary roads (in black), from state highways PA-140 
and PA-475.

Tab. 1 - Classes of gap areas used in this study. (a.min): minimum gap area found.

Area (m²) Class
Class
Code

Reference

a.min - 149 Small Gaps Class 1 Tabarelli & Mantovani (2000)

150 - 399 Medium Gaps Class 2 Brokaw (1985), Tabarelli & Mantovani (2000)

≥ 400 Large and Rare Gaps Class 3 Brokaw (1985), Lima (2005)
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tory database in areas of the Amazon, Cer-
rado, and Atlantic Forest biomes (EMBRA-
PA 2016). 

The  forest  inventory  was  conducted  in 
2014 by establishing 22 plots of 20 × 500 m, 
comprising an area of 10,000 m² each and 
totaling  22  ha.  Trees  with  a  diameter  at 
breast  height  (DBH)  ≥ 35  cm  were  mea-
sured for the DBH and crown radius.

LiDAR data were acquired using an aerial 
platform  at  an  average  flight  altitude  of 
850  m.  The  covered  area  was  1216  ha, 
recorded in 20 scenes composed of a point 
cloud with X, Y, and Z coordinates. The Li-
DAR data was already georeferenced, and 
the datum used was SIRGAS 2000 with the 
Universal  Transverse  Mercator  Projection 
System (UTM), spindle 22 South.

Definition of minimum gap area
The minimum area of a canopy gap was 

defined by adapting the method of Hunter 
et al. (2015), as the area occupied by a tree 
crown after  its  falling/removal.  The mean 
crown radius of each tree was calculated 
by  averaging  the  four  measures  (North, 
South, East, and West) taken in the forest 
inventory, and its crown area was derived 
from  the  average  radius.  Areas  smaller 
than one m2 were excluded because they 
are smaller than the 1 m spatial resolution 
of the generated raster files.

LiDAR point cloud processing
The point clouds generated by the LiDAR 

sensor were processed using the FUSION/
LDV software (McGaughey 2016). The low-
est  point  density  among  the  20  different 
scenes  was  taken  as  the  minimum  point 
density. This value was used as a reference 
to standardize the returned point density 
across  the  study  area.  The  subsequent 
analyses were carried out using the calcu-
lated  minimum  density  as  the  reference 
value (100%) and by resampling fractions of 
this  point  density,  namely,  75%,  50%,  25%, 
10%, and 2% of the reference value. Each of 
the above six point cloud densities repre-
sents a “trial”, which was labeled with the 
relative  number  of  return  points  per 
square meter (ppm2 - see Results). 

The “TreeSeg” tool, which performs can-
opy  segmentation,  was  applied  to  carry 
out  the  gap  segmentation.  The  height 
threshold was adjusted to 2 m, as reported 
by  Brokaw (1982). The cells of the canopy 
height model (CHM) showing values above 
this threshold were segmented into a sin-
gle  class,  while  values  lower  than  the 
threshold were discarded. Also, the maxi-
mum height was set at 2 m, therefore only 
points  below  this  threshold  were  seg-
mented. The final product was a raster seg-
mented into canopy and gap areas, which 
was exported (.asc file) for later analyses.

Identification of gap areas and roads
The raster  files  resulting  from the Tree-

Seg  tool  were  imported  in  the  software 
QGIS (https://www.qgis.org/) to transform 
the data in TIFF files and enable the geo-

spatial analysis of the rasters. A surround-
ing rectangle was used to crop the raster 
files and eliminate spurious cells from the 
edges.

A  similar  identifier  was  assigned  to  the 
raster cells belonging to the same gap area 
identified,  thus  allowing  each  clearing  to 
be analyzed separately.  The area of  each 
gap  was  calculated  (in  m2)  and  the 
“area_m2”  value  was  added  to  the  at-
tribute table. Gaps were then classified in 
three groups based on their extension,  fol-
lowing criteria adapted from the literature 
(Tab.  1): (i)  Class 1,  small  gaps from mini-
mum gap area found (a.min) to 149 m2; (ii) 
Class 2, medium gaps from 150 to 399 m2; 
(iii) Class3, large and rare gaps ≥ 400 m2. 

The roads were identified using the seg-
mented raster analysis, with no area classi-
fication.  The  different  return  point  densi-
ties  used  to  identify  the  gaps  were  ana-
lyzed to determine the road layout below 
the canopy. The visual analysis of the seg-
mented areas allowed to manually design 
the road paths on the raster, which were 
then  transformed  to  vectors. Different 
shapefiles were created for each point den-

sity data (= trial)  to assess the segments’ 
length.  In  addition,  the  DTM  generated 
from LiDAR data was used to identify the 
position and the possible layout of water-
courses.

Statistical analysis
As the low density of return points from 

LiDAR can impair the detection of gaps, we 
verified possible  differences  in  the  detec-
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Tab. 2 - Descriptive statistics of the tree 
crown  areas  based  on  the  average 
crown radius.

Statistics Area (m²)

Mean 55.404

Median 34.732

Mode 28.274

Standard deviation 64.878

Minimum 1.039

Maximum 1,069.406

Counts 2,215 (trees)
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Tab. 3 - Descriptive statistics of the gap area detected by different return point den -
sity (trials, in columns) by class of gap size (in rows, see also Tab. 1). The last number  
in the trial  label  correspond to the point density in ppm 2.  (A.tot):  total  area (m²); 
(A.min): minimum area (m²); (A.max): maximum area (m²); (A.avg): average area (m²); 
(var): variance; (sd): standard deviation; (N): number of gaps.

Gap Class
Param-
eter

Trial (% of the reference point cloud density)

T1D37
(100%)

T2D28
(75%)

T3D18
(50%)

T4D09
(25%)

T5D04
(10%)

T6D01
(2%)

Class 1
(34-149 m2)

A.tot 9,742.00 10,267.00 11,738.00 10,167.00 19,130.00 17,379.00

A.min 34.00 34.00 34.00 34.00 34.00 34.00

A.max 147.00 147.00 147.00 147.00 146.00 149.00

A.avg 62.85 63.38 62.44 63.54 61.51 63.66

var 810.92 876.91 888.96 881.36 791.55 775.43

sd 28.48 29.61 29.82 29.69 28.13 27.85

N 155 162 188 160 311 273

Class 2
(150-399 
m2)

A.tot 9,084.00 8,800.00 9,063.00 8,797.00 12,220.00 12,046.00

A.min 151.00 153.00 151.00 153.00 151.00 150.00

A.max 397.00 386.00 396.00 386.00 392.00 382.00

A.avg 232.92 231.58 232.38 231.50 244.40 231.65

var 5,492.44 5,013.44 4,755.45 4,997.28 5,477.59 3,852.94

sd 74.11 70.81 68.96 70.69 74.01 52.07

N 39 38 39 38 50 52

Class 3
(≥ 400 m2)

A.tot 17,665.00 18,213.00 18,979.00 18,221.00 20,939.00 12,911.00

A.min 419.00 403.00 414.00 403.00 405.00 401.00

A.max 3,391.00 3,398.00 3,802.00 3,399.00 3,708.00 3,297.00

A.avg 929.74 910.65 948.95 910.55 1,046.95 860.73

var 496,073.90485,124.70 598,175.70 485,133.10587,919.00 542,360.10

sd 704.33 696.51 773.42 696.52 766.76 736.45

N 19 20 20 20 20 15

Gaps (ha) - 3.65 3.73 3.98 3.72 5.23 4.23

Canopy (ha) - 1,170.35 1,170.27 1,170.02 1,170.28 1,168.77 1,169.77

Total area 
(ha)

- 1,174.00 1,174.00 1,174.00 1,174.00 1,174.00 1,174.00

https://www.qgis.org/
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tion of gaps using different point densities. 
The Kolmogorov-Smirnov test was applied 
to test for departure from normal distribu-
tion of the area in the three gap classes de-
scribed above, while the Bartlett’s test was 
applied  to  test  for  equality  of  variances 
across  the  classes.  Finally,  the  non-para-
metric  Kruskall-Wallis  test  (α =  0.05)  was 
used  to  test  for  differences  in  the  esti-
mates of  gap area between the different 
trials (point cloud densities) analyzed.

All  the  statistical  procedures  were  per-
formed by developing suitable scripts in R 
v. 3.5.1 and using the RStudio v. 1.1.453 inte-
grated development environment (RStudio 
Team 2020).

Results

Definition of the minimum gap area
The mean tree crown area for the study 

area was 55.40 ± 64.88 m2, indicating con-
siderable variability in the data set (Tab. 2). 
As  extreme  values  may  compromise  the 
comparison  of  data  based  on  the  mean 
(Mello & Peternelli 2013), the median value 
of tree crown area distribution (34 m2) was 
chosen as the minimum gap area (a.min) in 
further analyses.

LiDAR point cloud processing
The initial processing of the point clouds 

in FUSION/LDV using the “Catalog” tool re-
vealed an average return density of 61.38 
ppm2 (points  per  squared  meters),  while 
the scene with the lowest average density 
had 37.55 ppm2. Therefore, the latter value 
was taken as the reference point density to 
standardize  the  return  density  values 
throughout the study area. The applied re-
turn densities were 37, 28, 18, 9,  4,  and 1 
ppm2 (100%,  75%,  50%,  25%,  10%,  and 2% of 
the reference density, respectively). Conse-
quently, the trials were labelled as T1D37, 
T2D28,  T3D18,  T4D09,  T5D04,  and T6D01, 
corresponding to the point densities of 37, 
28, 18, 9, 4, and 1 ppm2, respectively (Tab.
3).

Gap area identification
The  canopy  gaps  with  area  ≥ to  34  m2 

(the median value of tree crown areas cal-
culated  from  the  forest  inventory)  were 
classified  according  to  the  three  classes 
listed  in  Tab.  1,  while  smaller  areas  were 
not  considered as  gaps  and therefore  in-
corporated into  the  “Canopy” class  (Tab.
3). The pixels of the CHM were grouped ac-
cording to the height threshold of 2 m; the 
resulting raster had only two classes (gaps 
and canopy)  and each of  the  segmented 
polygons  (the  canopy  gaps)  was  tagged 
with its own identifier (Fig. 2).

The  result  of  the  Kolmogorov-Smirnov 
test  revealed  significant  departures 
(p<0.05) from the normality in the gap area 
in all classes, meaning that the residues of 
the three classes did not follow a normal 
distribution.  The  homoscedasticity  of  the 
data  was  verified  through  the  Bartlett’s 
test, which revealed that the variances are 
homogeneous across the three classes of 
gap  size  (p>0.05). The  results  for  both 
tests are reported in Tab. 4.

A  non-parametric  test  was  adopted  to 
evaluate  if  there  was  a  significant  differ-
ence  between  the  trials  used;  thus,  the 
Kruskal-Wallis test was applied. The test re-
sults are in Tab. 5.

The results of the non-parametric Krusk-
all-Wallis  test  (Tab.  5)  indicate  that  there 
were  no  significant  difference  in  the  be-
tween trials (p > 0.05) in any of the three 
gap area classes. This indicate that any of 
the six trials (point cloud densities) could 
be used to identify gaps in the rainforest 
canopy based on LiDAR sensor data with-
out impairing the gap area estimation.

Road identification
The roads were analyzed qualitatively as 

they could be identified on the raster  re-
sulting from the segmentation. As the re-
turn point densities decreased, so did the 
ability to identify segments that suggested 
a road layout. Only the main roads could be 
determined at the lowest point cloud den-
sities, making difficult to detect their pres-
ence below the forest canopy. From T3D18 
(18 ppm2,  i.e.,  50% of  the reference point 
density)  to the lower-density  trials,  defin-
ing an apparent road layout became more 
and more challenging,  as many segments 
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Tab.  4 -  Results  of  the  normality  and  homoscedasticity  tests.  (D):  Kolmogorov-
Smirnov statistics; (χ2): Chi-square test.

Class
Kolmogorov-Smirnov Bartlett

D p-value χ2 p-value

Class 1 0.1581 2.2e-16 1.9812 0.8517

Class 2 0.13271 0.0002427 1.9507 0.8559

Class 3 0.26658 1.837e-7 0.42698 0.9946

Tab.  5 -  Kruskal-Wallis  test  result.  (χ2): 
Chi-square test.

Class χ2 p-value

Class 1 2.1751 0.8244

Class 2 1.4967 0.9135

Class 3 3.2096 0.6677

Fig. 2 - Raster 
resulting from 
the segmenta-
tion of CHM with 
clustered pixels 
for the T1D37 
trial. CHM is the 
canopy height 
model, and 
T1D37 is the trial 
with the highest 
point density, 37 
ppm². Elements 
in the figure rep-
resent gaps 
(black spots) and 
canopy (white 
background).

Fig. 3 - Segmen-
tation of road 
areas in T1D37 
and T6D01 trials. 
The segmented 
areas represent 
the roads 
detected in the 
exact location 
with two trials. 
(a) Trial with the 
highest density 
of points, 37 
ppm². (b) Trial 
with the lowest 
density of 
points, 1 ppm².

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



LiDAR data detecting gaps and roads in the Amazon

became discontinuous and because many 
segments with small areas were generated 
at lower return densities.  Fig. 3 shows the 
segmentation difference in the T1D37 trial 
with  the  highest  point  cloud  density  and 
the T6D01 trial with the lowest point cloud-
density.

Discussion
To  our  best  knowledge,  this  is  the  first 

study to test the influence of LiDAR return 
point  density  on  identifying  gaps  in  the 
Amazon forest. The results evidenced the 
identification viability by adopting a pre-de-
fined minimum gap area, where the small-
est class of gap area had the highest fre-
quency. Based on the results of this study, 
we reject the hypothesis that there would 
be a significant difference in identifying for-
est gaps using different return point densi-
ties from LiDAR data in the study area.

The minimum gap area found was similar 
to that defined by Blackburn et al. (2014) of 
30 m2 in Southern England in a deciduous 
broadleaved temperate forest. Similar val-
ues (35 m2) are reported by  Martins et al. 
(2004) in  the  mesophytic  semi-deciduous 
forest in Southeastern Brazil, and by Taba-
relli & Mantovani (2000) in the Atlantic For-
est in Serra do Mar, Brazil (30.3 m2). There-
fore,  both  these  studies  corroborate  the 
minimum gap area found in our study.

Using  all  trials,  the  highest  number  of 
gaps was found in Class 1 (smaller gaps, 34 
to 149 m2). Similar findings were also found 
by Martins & Rodrigues (2002) and Martins 
et al. (2004) in a mesophytic semi-decidu-
ous  forest  in  Southeastern  Brazil,  where 
most of the gaps had area less than 100 m². 
Dalagnol et al. (2019) also found predomi-
nantly small gaps (5 to 25 m2), namely 55.3% 
of 724 gaps. It is worth noting that the dif-
ferent trials (i.e., different point cloud den-
sities)  allowed  the  detection  of  different 
gap  numbers  and  areas  within  the  same 
class,  and these differences decreased as 
the gap area increased (Tab. 3), especially 
in the number of gaps identified. 

In Class 2 (medium gap size), trials T1D37 
(100%  of  the  reference  point  cloud)  and 
T3D18  (50%)  allowed  the  detection  of  39 
gaps in the forest canopy of the study area, 
whereas  trials  T2D28  (75%)  and  T4D09 
(25%) allowed identifying 38 gaps, a differ-
ence  of  only  one  gap;  meanwhile,  trials 
T5D04 (10%  of the reference point cloud) 
and T6D01 (2%) allowed the detection of a 
larger number of gaps, 50 and 52, respec-
tively. In Class 3 (larger or rare gaps), there 
was a substantial similarity between trials 
regarding gap counting,  as  20 gaps were 
identified using trials T2D28, T3D18, T4D09, 
and T5D04. In the same class, one less gap 
was identified using the T1D37 trial,  while 
the T6D01 trial allowed to detect 15 gaps.

Regarding the gap area estimates, our re-
sults suggest that smaller gaps have more 
influence on the total gap area at the study 
site. Indeed, considering Class 2 and Class 3 
only,  the total gap area was estimated in 
2.67 ha using trial T1D37 and 2.70 ha using 

T2D28  and  T4D09.  In  comparison,  T3D18 
and T5D04 allowed to estimate larger ar-
eas  (2.80  ha  and  3.32  ha,  respectively), 
while using T6D01 a smaller  total  area of 
2.50 ha was obtained. In a study by Brokaw 
(1985) using field measurement methods in 
the tropical forest in Panama, gaps with ar-
eas between 20 and 705 m2 were found. In 
Martins & Rodrigues (2002), forest canopy 
gaps  measured  with  hemispheric  photo-
graphs  (fish-eye  lens)  in  the  mesophytic 
semi-deciduous forest in Southeast Brazil, 
varied between 20 and 468 m2. The above 
findings suggest that estimating gap areas 
from LiDAR data could lead to results con-
sistent  with  those  obtained  using  tradi-
tional methods.

It is important to highlight that the analy-
sis  of  gap areas  carried  out  in  this  study 
evaluated  whether  there  is  a  significant 
difference in the size of gaps detected and 
by size class, not in the total area detected. 
Indeed, the number of forest canopy gaps 
detected  varied,  which  could  change  the 
total area, but the size of the gaps did not 
vary.

Using LiDAR detection in a mixed boreal 
forest in Quebec, Canada, St-Onge & Vepa-
komma (2012) found an average gap area 
of 79.4 m2, and the largest detected areas 
reached 1743, 1721, and 798 m2. Their find-
ings suggest LiDAR technology as an excel-
lent tool for mapping gaps using a return 
density of 3 ppm2,  which is similar to the 
point density of the T5D04 trial (4 ppm²) in 
this study.  Treitz et al. (2012) carried out a 
plot-level study with different pulse densi-
ties,  finding that  the reduction in  density 
did not reduce the precision of the predic-
tion of forest inventory variables. Similarly, 
a  survey by  Jakubowski  et  al.  (2013) indi-
cated that a high pulse density is not nec-
essary  to  predict  metrics  of  forest  struc-
tures at plot level (pixel of approximately 
24 m). However, high density is required at 
the level of individual trees, including the 
accuracy of tree species identification (Ka-
artinen et al. 2012) since, according to the 
authors, the accuracy of metrics decreased 
as point density decreased.

Using T1D37 trial,  a more restricted seg-
mentation in the study area was observed, 
allowing the detection of a trace following 
a same direction below the forest canopy 
(Fig.  3).  Using  the  T6D01  trial,  the  seg-
mented areas became more diffuse, ham-
pering the identification of the road layout 
in  the  raster.  Similarly,  other  free  spaces 
between the tree crowns could lead to the 
misidentification  of  forest  roads  running 
beneath  the  canopy,  especially  using  the 
lower point densities.

Research addressing the detection of for-
est roads under forest canopy has already 
been carried out. For example,  Azizi et al. 
(2014) conducted a study to determine the 
suitability of LiDAR for forest road detec-
tion and extraction, showing that the char-
acteristics  of  roads  obtained using LiDAR 
data were highly accurate. Similarly, Matin-
nia  et  al.  (2018) extracted  accurate  road 

longitudinal  sections through DTM gener-
ated from LiDAR data. The low-density Li-
DAR data is suitable for detecting and digi-
tizing forest roads over large areas, espe-
cially those where forest roads are wide (> 
4  m)  and  are  not  surrounded  by  broad-
leaved stands (Prendes et al. 2019).

Regarding point density, Kiss et al. (2016) 
evaluated the conditions of forest roads in 
terms of structural and surface conditions 
using high point cloud density. The results 
of  a  survey  conducted by  Matinnia  et  al. 
(2017) indicated that the geometric proper-
ties of existing forest roads could be moni-
tored under dense forest canopy using Li-
DAR data.

Airborne LiDAR is  widely applied to for-
ests, but its use in the detection of roads 
and unpaved forest roads is relatively new 
(Kiss  et  al.  2016).  To  this  end,  this  study 
could represent the starting point for more 
complex methods of road detection, such 
as  developing  algorithms  for  their  auto-
matic identification.

The  main  limitation  of  this  study  is  the 
lack of validation of the results based on 
field data. This is due to the fact that data 
were not obtained by the authors but from 
a research project (EMBRAPA 2014). More-
over,  the issue of  the minimum gap area 
was overcome by adapting a method avail-
able in the literature, based on the crown 
radii  measured  in  the  forest  inventory. 
Nonetheless,  the  main  goal  of  this  study 
was to test whether the reduction in point 
density of LiDAR data would compromise 
the detection of gaps, using as a reference 
the  density  of  the  point  cloud  obtained 
without degradation of point density. 

Conclusions
The reduction in the LiDAR return point 

density did not affect the detection of gap 
areas in a tropical forest canopy, rejecting 
the starting hypothesis of this study. LiDAR 
data acquisition with a low pulse density, 
which  affect  the  return  point  density, 
seems a feasible option that reduce acqui-
sition costs and improve processing perfor-
mance.  However,  the  reduction  in  return 
densities  hampers  the detection of  roads 
running  underneath  the  forest  canopy. 
Therefore, the return density reduction for 
road  layout  assessment  is  not  recom-
mended in the study area.

LiDAR  technology  has  proven  to  be  an 
efficient tool for identifying gaps in the for-
est canopy. It has huge potential for moni-
toring and planning sustainable forest ex-
ploitation.  Similarly,  it  can  be  applied  to 
monitoring  deforestation  and  illegal  log-
ging in tropical forests.
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