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Estimation of forest leaf area index using satellite multispectral and 
synthetic aperture radar data in Iran
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Different satellite datasets, including multispectral  Sentinel 2 and  synthetic
aperture  radar Sentinel 1 and ALOS2, were tested to estimate the Leaf Area
Index (LAI) in the Zagros forests, Ilam province, in Iran. Field data were col-
lected in 61 sample plots by hemispherical photographs, to train and validate
the LAI estimation models. Different satellite data combinations were used as
input in regression models built with the following algorithms: Multiple Linear
Regression, Random Forests, and Partial Least Square Regression. The results
indicate that Leaf Area Index can be best estimated using integrated ALOS2
and Sentinel 2 data; these inputs generated the model with higher accuracy
(R2 = 0.84). The combination of a single band and a vegetation index from Sen-
tinel 2 also led to successful results (R2 = 0.81). Lower accuracy was obtained
when using only ALOS 2 (R2 = 0.72), but this dataset is helpful where cloud
coverage affects optical data. Sentinel 1 data was not useful for LAI predic-
tion. The optimal model was based on the traditional Multiple Linear Regres-
sion  algorithm,  using  a  preliminary  input  selection  step  to  exclude  multi-
collinearity effects. To avoid this step, the use of Partial Least Square Regres-
sion may be an alternative, as this algorithm was able to produce estimates
similar to those obtained with the best model.
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Introduction
The extraction of spatially and temporally

explicit  vegetation  bio-geophysical  vari-
ables is required in a variety of ecological
and agricultural applications (Verrelst et al.
2015).  Leaf  Area Index (LAI)  is  defined as
half the total intercepting leaf area per unit
of  ground surface,  projected on the local
horizontal datum (Chen & Black 1992). LAI
is  a  dimensionless  value  typically  ranging
from 0, for bare ground, to more than 7 for
dense  vegetation,  and  is  an  important
structural  parameter  related to many for-
est stand processes, such as photosynthe-
sis,  respiration,  rainfall  interception,  car-
bon and nutrient  cycles  (Van  Dijk  & Brui-
jnzeel  2001).  LAI  is  also related to stands

health,  being  linked  to  leaf  and  canopy
chlorophyll  contents,  dry  and  fresh  bio-
mass,  and  growth  stages  (Vose  &  Allen
1988).  LAI is  frequently used by foresters
and ecologists to simulate ecological  pro-
cesses, as well as by agronomists and crop
modelers  to  model  crops  dynamics  and
productivity, and is one of the most impor-
tant  indices  to  monitor  vegetation status
and estimate productivity (Leuschner et al.
2006).  Although  direct  measurements  of
canopy  LAI  give  relatively  precise  values,
data  collection  is  time-consuming  and  la-
bor-intensive,  and  only  feasible  in  small-
scale plots. Remote sensing-based LAI esti-
mates now complement the ground mea-
surements, thanks to the capability  of re-

mote data to cover  large extents  repeat-
edly  in  time,  and generate  LAI  estimated
values at local and global scales.

Several  approaches are available to esti-
mate  LAI  using  remote  sensing methods.
The gap fraction method (Norman & Camp-
bell  2000)  is  based  on  the  use  of  below
canopy hemispherical images and is often
adopted at local  or  stand scale to collect
LAI information, due to its fast and non-de-
structive nature. The hemispherical photo-
graphs  capture  the  patterns  of  light  ob-
struction/penetration in  the canopy,  from
which the canopy architecture and foliage
area  can  be  quantified  (Fournier  et  al.
1996); LAI and other canopy properties are
estimated through the measurement of ra-
diation  transmitted  through  the  canopy
and  the  application  of  radiative  transfer
models (Ross 1981). In recent years, digital
hemispherical  photography  has  received
increasing attention as an inexpensive tool
for  near-surface remote sensing of  forest
canopy structure, with research carried out
in  multiple  environments  (Brown  et  al.
2020, Zou et al. 2020, Díaz et al. 2021).

Other studies were based on the use of
satellite multispectral  data for LAI predic-
tion, exploiting the direct relationship that
links canopy reflectance values with foliage
density (Korhonen et al. 2017, Verrelst et al.
2015).  However,  the availability  of  optical
data is often hampered by the presence of
cloud coverage. Indeed, a saturation of re-
flectance  response  is  observable  at  high
LAI  values,  and consequently  no informa-
tion can be gathered about the understory
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vegetation  or  the  woody  stand  structure
(Torbick et al. 2016).

To cope with the limitations occurring in
optical  data,  microwave  Synthetic  Aper-
ture  Radar  (SAR)  data  were  adopted  in
agricultural  and  forestry  research  for  LAI
estimation.  SAR  data  are  insensitive  to
cloud  and  day/night  conditions.  Further-
more,  the  intensity  of  the  backscattered
SAR signal is related to the target volume
and its water content, with the penetration
of SAR depending on the wavelength used.
Usually,  at L-  and P-long wavelengths the
signal penetration into the vertical profile
is  high,  and  SAR  can  sense  the  different
vegetation strata.  At  shorter  wavelength,
such  as  C-band,  the  information  mainly
comes from the upper  canopy layer  (Sol-
berg & Weydahl 2007).

Multiple examples are reported in the lit-
erature about the use of SAR data, mainly
C-band, to estimate LAI in different crops
(Jiao et al. 2011, Inoue et al. 2014, Mandal et
al. 2019), as well as in grasslands (Lu & He
2019).  Yet, fewer studies were carried out
in  forest  environments.  In  the  Amazon
varzea forest, Pereira et al. (2018) used dif-
ferent SAR sensors including ALOS PALSAR
at  L-band  to  retrieve  both above ground
biomass and LAI, showing that ALOS PAL-
SAR provided the best  estimates  of  both
variables with respect to other SAR data-
sets.  Stankevich et al.  (2017) developed a
method  for  LAI  estimation  in  temperate
deciduous and mixed forests using Sentinel
1  at  C-band.  Chen et  al.  (2017) compared
the  performances  of  various  optical  sen-
sors with those of ALOS PALSAR for LAI es-
timation, showing that the addition of SAR
brought  new  information  in  the  optical-
based LAI regression model,  and suggest-
ed  the  combined  use  of  optical  AVNIR-2
and  microwave  PALSAR,  that  are  on  the
same  ALOS  platform.  Manninen  et  al.
(2005) developed a  method for  assessing
LAI in boreal forests using ENVISAT C-band
SAR data polarization ratio (VV/HH); using
the  same  sensor,  Gao  et  al.  (2010) evi-

denced the sensitivity of SAR backscatter-
ing at different polarizations to LAI in pop-
lar  and  desert  date  forest  plantations  in
China.

The objective of  this  study was to com-
pare the single and combined use of multi-
spectral and SAR data for LAI estimation in
a  Mediterranean  forest  site.  Specifically,
the use of SAR was tested to offer an alter-
native  to  multispectral  data  when  cloud
coverage affects the quality of optical im-
agery. Different algorithms were tested, in-
cluding  Multilinear  Regression,  Random
Forests, and Partial Least Squared Regres-
sion,  to  improve  the  accuracy  of  results
and to  facilitate  the processing task.  The
results were rigorously validated and com-
pared to each other to offer a perspective
on LAI estimation in forest analysis.

Methods

Study area
The study was carried out in the Southern

Zagros  protected  forest,  in  the  Dalab  re-
gion of  the western Iranian state of  Ilam
(Fig. 1). This is a sub-Mediterranean region,
characterized  by  marked  seasonality  in
rainfall  distribution.  The  altitude  ranges
from approximately 1300 to 2200 m a.s.l.,
with average slopes equal to 17°. The main
woody  species  in  this  area  is  the  Brant’s
oak (Quercus brantii), usually found in pure
stands  and  covering  about  3.5  million
hectares in Zagros. Other species that are
often  present  include:  Pistacia  atlantica,
Acer spp.,  Crataegus  azarolus,  Cerasus  mi-
crocarpa,  Daphne  mucronate,  Amygdalus
orientalis,  Lonicera  nummularifolia. The
density  of  stands  varies  across  the study
area,  in  the  range  of  30-100  trees  per
hectare;  the  average  forest  coverage  is
about 45%.  Seasonally,  the ground is  cov-
ered by grasses (Sagheb-Talebi et al. 2014).

Satellite data
Three  different  satellite  datasets  were

used:  (i)  multispectral  Sentinel  2  (L1C1)

dated July 23, 2016; (ii) SAR Sentinel 1 (L1C
HRD) dated June 8,  2016;  and (iii)  ALOS2
(level 1.1 SLC), dated June 23, 2016. Satellite
data processing was carried out  in SNAP,
the free processing facilities offered by the
European Space Agency (ESA – http://step.
esa.int/main/toolboxes/snap/).

The Sentinel 2 (S2) instrument samples 13
spectral  bands in the visible-near  infrared
(VIS-NIR) to the shortwave infrared (SWIR)
range, with four bands at 10 m, six bands at
20 m and three bands at 60 m spatial reso-
lution;  it  also incorporates three bands in
the red-edge region, centered at 705, 740
and 783 nm. The S2 image was atmospheri-
cally corrected using the ESA Sen2Cor algo-
rithm.  For  the present  study,  ten original
bands at 10-20 m spatial resolution and 22
vegetation indices listed in Tab. S1 (Supple-
mentary  material)  were used as  inputs  in
models to predict LAI.

Sentinel  1  (S1)  is  an  SAR  constellation
equipped with C-band sensors and has a 6
day repeat cycle. For this research, the Sen-
tinel-1A Interferometric Wide swath mode
(IW),  Level-1  Ground  Range  Detected
(GRD) scene with dual-polarization (VV and
VH) was used. The scene has a pixel spac-
ing equal to 10 m and an incidence angle of
approximately 39-40°; it was calibrated, fil-
tered with the refined Lee filter to reduce
speckle noise, and terrain corrected using
the SRTM-1 sec DEM (Shuttle Radar Topog-
raphy  Mission-3  Digital  Elevation  Model),
to produce a regular grid of  20 m spatial
resolution size. Finally, it was co-registered
with the Sentinel-2 scene. The two VV and
VH  polarizations  were  used  as  input  in
models to predict LAI.

The Advanced Land Observing Satellite-2
(ALOS-2)  carries  on  the  PALSAR2  L-band
SAR sensor. Level 1.1 data single look com-
plex (SLC) fine beam scene, in HH and HV
polarizations  with  an  incidence  angle  of
34.3°,  and  12.5  m  pixel  spacing  were  ac-
quired,  multilooked,  filtered  for  speckle
noise using the refined Lee filter, and ter-
rain corrected using the SRTM-1 sec DEM.
The final spatial resolution was set to 20 m
and the scene was co-registered with the
Sentinel-2 image.

Field plots
Sixty-one plots of 40 × 40 m were set up

in  the  study  area,  recording  their  center
with  a  GPS  device eTrex® 20  (Garmin,
Schaffhausen, Switzerland). In each plot, a
4 × 3 grid defined 12 points, each being 8-10
m  apart  from  the  neighboring  one:  the
points  corresponded  to  locations  where
digital  hemispherical  photographs  (DHP)
images were collected at sunrise under uni-
form  sky  conditions.  The  DHP  were  col-
lected  using  a  digital  camera  (EOS® 6D,
Canon, Tokyo, Japan) fitted with a fisheye
adapter  lens  (EF  Lens  24-105mmF4  L  IS
USM, Canon, Tokyo, Japan). LAI was calcu-
lated from the DHP images using the Gap
Light  Analyzer  software,  based  on  the
Beer-Lambert Law and the Miller equation
for foliage density (Miller 1967).
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Fig. 1 - (A)  Geographic location of the study area (red star); (B) location of the field
plots (red dots).
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Data analysis and modeling
The pixels included in the field plot areas

were extracted from the different optical
(S2) and microwave (S1 and ALOS2) satel-
lite datasets. Pixels were averaged at plot
level,  obtaining  the  reflectance  and  the
backscattering values of each plot. A pre-
liminary  correlation  analysis  showed  high
correlation of field LAI values with different
satellite data.

The  most  relevant  predictors  (p<0.05)
from S1, S2, and ALOS2 datasets were iden-
tified  through  stepwise  regression  (alpha
to enter and remove = 0.15  – Tab. 1). The
stepwise procedure allows the number of
inputs  in  models  to  be  reduced,  thereby
avoiding multicollinearity effects, or inflat-
ing the regression models.

Three different algorithms were used to
build the LAI regression models. The first,
Multiple Linear Regression (MLR), is a sta-
tistical technique that exploits  several ex-
planatory variables to predict the outcome
of a response variable, widely used in for-
est research for its simplicity of application;
basically, it is an extension of the ordinary
least-squares  (OLS)  regression  that  in-
volves more than one explanatory variable
(Freedman 2009).

The  second  algorithm,  Random  Forests
(RF),  is  a supervised “ensemble learning”
method able to cope with complex data-
sets (Breiman 2001). RF generates many re-
gression  trees  (models)  and  aggregates
their  results,  exploiting the bootstrap ag-
gregation  method,  reducing  the  output
variance  and  of  the  overfitting  problem.
The n-trees and the m-try are the only two
parameters  that  must  be  chosen to train
the  RF  model,  making  its  application
smoother  when  compared  to  more  com-
plex  machine  learning  algorithms.  During
the training phase, each tree is built by a
growing  process  implementing  different
cascaded nodes, representing the ramifica-
tion of a tree. Data kept separate from the
training  subsets  are  called  “Out-Of-Bag”
(OOB)  samples  and  are  used  to  validate
the model and define the associated OOB
error,  also  called  the  “Out-Of-Bag  esti-
mate”. The latter is the mean prediction er-
ror on each training sample, computed us-

ing only the trees that did not include the
same  samples  in  their  bootstrap  dataset
(Breiman  2001). Random  Forests  is  com-
monly applied in remote sensing and forest
ecology (Vittucci et al. 2019).

Finally,  Partial  Least Squared Regression
(PLSR), closely related to principal compo-
nent regression,  was selected as an addi-
tional  algorithm  given  its  ability  to  deal
with multicollinearity issues and the “curse
of dimensionality”. PLSR uses the informa-
tion from the response variable in addition
to  the  predictors  for  feature  transforma-
tion  (Geladi  &  Kowalski  1986);  this  algo-
rithm is commonly used in ecological and
forestry applications exploiting large, com-
plex datasets (Vaglio Laurin et al. 2013).

LAI estimation models were first built us-
ing the inputs selected by stepwise regres-
sion, setting three Multiple Linear Regres-
sion  models:  MLR  M1  using  multispectral
data, MLR M2 using SAR data, and MLR M3
using integrated optical-SAR datasets. MLR
M3 input data – characterized by different
optical and SAR physical properties – were
then used as input in the Random Forests
algorithm (named RF M4). Finally, to avoid
running a preliminary stepwise regression,
all the available predictors were used as in-
put in Partial Least Squared Regression al-
gorithm  (models  named  PLSR  M5,  PLSR
M6, PLSR M7). PLSR was also run using the
stepwise  selected  optical  and  SAR inputs
(model  PLSR  M8),  for  comparison  pur-
poses  with  MLR  M3  and  RF  M4.  All  the
models  were  validated  with  10-fold  cross
validation  (Tab.  2).  MLR  and  RF  models
were evaluated by the coefficient of deter-
mination (R2) and the Root Mean Squared
Error (RMSE) statistical metrics; PLSR mod-
els  were  evaluated  using  the  R2 and  the

PRESS statistics (minimum predicted resid-
ual sum of squares).

Using the most accurate model, a map of
estimated LAI was generated for the entire
study area.

Results
The  summary  statistics  of  the  LAI  mea-

sured in sample plots shows that LAI val-
ues  for  the  site  are  normally  distributed,
and range between 0.59-2.66 (Tab. 3). The
results of Pearson’s correlation analysis be-
tween LAI and the various satellite predic-
tors are presented in  Tab. 4; the relation-
ships were consistently linear.

In  general,  the  correlations  were  high
with Sentinel 2 and ALOS2 predictors with
multiple data, obtaining values in the range
0.8-0.9.  A  much  lower  correlation  was
noted for Sentinel 1 predictors.

The  stepwise  regression  based  on  Sen-
tinel  2  bands  and  vegetation  indices  se-
lected band 4 and ARVI,  and obtained an
adjusted R2 equal to 79.93, with a variable
inflation rate (VIF),  equal  to 3.7.  For  Sen-
tinel 1 the stepwise regression selected VH
input  only,  with  a  very  low  adjusted  R2

equal to 4.45. For ALOS2, the selected in-
put was HV, with an adjusted R2 equal to
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Tab. 1 - Input’s data in stepwise regression. (§):  see Tab. S1 in Supplementary material.

Dataset Variables
Number
of inputs

Sentinel 2 Bands: B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12; 
17 Vegetation Indices §

32

Sentinel 1 VH, VV, VV/VH, VH+VV, VH-VV 5

ALOS 2 HH, HV, HH/HV, HH+HV, HH-HV 5

Tab. 2 - Algorithms and input data used in the different regression tests.

Model Algorithm Variables
Number 
of inputs

MLR M1 - multispectral Multiple Linear Regression B4, ARVI 2

MLR M2 - SAR Multiple Linear Regression ALOS2 HV 1

MLR M3 - multispectral + SAR Multiple Linear Regression B4 + ARVI + ALOS2 HV 3

RF M4 - multispectral + SAR Random Forests B4 + ARVI + ALOS2 HV 3

PLSR M5 - multispectral Partial Least Squared Regression 10 S2 bands + 22 vegetation indices (as in Tab. 1) 32

PLSR M6 - SAR Partial Least Squared Regression 5 S1 + 5 ALOS2 inputs (as in Tab. 1) 10

PLSR M7 - multispectral + SAR Partial Least Squared Regression 10 S2 bands + 22 vegetation indices + 5 ALOS 2 inputs 
(as in Tab. 1)

37

PLSR M8 - selected multispectral
+ SAR

Partial Least Squared Regression B4 + ARVI + ALOS2 HV 3

Tab. 3 - Descriptive statistics of LAI mea-
sured in the study plots (N = 61).

Statistics Value

Minimum 0.59

Maximum 2.66

Mean 1.66

Std. Deviation 0.52
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62.55.
The  results  of  the  MLR,  RF  and  PLRS

models, validated with 10-fold cross valida-
tion, are illustrated in Tab. 5, which shows
that  the  best  accuracy  is  obtained  using

the MLR model  3  (MLR 3) based on Sen-
tinel 2 band 4, the ARVI vegetation index,
and  ALOS2  HV  polarization  (R2 =  0.84;
RMSE = 13.52). Fig. 2 shows the scatterplot
of  predicted  vs. observed  LAI  values  for

MLR 3. The residual values for this model
were also explored,  evidencing two large
residuals (equal to 2.35 and -2.15) and one
unusual  observation (equal to -1.31)  these
two observations were kept in the model

281 iForest 14: 278-284

Tab. 4 - Pearson’s correlation coefficients between LAI and satellite predictors. (*): p<0.05; (**): p<0.01.

Dataset Bands /indices r Bands / indices r Bands / indices r

Sentinel 2 B2 -0.765* PVI 0.767* WDVI 0.750*

B3 -0.790* RVI 0.590* Tsavi 0.834*

B4 -0.888* NDVI 0.882* ARVI 0.828*

B5 -0.797** DVI 0.767* NDI45 -0.404**

B6 -0.682** GNDVI 0.759* REIP -0.169

B7 -0.603** IPVI 0.882* IRECI 0.799**

B8a -0.561* Msavi 0.826* NDI705 0.773**

B8 -0.597* NDII 0.665* S2REP -0.169

B11 -0.426* SAVI 0.846* MCARI 0.328*

B12 -0.417** SIPI 0.602* MTCI -0.243

- - TNDVI 0.886* PSSRA 0.588*

Sentinel 1 VH 0.246* VH+VV 0.234* VV/VH -0.045

VV 0.196 VH-VV -0.003 - -

ALOS 2 HH 0.626** HH+HV 0.771** HH/HV 0.622**

HV 0.829** HH-HV 0.151 - -

Tab. 5 - Model results for Leaf Area Index regression, validated with 10-fold cross validation. 

Algorithm Model R2 RMSE
(‡ PRESS) Inputs

Multiple 
Linear 
Regression

MLR M1 - multispectral 0.81 14.25 B4, ARVI

MLR M2 - SAR 0.72 19.13 ALOS2 HV

MLR M3 - multispectral + SAR 0.84 13.52 B4 + ARVI + ALOS2 HV

Random 
Forests

RF M4 - multispectral + SAR 0.83 13.56 B4 + ARVI + ALOS2 HV

Partial Least 
Squared 
Regression

PLSR M5 - multispectral 0.77 ‡ 3.72 10 S2 bands + 22 vegetation indices (as in Tab. 1)

PLSR M6 - SAR 0.61 ‡ 6.35 5 S1 + 5 ALOS2 inputs (as in Tab. 1)

PLSR M7 - multispectral + SAR 0.8 ‡ 3.27 10 S2 bands + 22 vegetation indices + 5 ALOS 2 inputs 
(as in Tab. 1)

PLSR M8 - selected multispectral + SAR 0.81 ‡ 3.04 B4 + ARVI + ALOS2 HV

Fig. 2 - Predicted  vs. observed LAI values, generated with the
MLR M3 model based on Sentinel 2 (band 4 and ARVI vegeta-
tion index) and ALOS2 (HV polarization) inputs, with R2 equal to
0.84 and according to the following equation: LAI = 3.133 - 6.00
B4 + 0.769 ARVI + 0.0820 HV.

Fig. 3 - Residuals vs. fitted LAI values, generated with the MLR 3
model on Sentinel 2 and ALOS2 inputs, with R2 equal to 0.84
and according to the following equation: LAI = 3.133 - 6.00 B4 +
0.769 ARVI + 0.0820 HV.
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as they did not impact its accuracy, and be-
cause no evidence of errors was found in
the  related  field  or  remote  sensing  data.
Fig. 3 shows the scatterplot of residuals vs.
fitted values for MLR3. Using the equation
listed in the caption of  Fig. 2, the LAI map
for  the  study  areas  was  generated,  as
shown in Fig. 4.

Discussion
This  research  illustrates  how  to  accu-

rately estimate LAI in the Zagros protected
forest based on satellite and field data.

Using Sentinel 2 inputs, the accuracy (R2)
of  LAI  estimates  resulted  equal  to  0.77
(with PLSR,  based on 32 inputs) and 0.81
(with  MLR,  based  on  two  stepwise  se-
lected inputs), respectively. Both these re-
sults are higher with respect to values ob-
tained by Stenberg et al. (2004), who used
Landsat  ETM  data  in  conifer  forests  (R2

equal to 0.63); by  Zhang et al. (2011), who
used IRS P6 LISS 3 imagery in a  bamboo
forest (R2 equal to 0.68); and by Korhonen
et al. (2017), who used Sentinel 2 in boreal
forests  (R2 equal  to  0.73).  On  the  other
hand, the results of the present study are
slightly less accurate than those obtained
by Chen et al. (2017), who used AVNIR 2 op-
tical data in a mixed forest mountain area
(R2 equal to 0.93), with higher values possi-
bly thanks to the higher spatial resolution
of AVNIR 2 with respect to Sentinel 2.

Sentinel 2 data are free of cost and have a
very  high  revisiting  time:  the  present  re-
search shows that this sensor can be an op-
timal choice for LAI estimation in a Medi-
terranean forest  type.  Band 4 (red band)
and  the  ARVI  vegetation  index  were  the
best predictors. Band 4 is linked to chloro-
phyll  absorption, and thus to foliage den-
sity,  and a recent study showed that  this
band can outperform other vegetation in-
dices for LAI estimation (Hallik et al. 2019).
ARVI, based on a combination of blue and
red channels, has a dynamic range similar
to that of NDVI, but it resists atmospheric
effects  via a  self-correction process,  mak-
ing it a useful index in most remote-sensing
applications (Kaufman & Tanre 1992).

The  accuracy  of  LAI  estimates  obtained
with SAR data were lower than those ob-
tained with multispectral data; the R2 was
equal to 0.61 when all available SAR predic-
tors  (10)  were  used as  input in  the PLSR
model,  and  to  0.71  when  the  ALOS  HV
channel  – selected by stepwise regression
– was used as input in the MLR model. The
sensitivity to LAI of an HV cross-polarized
signal is already known (Inoue et al. 2014);
the present research shows that the use of
SAR can be a valid alternative to multispec-
tral data in the case of cloud coverage.

The  longer  wavelength  of  ALOS2,  com-
pared to S1, explains the complete exclu-
sion of  the latter  dataset  from the selec-
tion  operated  by  stepwise  regression.  In
fact,  ALOS2 L-band data  better  penetrate
the canopy and report information on veg-
etation  density,  with  respect  to  C-band
data (Canisius & Fernandes 2012).  Chen et

al. (2017) obtained results similar to those
presented here using ALOS PALSAR to esti-
mate  forest  LAI  (R2 =  0.69),  though no
cross  validation  was  performed  in  that
study.  Manninen  et  al.  (2005) using  EN-
VISAT  ASAR  data  obtained  results  in  the
same range of accuracy (R2  = 0.69) in bo-
real forests. Higher accuracy in the LAI esti-
mate (R2 = 0.79) was obtained by Kovacs et
al. (2013) using full-pol ALOS PALSAR data,
characterized by four polarization channels
and thus a higher information content.

The  most  accurate  model  was  obtained
integrating SAR ALOS 2 and multispectral
S2 data: using MLR algorithm an accuracy
(R2) equal to 0.84 was obtained. This result
confirms the advantage, for the extraction
of  biophysical  parameters  in  forests,  of
joining  different  datasets  coming  from
complementary  portions  of  the  electro-
magnetic spectrum as previously observed
by other authors (Vaglio Laurin et al. 2013).
It is also worth noting that L-band data are
scarcely  influenced  by  the  phenological
stages of trees, as at this wavelength the
signal  is  mainly  influenced  by  the  forest
volume and the water content, thus allow-
ing an easier comparison of LAI estimates
carried out on different dates.

To  conclude,  the  use  of  advanced  algo-

rithms such as RF or PLSR did not increase
the accuracy of the LAI estimates with re-
spect to MLR, possibly due to the clear lin-
earity  of  the  relationships.  However,  the
use of MLR required a preliminary selection
of  predictors  by  stepwise  regression,  to
prevent  multicollinearity.  To  simplify  the
analysis,  the PLSR algorithm is  suggested
as it can manage a large number of predic-
tors; in this research, PLRS generated LAI
estimates  characterized  by  high  accuracy
(R2 = 0.80), in a range of values similar to
those produced using MLR.
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Fig. 4 - Map of the Leaf Area Index in the study area, based on Sentinel 2 and ALOS 2
data, using MLR model.
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