iForest - Biogeosciences and Forestry


A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study

G Alberti (1-2)   , F Boscutti (1), F Pirotti (3), C Bertacco (1), G De Simon (1), M Sigura (1), F Cazorzi (1), P Bonfanti (1)

iForest - Biogeosciences and Forestry, Volume 6, Issue 3, Pages 156-168 (2013)
doi: https://doi.org/10.3832/ifor0876-006
Published: Apr 08, 2013 - Copyright © 2013 SISEF

Research Articles

Several studies have verified the suitability of LiDAR for the estimation of forest metrics over large areas. In the present study we used LiDAR as support for the characterization of structure, volume, biomass and naturalistic value in mixed-coniferous forests of the Alpine region. Stem density, height and structure in the test plots were derived using a mathematical morphology function applied directly on the LiDAR point cloud. From these data, digital maps describing the horizontal and vertical forest structure were derived. Volume and biomass were then computed using regression models. A strong agreement (accuracy of the map = 97%, Kappa Cohen = 94%) between LiDAR land cover map (i.e., bare soil, forest, shrubs) and ground data was found, while a moderate agreement between coniferous/broadleaf map derived from LiDAR data and ground surveys was detected (accuracy = 73%, Kappa Cohen = 60%). An analysis of the forest structure map derived from LiDAR data revealed a prevalence of even-age stands (66%) in comparison to the multilayered and uneven-aged forests (20%). In particular, the even-age stands, whether adult or mature, were overwhelming (33%). A moderate agreement was then detected between this map and ground data (accuracy = 68%, Kappa Cohen = 58%). Moreover, strong correlations between LiDAR-estimated and ground-measured volume and aboveground carbon stocks were detected. Related observations also showed that stem density can be rightly estimated for adult and mature forests, but not for younger categories, because of the low LiDAR posting density (2.8 points m-2). Regarding environmental issues, this study allowed us to discriminate the different contribution of LiDAR-derived forest structure to biodiversity and ecological stability. In fact, a significant difference in floristic diversity indexes (species richness - R, Shannon index - H’) was found among structural classes, particularly between pole wood (R=15 and H’=2.8; P <0.01) and multilayer forest (R=31 and H’=3.4) or thicket (R=28 and H’=3.4) where both indexes reached their maximum values.


Lorey’s Mean Height, Tree Volume, Carbon Stocks, Biodiversity, Species Richness, LiDAR

Authors’ address

G Alberti
F Boscutti
C Bertacco
G De Simon
M Sigura
F Cazorzi
P Bonfanti
Department of Agricultural and Environmental Sciences, University of Udine, v. delle Scienze 206, I-33100 Udine (Italy)
G Alberti
MOUNTFOR Project Centre, European Forest Institute, Via E. Mach 1, San Michele a/Adige, Trento (Italy)
F Pirotti
Land, Environment, Agriculture and Forestry Department, CIRGEO - Interdepartmental Research Center on Cartography Photogrammetry - Remote Sensing and G.I.S., University of Padova, Padua (Italy)

Corresponding author


Alberti G, Boscutti F, Pirotti F, Bertacco C, De Simon G, Sigura M, Cazorzi F, Bonfanti P (2013). A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study. iForest 6: 156-168. - doi: 10.3832/ifor0876-006

Academic Editor

Giustino Tonon

Paper history

Received: Nov 12, 2012
Accepted: Feb 11, 2013

First online: Apr 08, 2013
Publication Date: Jun 01, 2013
Publication Time: 1.87 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 53662
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 44979
Abstract Page Views: 2818
PDF Downloads: 4319
Citation/Reference Downloads: 68
XML Downloads: 1478

Web Metrics
Days since publication: 3982
Overall contacts: 53662
Avg. contacts per week: 94.33

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2013): 32
Average cites per year: 2.91


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Abramo E, Barilotti A, Sepic F (2007)
Dalla dendrometria diametrica alla dendrometria ipsometrica: stima del volume degli alberi da rilievi laser-scanning. Forest@ 4: 373-385.
CrossRef | Gscholar
Anfodillo T, Pilli R, Salvatori I (2006)
Indagine preliminare sullo stock di carbonio nelle foreste del Veneto. Regione Veneto.
Aubin I, Ouellette MH, Legendre P, Messier C, Bouchard A (2009)
Comparison of two plant functional approaches to evaluate natural restoration along an old-field - deciduous forest chronosequence. Journal of Vegetation Science 20 (2): 185-198.
CrossRef | Gscholar
Barilotti A, Turco S, Alberti G (2006)
LAI determination in forestry ecosystem by LiDAR data analysis. In: Proceeding of the “Workshop in 3D Remote Sensing in Forestry”. Vienna (Austria= 14-15 February 2006.
Barilotti A, Sepic F, Abramo E, Crosilla C (2007)
Improving the morphological analysis for tree extraction: a dynamic approach to lidar data. In: Proceedings of the “ISPRS Workshop on Laser Scanning 2007”. Espoo (Finland) September 12-14, 2007.
Barilotti A, Crosilla F, Sepic F (2009)
Curvature analysis of lidar data for single tree species classification in alpine latitude forests. In: “Laser scanning 2009, IAPRS” (Bretar F, Pierrot-Deseilligny M, Vosselman G eds). Vol. XXXVIII, Part 3/W8 - 1-2 September 2009, Paris, France.
Bassler C, ,Stadler J, Muller J, Forster B, Gottlein A, Brandl R (2011)
LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks. Biodiversity and Conservation 20: 465-481.
CrossRef | Gscholar
Battles JJ, Shlisky AJ, Barrett RH, Heald RC, Allen-Diaz BH (2001)
The effects of forest management on plant species diversity in a Sierran conifer forest. Forest Ecology and Management 146: 211-222.
CrossRef | Gscholar
Beets PN, Brandon AM, Goulding CJ, Kimberley MO, Paul TSH, Searles N (2011)
The inventory of carbon stock in New Zealand’s post-1989 planted forest for reporting under the Kyoto protocol. Forest Ecology and Management 262: 1119-1130.
CrossRef | Gscholar
Bongers F, Poorter L, Hawthorne WD, Sheil D (2009)
The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecology letters 12: 798-805.
CrossRef | Gscholar
Braun-Blanquet J (1964)
Pflanzensoziologie - Grundzuge der Vegetationkunde. Springer, Wien, Austria and New York, USA.
Castillo-Nunez M, Sanchez-Azofeifa GA, Croitoru A, Rivard B, Calvo-Alvarado J, Dubayah RO (2011)
Delineation of secondary succession mechanisms for tropical dry forests using LiDAR. Remote Sensing of Environment 115: 2217-2231.
CrossRef | Gscholar
Clementel F, Colle G, Farruggia C, Floris A, Scrinzi G, Torresan C (2012)
Estimating timber volume by means of “low cost” LiDAR data. Italian Journal of Remote Sensing 44: 125-140.
CrossRef | Gscholar
Cohen J (1960)
A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20: 37-46.
CrossRef | Gscholar
Collin A, Long B, Archambault P (2010)
Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR. Remote Sensing of Environment 114: 520-530.
CrossRef | Gscholar
Congalton RG (1991)
A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37: 35-46.
CrossRef | Gscholar
Connell JH (1978)
Diversity in tropical rain forests and coral reefs. Science 199: 1302-1310.
CrossRef | Gscholar
Coops NC, Hilker T, Wulder MA, St-Onge B, Newnham G, Siggins A, Trofymow JA (2007)
Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees-Structure and function 21: 295-310.
CrossRef | Gscholar
Corona P, Kohl M, Marchetti M (2003)
Advances in forest inventory for sustainable forest management and biodiversity monitoring. Kluwer, Dordrecht, Germany.
Corona P, Chirici G, McRoberts RE, Winter S, Barbati A (2011)
Contribution of large scale forest inventories to biodiversity assessment and monitoring. Forest Ecology and Management 262: 2061-2069.
CrossRef | Gscholar
Corona P, Cartisano R, Salvati R, Chirici G, Floris A, Di Martino P, Marchetti M, Scrinzi G, Clementel F, Travaglini D, Torresan C (2012)
Airbone laser scanning to support forest re source management under alpine, temperate and Mediterranean environments in Italy. European Journal of Remote Sensing 45: 27-37.
CrossRef | Gscholar
Decocq G, Aubert M, Dupont F, Alard D, Saguez R, et al (2004)
Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. Journal of Applied Ecology 41: 1065-1079.
CrossRef | Gscholar
Del Favero R, Poldini L, Lasen C, Dreossi G, Vanone G (1998)
La vegetazione forestale e la selvicoltura nella regione Friuli-Venezia Giulia. Regione Autonoma Friuli-Venezia Giulia, Direzione Regionale delle Foreste, Servizio della Selvicoltura.
Del Favero R, Bortoli PL, Staf SNC, Vanone G, Moro E (2000)
Direttive per i piano di gestione delle proprietà forestali nella regione Friuli Venezia Giulia. Direzione Regionale delle Foreste, Regione Autonoma Friuli Venezia Giulia, pp. 256.
De Simon G, Alberti G, Delle Vedove G, Zerbi G, Peressotti A (2012)
Influence of forest management on net ecosystem production across two different Italian chronosequences. European Journal of Forest Research 131 (5): 1297-1311.
CrossRef | Gscholar
Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince SD (2002)
Estimation of tropical forest structural characteristics using large-footprint LiDAR. Remote Sensing of Environment 79: 305-319.
CrossRef | Gscholar
Falkowski MJ, Evans JS, Martinuzzi S, Gessler PE, Hudak AT (2009)
Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment 113 (5): 946-956.
CrossRef | Gscholar
French LJ, Smith GF, Kelly DL, Mitchell FJG, O’Donoghue S, Iremonger SF, Mckee AM (2008)
Ground flora communities in temperate oceanic plantation forests and the influence of silvicultural, geographic and edaphic factors. Forest Ecology and Management 255: 476-494.
CrossRef | Gscholar
Garcia M, Riano D, Chuvieco E, Danson FM (2010)
Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment 114: 816-830.
CrossRef | Gscholar
Gillespie TW, Brock J, Wright CW (2004)
Prospects for quantifying structure, floristic composition and species richness of tropical forests. International Journal of Remote Sensing 25: 707-715.
CrossRef | Gscholar
Gondard H, Romane F, Regina I, Leonardi S (2006)
Forest management and plant species diversity in chestnut stands of three Mediterranean areas. In. “Forest diversity and management” (Hawksworth DL, Bull AT eds). Topics in Biodiversity and Conservation, Springer, The Netherlands, pp. 69-82.
Grime JP (1973)
Competitive exclusion in herbaceous vegetation. Nature 242: 344-347.
CrossRef | Gscholar
Haralick RM, Shapiro LG (1992)
Computer and robot vision. Addison-Wesley, Longman Publishing Co. Inc., Boston, MA, USA.
Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999)
An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biological Conservation 91: 9-22.
CrossRef | Gscholar
IPCC (2001)
Third assessment report. Climate change 2001. Cambridge University Press, Cambridge, UK.
Jensen JR (1996)
Introductory digital image processing: a remote sensing perspective. Prentice-Hall, Upper Saddle River, NJ, USA, pp. 318.
Kotchenova SY, Song XD, Shabanova NV, Potter CS, Knyazikhin Y, Myneni RB (2004)
LiDAR remote sensing for modeling gross primary production of deciduous forests. Remote Sensing of Environment 92: 158-172.
CrossRef | Gscholar
Knudsen LF, Curtis JM (1947)
The use of the angular transformation in biological assays. Journal of the American Statistical Association 42: 282-296.
CrossRef | Gscholar
Landis JR, Koch GG (1977)
The measurement of observer agreement for categorical data. Biometrics 33: 159-174.
CrossRef | Gscholar
Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D (1999)
Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment 70: 339-361.
CrossRef | Gscholar
Legendre P, Legendre L (1998)
Numerical ecology. Second english edition. Developments in Environmental Modelling 20, Elsevier Science BV, Amsterdam, The Netherlands, pp. 853.
Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003)
LiDAR remote sensing of forest structure. Progress in Physical Geography 27: 88-106.
CrossRef | Gscholar
Lust N, Muys B, Nachtergale L (1998)
Increase of biodiversity in homogeneous Scots pine stands by an ecologically diversified management. Biodiversity and Conservation 7: 249-260.
CrossRef | Gscholar
Maltamo M, Eerikainen K, Pitkanen J, Hyyppa J, Vehmas M (2004)
Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment 90: 319-330.
CrossRef | Gscholar
Marincek L, Poldini L, Zupancic M (1989)
Beitrag zur kenntniss der Gesellschaft Anemono Fagetum. Razprave 4, Razreda SAZU 30: 3-64.
Mucina L (1997)
Conspectus of classes of European vegetation. Folia Geobotanica 32: 117-172.
CrossRef | Gscholar
Naesset E (1997)
Determination of mean tree height of forest stands using airbone laser scanner data. Journal of Photogrammetry and Remote Sensing 52: 49-56.
CrossRef | Gscholar
Naesset E (2004)
Practical large-scale forest stand inventory using small-footprint airborne scanning laser. Scandinavian Journal of Forest Research 19: 164-179.
CrossRef | Gscholar
Naesset E, Gobakken T (2008)
Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment 112: 3079-3090.
CrossRef | Gscholar
Nelson RF, Krabill W, Tonelli J (1988)
Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment 24: 247-267.
CrossRef | Gscholar
Nilsson M (1996)
Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment 56: 1-7.
CrossRef | Gscholar
Oberdorfer E (2001)
Pflanzen-soziologische Exkursions-flora für Deutschland und angrenzende Gebiete. Ulmer, Stuttgart, Germany.
Pascual C, García-Abril A, García-Montero LG, Martín-Fernández S, Cohen WB (2008)
Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands. Forest Ecology and Management 255: 3677-3685.
CrossRef | Gscholar
Persson A, Holmgren J, Söderman U (2002)
Detecting and measuring individual trees using an airborne laserscanner. Photogrammetric Engineering & Remote Sensing 68(9): 925-932.
Pignatti S (1953)
Introduzione allo studio fitosociologico della pianura veneta orientale con particolare riguardo alla vegetazione litoranea. Arch. Bot. 29: 65-98.
Pignatti S (1982)
Flora d’Italia. Edagricole, Bologna, Italy, vol. 2, pp. 474-475.
Pirotti F (2010)
Assessing a template matching approach for tree height and position extraction from lidar-derived canopy height models of Pinus pinaster stands. Forests 1: 194-208.
CrossRef | Gscholar
Piussi P (1994)
Selvicoltura generale. UTET, Torino, Italia, pp. 421.
Poldini L, Nardini S (1993)
Boschi di forra, faggete e abieteti in Friuli (NE Italia). Studia Geobotanica 13: 215-298.
Poldini L, Oriolo G, Vidali M (2001)
Vascular flora of Friuli-Venezia Giulia. An annotated catalogue and synonimic index. Studia Geobotanica 21: 3-227.
Popescu SC, Wynne RH, Nelson RF (2002)
Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Computers and Electronics in Agriculture 37: 71-95.
CrossRef | Gscholar
Popescu SC, Wynne RH (2004)
Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering & Remote Sensing 70 (5): 589-604.
CrossRef | Gscholar
Raunkiær C (1934)
The life forms of plants and statistical plant geography. Oxford University Press. [INCOMPLETE]
Reitberger J, Krzystek P, Stilla U (2008)
Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. International Journal Of Remote Sensing 29: 1407-1431.
CrossRef | Gscholar
Reitberger J, Schnorr C, Krzystek P, Stilla U (2009)
3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing 64: 561-574.
CrossRef | Gscholar
Rowell E, Seielstad C, Vierling L, Queen L, Shepperd W (2006)
Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota. Photogrammetric Engineering & Remote Sensing 72 (12): 1379-1388.
CrossRef | Gscholar
Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta WR, Buermann W, Lewis SL, Hagen S, Petrova S, White LEE, Silman M, Morel A (2011)
Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences USA 108: 9899-9904.
CrossRef | Gscholar
Serra J (1982)
Image analysis and mathematical morphology. Vol I. Image Processing. Academic Press, London, UK, pp. 610.
Serra J (1988)
Image analysis and mathematical morphology. Vol II. Theoretical Advances. Academic Press, London, UK, pp. 610.
Shannon CE, Weaver W (1949)
The mathematical theory of communication. University of Illinois Press, Urbana, USA.
Simard M, Pinto N, Fisher JB, Baccini A (2011)
Mapping forest canopy height globally with spaceborne LiDAR. Journal of Geophysical Research-Biogeosciences 116: G04021
CrossRef | Gscholar
Straub C, Dees M, Weinacker H, Koch B (2009)
Using airborne laser scanner data and CIR orthophotos to estimate the stem volume of forest stands. Photogrammetrie Fernerkundung Geoinformation 3: 277-287.
CrossRef | Gscholar
Straub C, Koch B (2011)
Enhancement of bioenergy estimations within forests using airborne laser scanning and multispectral line scanner data. Biomass and Bioenergy 35: 3561-3574.
CrossRef | Gscholar
Ter Braak CJF (1986)
Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis in ecology. Ecology 67: 1167-1179.
CrossRef | Gscholar
Ter Braak CJF (1988)
Canoco an extension of decorana to analyze species-environment relationships. Vegetatio 75: 159-160.
Tonolli S, Dalponte M, Vescovo L, Rodeghiero M, Bruzzone L, Gianelle D (2011a)
Mapping and modeling forest tree volume using forest inventory and airborne laser scanning. European Journal of Forest Research 130: 569-577.
CrossRef | Gscholar
Tonolli S, Dalponte M, Neteler M, Rodeghiero M, Vescovo L, Gianelle D (2011b)
Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps. Remote Sensing of Environment 115: 2486-2498.
CrossRef | Gscholar
Tickle PK, Lee A, Lucas RM, Austin J, Witte C (2006)
Quantifying australian forest floristics and structure using small footprint LiDAR and large scale aerial photography. Forest Ecology and Management 223: 379-394.
CrossRef | Gscholar
Van Leeuwen M, Nieuwenhuis M (2010)
Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research 129: 749-770.
CrossRef | Gscholar
Verrelst J, Gertjan WG, Sykora KV, Clevers JGPW (2009)
Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data. International Journal of Applied Earth Observation and Geoinformation 11: 83-94.
CrossRef | Gscholar
Vetaas O (1997)
The effect of canopy disturbance on species richness in a central Himalayan oak forest. Plant Ecology 132: 29-38.
CrossRef | Gscholar
Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM (2008)
Lidar: shedding new light on habitat characterization and modelling. Frontiers in Ecology and The Environment 6: 90-98.
CrossRef | Gscholar
Westhoff V, Van Der Maarel E (1978)
The Braun-Blanquet approach. In: “Classification of plant communities” (Whittaker RH ed). Junk, The Hague, The Netherlands, pp. 287-297.
Winjum JK, Dixon RK, Schroeder PE (1992)
Estimating the global potential of forest and agroforest management practices to sequester carbon. Water, Air and Soil Pollution 64: 213-228.
CrossRef | Gscholar
Borcard D, Gillet F, Legendre P (2011)
Numerical Ecology with R. Springer, New York, USA, pp. 306.

This website uses cookies to ensure you get the best experience on our website. More info