*
 

iForest - Biogeosciences and Forestry

*

Estimation of forest leaf area index using satellite multispectral and synthetic aperture radar data in Iran

Sasan Vafaei (1), Omid Fathizadeh (2), Nicola Puletti (3), Hadi Fadaei (4), Sabri Baqer Rasooli (5), Gaia Vaglio Laurin (3-6)   

iForest - Biogeosciences and Forestry, Volume 14, Issue 3, Pages 278-284 (2021)
doi: https://doi.org/10.3832/ifor3633-014
Published: May 29, 2021 - Copyright © 2021 SISEF

Research Articles


Different satellite datasets, including multispectral Sentinel 2 and synthetic aperture radar Sentinel 1 and ALOS2, were tested to estimate the Leaf Area Index (LAI) in the Zagros forests, Ilam province, in Iran. Field data were collected in 61 sample plots by hemispherical photographs, to train and validate the LAI estimation models. Different satellite data combinations were used as input in regression models built with the following algorithms: Multiple Linear Regression, Random Forests, and Partial Least Square Regression. The results indicate that Leaf Area Index can be best estimated using integrated ALOS2 and Sentinel 2 data; these inputs generated the model with higher accuracy (R2 = 0.84). The combination of a single band and a vegetation index from Sentinel 2 also led to successful results (R2 = 0.81). Lower accuracy was obtained when using only ALOS 2 (R2 = 0.72), but this dataset is helpful where cloud coverage affects optical data. Sentinel 1 data was not useful for LAI prediction. The optimal model was based on the traditional Multiple Linear Regression algorithm, using a preliminary input selection step to exclude multicollinearity effects. To avoid this step, the use of Partial Least Square Regression may be an alternative, as this algorithm was able to produce estimates similar to those obtained with the best model.

  Keywords


Leaf Area Index, Sentinel 2, ALOS 2, Forest Monitoring

Authors’ address

(1)
Sasan Vafaei
Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Lorestan (Iran)
(2)
Omid Fathizadeh 0000-0002-0696-7090
Department of Forestry, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz (Iran)
(3)
Nicola Puletti 0000-0002-2142-959X
Gaia Vaglio Laurin 0000-0002-6728-3557
Research Centre for Forestry and Woodland, Council for Agricultural Research and Economics, Arezzo (Italy)
(4)
Hadi Fadaei
Department of Geography, Amin Police University, Tehran (Iran)
(5)
Sabri Baqer Rasooli 0000-0002-9292-2197
Department of Forestry, Faculty of Natural Resources, University of Guilan, Someh Sara (Iraq)
(6)
Gaia Vaglio Laurin 0000-0002-6728-3557
Department for Innovation in Biological, Agro-food and Forest systems, Tuscia University, Viterbo (Italy)

Corresponding author

 
Gaia Vaglio Laurin
gaia.vl@unitus.it

Citation

Vafaei S, Fathizadeh O, Puletti N, Fadaei H, Baqer Rasooli S, Vaglio Laurin G (2021). Estimation of forest leaf area index using satellite multispectral and synthetic aperture radar data in Iran. iForest 14: 278-284. - doi: 10.3832/ifor3633-014

Academic Editor

Agostino Ferrara

Paper history

Received: Aug 24, 2020
Accepted: Apr 08, 2021

First online: May 29, 2021
Publication Date: Jun 30, 2021
Publication Time: 1.70 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 31073
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 26950
Abstract Page Views: 1778
PDF Downloads: 1976
Citation/Reference Downloads: 8
XML Downloads: 361

Web Metrics
Days since publication: 1272
Overall contacts: 31073
Avg. contacts per week: 171.00

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2021): 1
Average cites per year: 0.33

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Baret F, Guyot G (1991)
Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment 35 (2-3): 161-173.
CrossRef | Gscholar
(2)
Blackburn GA (1998)
Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensing 19 (4): 657-675.
CrossRef | Gscholar
(3)
Breiman L (2001)
Random forests. Machine Learning 45: 5-32.
CrossRef | Gscholar
(4)
Brown LA, Ogutu BO, Dash J (2020)
Tracking forest biophysical properties with automated digital repeat photography: a fisheye perspective using digital hemispherical photography from below the canopy. Agricultural and Forest Meteorology 287 (329): 107944.
CrossRef | Gscholar
(5)
Canisius F, Fernandes R (2012)
ALOS PALSAR L-band polarimetric SAR data and in situ measurements for leaf area index assessment. Remote Sensing Letters 3 (3): 221-229.
CrossRef | Gscholar
(6)
Chen JM, Black TA (1992)
Defining leaf area index for non-flat leaves. Plant, Cell and Environment 15 (4): 421-429.
CrossRef | Gscholar
(7)
Chen W, Yin H, Moriya K, Sakai T, Cao C (2017)
Retrieval and comparison of forest leaf area index based on remote sensing data from AVNIR-2, Landsat-5 TM, MODIS, and PALSAR sensors. ISPRS International Journal of Geo-Information 6 (6): 179.
CrossRef | Gscholar
(8)
Clevers JG, Verhoef W (1993)
LAI estimation by means of the WDVI: a sensitivity analysis with a combined PROSPECT-SAIL model. Remote Sensing Reviews 7 (1): 43-64.
CrossRef | Gscholar
(9)
Crippen RE (1990)
Calculating the vegetation index faster. Remote sensing of Environment 34 (1): 71-73.
CrossRef | Gscholar
(10)
Dash J, Curran PJ (2007)
Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Advances in Space Research 39 (1): 100-104.
CrossRef | Gscholar
(11)
Daughtry CST, Walthall CL, Kim MS, De Colstoun EB, McMurtrey JE (2000)
Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74 (2): 229-239.
CrossRef | Gscholar
(12)
Deering DW (1975)
Measuring “forage production” of grazing units from Landsat MSS data. In: Proceedings of the “10th International Symposium of Remote Sensing of the Environment”. ERIM, Ann Arbor, MI, USA, pp. 1169-1198.
Gscholar
(13)
Delegido J, Verrelst J, Meza CM, Rivera JP, Alonso L, Moreno J (2013)
A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. European Journal of Agronomy 46: 42-52.
CrossRef | Gscholar
(14)
Díaz GM, Negri PA, Lencinas JD (2021)
Toward making canopy hemispherical photography independent of illumination conditions: a deep-learning-based approach. Agricultural and Forest Meteorology 296: 108234.
CrossRef | Gscholar
(15)
Freedman DA (2009)
Statistical models: theory and practice. Cambridge University Press, Cambridge, UK, pp. 459.
Online | Gscholar
(16)
Fournier RA, Landry R, August NM, Fedosejevs G, Gauthier RP (1996)
Modelling light obstruction in three conifer forests using hemispherical photography and fine tree architecture. Agricultural and Forest Meteorology 82 (1-4): 47-72.
CrossRef | Gscholar
(17)
Gao S, Niu Z, Wu C (2010)
Multi-polarization Envisat-ASAR images as a function of leaf area index (LAI) of white poplar and desert date plantations. International Journal of Remote Sensing 31 (4): 1095-1102.
CrossRef | Gscholar
(18)
Geladi P, Kowalski BR (1986)
Partial least-squares regression: a tutorial. Analytica Chimica Acta 185: 1-17.
CrossRef | Gscholar
(19)
Gitelson AA, Kaufman YJ, Merzlyak MN (1996)
Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58 (3): 289-298.
CrossRef | Gscholar
(20)
Guyot G, Baret F (1988)
Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux [Utilization of high spectral resolution to follow the state of vegetative covers]. In: Proceedings of the “4th Colloquium of Spectral Signatures of Objects in Remote Sensing”, Aussois-Modane (France) 18-22 Jan 1988. European Space Agency, Paris, France, vol. 287, pp. 279.
Gscholar
(21)
Hallik L, Kuusk A, Lang M, Kuusk J (2019)
Reflectance properties of hemiboreal mixed forest canopies with focus on red edge and near infrared spectral regions. Remote Sensing 11 (14): 1717.
CrossRef | Gscholar
(22)
Hardisky MA, Daiber FC, Roman CT, Klemas V (1984)
Remote sensing of biomass and annual net aerial primary productivity of a salt marsh. Remote Sensing of Environment 16 (2): 91-106.
CrossRef | Gscholar
(23)
Huete AR (1988)
A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25: 295-309.
CrossRef | Gscholar
(24)
Inoue Y, Sakaiya E, Wang C (2014)
Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sensing of Environment 140: 257-266.
CrossRef | Gscholar
(25)
Jiao X, McNairn H, Shang J, Pattey E, Liu J, Champagne C (2011)
The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Canadian Journal of Remote Sensing 37 (1): 69-81.
CrossRef | Gscholar
(26)
Kaufman YJ, Tanre D (1992)
Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE transactions on Geoscience and Remote Sensing 30 (2): 261-270.
CrossRef | Gscholar
(27)
Korhonen L, Packalen P, Rautiainen M (2017)
Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment 195: 259-274.
CrossRef | Gscholar
(28)
Kovacs JM, Lu XX, Flores-Verdugo F, Zhang C, De Santiago FF, Jiao X (2013)
Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded black mangrove (Avicennia germinans) forest. ISPRS Journal of Photogrammetry and Remote Sensing 82: 102-111.
CrossRef | Gscholar
(29)
Leuschner C, Voß S, Foetzki A, Clases Y (2006)
Variation in leaf area index and stand leaf mass of European beech across gradients of soil acidity and precipitation. Plant Ecology 186 (2): 247-258.
CrossRef | Gscholar
(30)
Lu B, He Y (2019)
Leaf area index estimation in a heterogeneous grassland using optical, SAR, and DEM Data. Canadian Journal of Remote Sensing 45 (5): 618-633.
CrossRef | Gscholar
(31)
Mandal D, Hosseini M, McNairn H, Kumar V, Bhattacharya A, Rao YS, Mitchell S, Dingle Robertson L, Davidson A, Dabrowska-Zielinska K (2019)
An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data. International Journal of Applied Earth Observation and Geoinformation 82: 101893.
CrossRef | Gscholar
(32)
Manninen T, Stenberg P, Rautiainen M, Voipio P, Smolander H (2005)
Leaf area index estimation of boreal forest using ENVISAT ASAR. IEEE Transactions on Geoscience and Remote Sensing 43 (11): 2627-2635.
CrossRef | Gscholar
(33)
Miller JB (1967)
A formula for average foliage density. Australian Journal of Botany 15 (1): 141-144.
CrossRef | Gscholar
(34)
Norman JM, Campbell G (2000)
Canopy structure. In: “Plant Physiological Ecology: Field Methods and Instrumentation” (Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW eds). Springer, Dordrecht, Netherlands, pp. 301-325.
CrossRef | Gscholar
(35)
Pereira LO, Furtado Novo LF EM, Sant’Anna SJ, Liesenberg V, Silva TS (2018)
Multifrequency and full-polarimetric SAR assessment for estimating above ground biomass and leaf area index in the Amazon Várzea wetlands. Remote Sensing 10 (9): 1355.
CrossRef | Gscholar
(36)
Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994)
A modified soil adjusted vegetation index. Remote Sensing of Environment 48 (2): 119-126.
CrossRef | Gscholar
(37)
Richardson AJ, Wiegand CL (1977)
Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing 43 (12): 1541-1552.
Online | Gscholar
(38)
Ross J (1981)
The radiation regime and architecture of plant stands. Springer, Dordrecht, Netherlands, pp. 391.
CrossRef | Gscholar
(39)
Rousel JW, Haas RH, Schell JA, Deering DW (1974)
Monitoring vegetation systems in the great plains with ERTS. In: Proceedings of the “Third Earth Resources Technology Satellite-1 Symposium: Section A-B. Technical presentations” (Freden SC, Mercanti EP, Becker MA eds). Washington (DC, USA) 10-14 Dec 1973. NASA Special Publications, SP-351, Paper A20, pp. 309-317.
Online | Gscholar
(40)
Sagheb-Talebi K, Pourhashemi M, Sajedi T (2014)
Forests of Iran: a treasure from the past, a hope for the future. Springer, Dordrecht, Netherland, pp. 160.
Gscholar
(41)
Solberg S, Weydahl DJ (2007)
SAR forest canopy penetration depth as an indicator for forest health monitoring based on leaf area index (LAI). In: Proceedings of the “5th International Symposium on Retrieval of Bio-and Geophysical Parameters from SAR Data for Land Applications”. European Space Agency, Paris, France, pp. 25-28.
Online | Gscholar
(42)
Stankevich SA, Kozlova AA, Piestova IO, Lubskyi MS (2017)
Leaf area index estimation of forest using sentinel-1 C-band SAR data. In: Proceedings of the “2017 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS)”. Kiev (Ukraine) 29-31 Aug 2017. IEEE, pp. 253-256.
CrossRef | Gscholar
(43)
Stenberg P, Rautiainen M, Manninen T, Voipio P, Smolander H (2004)
Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands. Silva Fennica (38) 1: 3-14.
CrossRef | Gscholar
(44)
Torbick N, Ledoux L, Salas W, Zhao M (2016)
Regional mapping of plantation extent using multisensor imagery. Remote Sensing 8 (3): 236.
CrossRef | Gscholar
(45)
Tucker CJ (1979)
Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8 (2): 127-150.
CrossRef | Gscholar
(46)
Vaglio Laurin G, Liesenberg V, Chen Q, Guerriero L, Del Frate F, Bartolini A, Coomes D, Wilebore B, Lidsell J, Valentini R (2013)
Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. International Journal of Applied Earth Observation and Geoinformation 21: 7-16.
CrossRef | Gscholar
(47)
Van Dijk AIJM, Bruijnzeel LA (2001)
Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. Journal of Hydrology 247 (3-4): 230-238.
CrossRef | Gscholar
(48)
Verrelst J, Camps-Valls G, Muñoz-Marí J, Rivera JP, Veroustraete F, Clevers JG, Moreno J (2015)
Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review. ISPRS Journal of Photogrammetry and Remote Sensing 108: 273-290.
CrossRef | Gscholar
(49)
Vittucci C, Laurin GV, Tramontana G, Ferrazzoli P, Guerriero L, Papale D (2019)
Vegetation optical depth at L-band and above ground biomass in the tropical range: Evaluating their relationships at continental and regional scales. International Journal of Applied Earth Observation and Geoinformation 77: 151-161.€
CrossRef | Gscholar
(50)
Vose JM, Allen HL (1988)
Leaf area, stemwood growth, and nutrition relationships in loblolly pine. Forest Science 34 (3): 547-563.
Online | Gscholar
(51)
Zhang Z, He G, Wang X, Jiang H (2011)
Leaf area index estimation of bamboo forest in Fujian province based on IRS P6 LISS 3 imagery. International Journal of Remote Sensing 32 (19): 5365-5379.
CrossRef | Gscholar
(52)
Zou J, Zuo Y, Zhong P, Hou W, Leng P, Chen B (2020)
Performance of four optical methods in estimating leaf area index at elementary sampling unit of Larix principis-rupprechtii forests. Forests 11 (1): 30.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info