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Introduction
In  the last  decade,  applied  environmental 

sciences  have  undergone  a  radical  change 
with the emergence of new technologies re-
lated to the retrieval and processing of spa-
tial  data.  In  particular,  modern remote sen-
sing techniques, such as Light Detection and 
Ranging (LiDAR), have been playing an in-
creasingly important  role  in  forest  descrip-
tion,  from local (e.g.,  Maltamo et al. 2004) 
to  regional  (Naesset  &  Gobakken  2008, 
Saatchi et al. 2011) or global scale (Simard 
et  al.  2011),  in  terms  of  tree  composition 
(Reitberger  et  al.  2008),  forest  structure 
(Coops  et  al.  2007,  Pascual  et  al.  2008, 
Falkowski et al.  2009), vegetation mapping 
(Tickle et al. 2006, Verrelst et al. 2009) and 
stand  development  (Castillo-Nunez  et  al. 
2011).  The  increased  market  demand  for 

wood  products,  and  especially  for  wood-
based bio-energy,  has been requiring detai-
led spatial information on wood volume for 
forest  resource  planning  (Tonolli  et  al. 
2011a) and biomass exploitation (Straub & 
Koch 2011). Traditionally, the acquisition of 
these data is time consuming and expensive 
as  they  are  usually  obtained  through  field 
surveys.  Several  studies  have  verified  the 
suitability of LiDAR for deriving forest me-
trics in large areas (Lefsky et al. 1999, Drake 
et  al.  2002,  Barilotti  et  al.  2006,  Van 
Leeuwen & Nieuwenhuis 2010). In this con-
text,  tree  heights  are  derived  from LiDAR 
point  cloud  (Nelson  et  al.  1988)  and  then 
used to estimate stem volume (Straub et al. 
2009)  or  aboveground  biomass.  Moreover, 
there is also a growing need for detailed spa-
tial  information  to  improve  forest  manage-

ment with regard to biodiversity and carbon 
sequestration.  In  recent  decades,  several 
studies and exercises have been carried out 
to integrate biodiversity issues with forest in-
ventories  (Corona et  al.  2003),  but  the de-
bate on the potential role of forest invento-
ries in biodiversity monitoring is still  open 
(Corona  et  al.  2011).  As  stand  structure 
plays a key role in deriving biodiversity in-
dicators,  LiDAR  may  be  a  useful  tool  in 
biodiversity  management.  For  example,  it 
appears  a  quite  interesting  tool  for  biodi-
versity related analysis, such as habitat type 
classification (Vierling et al. 2008, Collin et 
al. 2010, Bassler et al. 2011) and species di-
versity modeling (Gillespie et al. 2004, Vier-
ling et al. 2008). Concerning with carbon se-
questration,  forests  can sequester  and store 
more carbon than all other terrestrial ecosys-
tems  (IPCC  2001)  and  exchange  90%  of 
total  carbon  flow between  the  atmosphere 
and biosphere (Winjum et al.  1992).  Thus, 
the integration of data from inventories with 
remote sensing techniques is crucial  for an 
accurate  quantification  of  carbon  stocks  in 
forest ecosystems and to monitor the influ-
ence of human activities (i.e., forest manage-
ment,  afforestation,  deforestation)  on  these 
stocks (Kotchenova et al. 2004, Garcia et al. 
2010, Beets et al. 2011, Saatchi et al. 2011).

LiDAR surveys  the  three-dimensional  (3-
D) structure of forests by measuring time-of-
flight of laser pulses reflected from the tar-
get. Position and orientation of the scanning 
device is supplied by the Global Positioning 
System  (GPS)  and  the  Inertial  Navigation 
System (INS - Lim et al. 2003). While filte-
ring operations may be considered a well-es-
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Several  studies  have  verified  the suitability  of  LiDAR for  the  estimation of 
forest metrics over large areas. In the present study we used LiDAR as support  
for the characterization of structure, volume, biomass and naturalistic value in 
mixed-coniferous forests of the Alpine region. Stem density, height and struc-
ture in the test plots were derived using a mathematical morphology function 
applied directly on the LiDAR point cloud. From these data, digital maps de-
scribing the horizontal and vertical forest structure were derived. Volume and 
biomass were then computed using regression models. A strong agreement (ac-
curacy of the map = 97%, Kappa Cohen = 94%) between LiDAR land cover map 
(i.e., bare soil, forest, shrubs) and ground data was found, while a moderate 
agreement between coniferous/broadleaf  map derived  from LiDAR data  and 
ground surveys was detected (accuracy = 73%, Kappa Cohen = 60%). An analy-
sis of the forest structure map derived from LiDAR data revealed a prevalence 
of even-age stands (66%) in comparison to the multilayered and uneven-aged 
forests  (20%).  In particular,  the even-age stands,  whether adult  or mature, 
were overwhelming (33%). A moderate agreement was then detected between 
this map and ground data (accuracy = 68%, Kappa Cohen = 58%). Moreover, 
strong  correlations  between  LiDAR-estimated  and  ground-measured  volume 
and  aboveground  carbon  stocks  were  detected.  Related  observations  also 
showed  that  stem  density  can  be  rightly  estimated  for  adult  and  mature 
forests, but not for younger categories, because of the low LiDAR posting den-
sity (2.8 points m-2). Regarding environmental issues, this study allowed us to 
discriminate  the different  contribution of  LiDAR-derived  forest  structure  to 
biodiversity and ecological stability. In fact, a significant difference in floristic 
diversity indexes (species richness – R, Shannon index - H’) was found among 
structural classes, particularly between pole wood (R=15 and H’=2.8; P <0.01) 
and multilayer forest (R=31 and H’=3.4) or thicket (R=28 and H’=3.4) where 
both indexes reached their maximum values.

Keywords:  Lorey’s  Mean  Height,  Tree  Volume,  Carbon  Stocks,  Biodiversity, 
Species Richness, LiDAR
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tablished  procedure  (Barilotti  et  al.  2006), 
methods  for  extracting  forest  and  environ-
mental  characteristics  from the  laser  point 
cloud need, especially in forests with a com-
plex structure, a robust testing and verifica-
tion phase with ground-truth measurements. 
Although  methods  for  the  extraction  of 
structural and dendrometric characteristics of 
conifer  and  broadleaf  mature  forests  are 
already available (i.e.,  Barilotti  et al.  2007, 
Abramo et al. 2007), a precise stand charac-
terization  can  be  more  problematic  in  the 
case of young or uneven-aged multilayered 
mixed forests because of their intrinsic grea-
ter complexity (Corona et al. 2012).

Within  this  framework,  the  aims  of  the 
present study were: (i) to create and validate 
digital  map  of  the  horizontal  and  vertical 
forest  structure  derived  from LiDAR data, 
(ii)  to  quantify  forest  volume  and  above-
ground  carbon  stocks  for  each  structural 
class,  (iii)  to  verify LiDAR structural  map 
applicability  for  forest  vegetation  characte-
rization (i.e., species diversity and composi-
tion) in order to detect forests stands with an 
high naturalistic value.

Materials and methods

Materials

Study area
The study area is  located at  Fusine  lakes 

(1 688 ha, 46°30’15” N, 13°38’26” E - Fig.
1), in north-eastern Alps near the Italian bor-
der  with  Slovenia  and  Austria.  The  site  is 
characterized by patches of pastures surroun-
ded  by  spruce  forests  or  spruce,  fir  and 
beech  mixed  forests  (Picea  abies Karst., 
Abies alba Mill. and Fagus sylvatica L., re-
spectively -  Tab. 1). Mean annual tempera-

ture at the Fusine lakes is 7.3° C with an ab-
solute  maximum of 28° C and an absolute 
minimum of  -27°  C.  The area is  characte-
rized by a strong annual and daily tempera-
ture range (22° C). Annual rainfall  is 1520 
mm. Bedrock is mainly dolomite. The study 
area  includes  13  forest  compartments  be-
longing to the Regional Government for an 
area of 665 ha: 7 compartments are forests 
managed for wood production,  4 are left to 
natural  evolution,  1  compartment  has  a re-
creational destination and 1 is unproductive.

LiDAR and ground data acquisition
LiDAR  data  were  acquired  in  October 

2006  (85% of  the  study area)  and  in  July 
2009 (15% of the study area) using an Op-
tech ALTM 3100 sensor onboard a helicop-
ter. Average pulse density was 2.8 points per 
square  meter.  The  flight  height  was  about 
1000 m above ground level,  the  maximum 
scan angle was ± 18° and a beam divergence 
was 0.2 mrad (~20 cm at 1000 m distance). 
Data were collected on a multi-pulse mode 
with  a  maximum of  four  return  echoes re-
gistered for each emitted pulse.

Ground-truth points were distributed accor-
ding to a stratified sampling design. A squa-
re grid with cells of 100 x 100 m was over-
laid  on  the  structural  map  obtained  from 
LiDAR data (see “Methods”) and 37 of them 
were distributed proportionally to each struc-
tural class and then randomly selected. The 
survey was performed during summer 2010. 
Trees were surveyed within a circular plot of 
13 m radius or 4 m radius depending on their 
diameter at breast height (DBH > 7.5 cm and 
DBH < 7.5 cm, respectively).  In  each plot, 
all  standing  trees  were identified  and  their 
DBH were measured. Total height was mea-
sured on a subsample of ten trees distributed 

on different diameter classes.
Within each circular plot, a 100 m2 square 

subplot was identified for a vegetational sur-
vey according to Braun-Blanquet (1964) and 
Westhoff & Van Der Maarel (1978). In par-
ticular,  the following attributes were inves-
tigated:
• the cover of each forest layer according to 

the  following  scheme:  trees  > 3  m high; 
shrubs > 0.5 m and < 3 m in height; herba-
ceous (all  grasses,  ferns,  and woody spe-
cies < 0.5 m in height);

• the  proportional  cover  of  each  vascular 
censed  species  according  to  Braun-Blan-
quet  (1964) scale,  modified  by  Pignatti 
(1953).
Flora nomenclature followed  Poldini et al. 

2001,  phytosociological  nomenclature  was 
defined according to studies from Marincek 
et al. (1989),  Poldini & Nardini (1993) and 
Oberdorfer (2001). The attribution of biolo-
gical  forms  (Raunkiær  1934)  followed  Pi-
gnatti (1982).

Methods

Land cover, coniferous/broadleaf and 
forest structure maps

In  order to derive land cover, coniferous/ 
broadleaf and forest structure maps from raw 
LiDAR  data,  a  individual  tree  crown  ap-
proach (ITC) was used (Barilotti et al. 2009). 
LiDAR data processing was performed using 
ZEUS software (© e-Laser srl - http://www. 
e-laser.it/) in order to classify ground and ve-
getation  points  through  semi-automatic  fil-
tering (Axelsson 2000). A manual check and 
refinement for areas with complex morpho-
logy was also performed. A Digital Terrain 
Model (DTM) with a 1 x 1 m cell resolution 
was created using filtered ground data and 
was  used  to  derive  individual  tree  heights 
using the methods reported by Barilotti et al. 
(2007). This method is based on a mathema-
tical morphology function derived from the 
theory proposed by Serra (1982, 1988). The 
function, originally developed to extract the 
peak elements of a raster image, was adapted 
to detect spatial position (x, y, z) of each tree 
vertex  directly  on  the  point  cloud.  It  was 
then assumed that the vertex coordinates cor-
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Fig. 1 - Study area.

Tab. 1 - Land covers in the study area de-
rived from Moland Land Use map.

Land use Area 
(ha) %

Mixed forests 631 37.4
Bare rocks 471 27.9
Heath and scrubs 261 15.5
Coniferous forests 208 12.4
Pastures and grasslands 77 4.6
Water bodies 23 1.4
Hardwood forests 12 0.7
Scrublands 3 0.2
Total 1 688 -

http://www.e-laser.it/
http://www.e-laser.it/
http://www/
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respond to the position of each tree.
The distinction between forested and non-

forested areas (land cover map) was made by 
using an algorithm that automatically detects 
the  openings  of  the  forest  cover  through 
classification of the values obtained from the 
Laser Penetration Index (LPI - Barilotti et al. 
2006).  Classified pixels  were then  grouped 
in  homogenous  cover  classes  according  to 
the following definitions:
• forest: land with tree crown cover (or equi-

valent  stocking  level)  of  more  than  20% 
and area larger than 0.2 ha;

• shrubland: vegetation lower than 3 meters 
above ground;

• bare soil.
Coniferous/broadleaves map was obtained 

through  an  automated  extraction  of  indivi-
dual trees using a “Top Hat” algorithm fol-
lowed  by  an  automatic  crown  delineation 
(Barilotti  et  al.  2007).  Points  which  de-
pended  on  the same crown were identified 
through  a  cluster  analysis  and  each  crown 
was  delineated  using  circular  polygons 
whose  center  and  radius  were  calculated 
according to  the planimetric coordinates of 
points  belonging  to  each  cluster.  Crown 
depth  was calculated  as the difference bet-
ween  maximum  and  minimum  height  of 
point belonging to the cluster and total tree 
height was determined by subtracting DTM 
from crown vertex. Following previous work 
by  Barilotti  et  al.  (2009),  trees  were  then 
classified as  broadleaves or  conifers  accor-
ding  to  parabolic  surfaces  approximating 
crown  points’  distribution  and  coniferous 
and broadleaf trees were grouped in homo-
geneous polygons through a region growing 
algorithm  (Haralick  &  Shapiro  1992).  Fi-
nally,  areas  with  a  presence  of  conifers  or 
broadleaves higher than 65% were treated as 
coniferous or broadleaf stands, respectively. 
Otherwise,  they  were  treated  as  mixed 
forests.

The  forest  structure  map  was  obtained 
through a classification of tree heights within 
forest areas following the criteria reported in 
Tab. 2. Also in this case, areas with an ho-
mogeneous distribution of tree height classes 
were delimited through a region growing al-
gorithm (Haralick  &  Shapiro  1992).  Main 
structural  categories adopted in  Tab.  2 fol-
lowed the definitions used for forest mana-
gement  plans in  the Region  Friuli  Venezia 
Giulia  (regeneration  phase,  ticket,  pole 
wood, adult forest, mature forest, multilayer 
forest - Piussi 1994, Del Favero et al. 2000). 
However, as most of the forest stands in the 
area are managed according to shelterwood 
system on small areas, we also used a more 
detailed  structural  type  classification  (Tab.
2) in order to better underline the different 
forest  development  stages  (i.e.,  stand  after 
regeneration cut or stand after final cut). In 
order  to  better  distinguish  shrublands  from 
regeneration  phase,  a  manual  check  using 
the available digital areal photos for the area 
and considering elevation was performed.

Ground data elaborations
Starting  from  measured  diameters  and 

heights,  specific  height  curves  [i.e.,  H  = 
f(DBH)]  were  derived  and  Lorey’s  mean 
height (LMH) was calculated for each plot. 
LMH weights the contribution of trees to the 
stand height by their basal area, and is more 
stable than an unweighted mean height, be-
cause it is less affected by mortality and har-
vesting  of  the  smaller  trees.  Biomass  and 
volume  were  calculated  according  the  re-
gional  allometric relationships  proposed  by 
Del Favero et al. (2000) and Anfodillo et al. 
(2006) and already applied by  De Simon et 
al. (2012) in the Region.

Estimated  Braun-Blanquet  scale  values 
were transformed in a 1-9 ordinal transform 
scale as proposed by  Westhoff & Van Der 
Maarel  (1978) before  statistical  analysis  of 

species cover. The characterization of the ve-
getation was performed through a Canonical 
(Constrained)  Correspondence  Analysis 
(CCA -  Ter  Braak  1986,  Legendre  &  Le-
gendre 1998,  Borcard et al. 2011) based on 
the relevés matrix and environmental factors 
matrix (i.e., LiDAR structures), and a cluster 
analysis,  applied to plot  vegetation relevés, 
using a similarity ratio algorithm (Westhoff 
& Van Der Maarel 1978) and Ward’s aggre-
gation method. The statistical significance of 
CCA was assessed by Monte Carlo permuta-
tion tests, using 500 permutations (Ter Braak 
1988).

Biodiversity  was  quantified  within  each 
plot with specific indexes such as the flori-
stic richness (number of species surveyed for 
sample area) and the Shannon diversity in-
dex (Shannon & Weaver 1949).

The biological spectrum percentage values 
were  transformed  with  an  arcsin  angular 
transformation before the application of the 
analysis  of  variance  (Knudsen  &  Curtis 
1947).  Normality  of  the  compared  groups 
(i.e., biodiversity, biological spectrum group 
of each LiDAR structure category) was veri-
fied  using  the  Shapiro’s  test  for  normality 
(Shapiro  test,  p>0.05),  while  the  homoge-
neity of variances was tested using the Bart-
lett’s test (p>0.05). Averages for each struc-
tural category were finally compared through 
an  ANOVA  (p<0.05)  with  post-hoc tests 
(Tukey test),  for  biodiversity  indexes,  and 
Kruskal-Wallis  ANOVA by ranks  (p<0.05) 
with  non-parametric  post-hoc tests  (Ne-
menyi-Damico-Wolfe-Dunn test),  for biolo-
gical forms groups. All the statistical analy-
ses were performed using R (© R-Develop-
ment Core Team).

LiDAR data validation
The  validation  of  LiDAR  structural  data 

was performed following two methodologies 
depending on data type: for quality attributes 
(land cover map; coniferous/broadleaf map; 
forest structure map), Cohen’s kappa coeffi-
cient  (Cohen  1960)  was  used,  while  for 
quantitative  attributes  (i.e.,  height,  stand 
density,  biomass)  linear  and  non-linear  re-
gressions or analysis of variance (ANOVA) 
in  SigmaPlot  11  (Systat® Software  Inc.) 
were used.

Kappa coefficient can be used as a measure 
of agreement between model predictions and 
reality (Congalton  1991) or to  determine if 
the values contained  in  an error  matrix re-
present a result significantly better than ran-
dom  (Jensen  1996).  In  particular,  contin-
gency tables  based  on  ground  points  were 
built:  columns  were  reference  data,  rows 
were LiDAR classifications.  In  the case of 
land  cover  map  validation,  a  contingency 
table based on all 100 x 100 m grid points 
within the study area was built (1694 points) 
and  real  land  cover  was  assessed  through 
visual photo-interpretation at each sampling 
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Tab. 2 - Structural classes and structural types as defined by Del Favero et al. (2000) and 
Barilotti et al. (2009).

Structural 
class

Structural 
type

Height
(m) Notes

Regeneration 
phase

Regeneration phase 1

0 < h < 3

No trees from the higher height class 
are present

Regeneration phase 2 Few trees from the higher height class 
are present

Thicket Thicket 1
3 < h < 10

No trees from the higher height class
Thicket 2 Trees from the higher height class are 

also present
Pole wood Pole wood 1

10 < h < 20

No trees from the higher height class
Pole wood 2 Trees from the higher height class are 

also present
Pole wood 3 Tending to two layer forest

Adult forest Adult forest 18 < h < 25 -
Mature forest Mature forest h > 25 -
Multilayer 
forest

Two-layered forest - Two clear layers can be identified
Multilayer forest - -
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point  using  a  2007  digital  aerial  photos 
available  for  the  study  area.  Coniferous/ 
broadleaf map and forest structure map were 
both validated using the 37 ground points for 
which  dendrometric  measurements  were 
available.

Kappa coefficient (κ) was computed accor-
ding to the following equation (eqn. 1):

where Pr(a)  is  the relative observed  agree-
ment among raters, and Pr(e) is the hypothe-
tical probability of chance agreement, using 
the observed data to calculate the probabili-
ties of each observer randomly saying each 
category. If the raters are in complete agree-
ment  then  κ = 1.  If  there  is  no  agreement 
among the raters other than what would be 
expected by chance - as defined by Pr(e) -, κ 
= 0.

Results

Land  cover  and  coniferous/broadleaf  
map validation

The contingency table used to validate the 
land cover map is reported in Tab. 3. Based 
on  criteria  established  by  Landis  &  Koch 
(1977), a strong agreement between the map 
and ground data was found: the accuracy of 
the map was 97% (1638 were rightly classi-
fied)  and  K-Cohen  was  equal  to  94%.  In-
stead,  a moderate agreement between coni-
ferous/broadleaf map and ground data (data 
not  shown)  was  found:  map  accuracy  was 
73% and K-Cohen was equal  to  60%. The 
comparison  between  map  and  ground  data 
did not improve if only trees larger than 12.5 
cm were considered in the analysis (accuracy 
= 70%, K-Cohen = 58%).

Forest structure map validation
The analysis of the forest structure map de-

rived  from LiDAR  data  revealed  a  preva-
lence of even-age stands (66%) in compari-
son  to  the  multilayered  and  uneven-aged 
forests (20% -  Fig. 2,  Tab. 2). In particular, 
the  even-age  stands,  whether  adult  or  ma-
ture, were overwhelming (33%). However, if 
we  consider  the  structural  categories  sepa-
rately, the most represented in terms of hec-
tares was the pole wood (21%), while the re-
generation  phase  was  less  present  (<1%). 
The lack of this last category is partly due to 
the  difficulties  in  separating it  from scrub-
lands or from two-layered stands because of 
the particular forest management applied in 
the study area (shelterwood system on small 
areas). In  such a system, the seed cut often 
results in two-layered structures with plants 
of the previous cycle in the upper layer and a 
dense  regeneration  in  the  understory.  Al-
though the category “two-layered forest” is 
poorly  represented  (2%),  this  situation  is 

better highlighted if the structural types are 
considered separately instead of aggregating 
them. In fact, there is a significant presence 
of “pole wood 2” and “pole wood 3” types 
which are stands with the presence of plants 
of the old cycle even if the regeneration is 
quite widespread (Tab. 4). In order to get an 
easier  comparison  between  LiDAR  and 
ground data, it was decided to show most of 
the results at category level and fall to type 
only in few cases for a more detailed analy-
sis.

Mean stand  characteristics for each forest 
category,  as derived from ground plots,  are 

reported in Tab. 5. Comparing LiDAR forest 
structure map with ground surveys, a highly 
significant  correlation  between  average 
height  derived  from  LiDAR  and  Lorey’s 
mean height  was detected (HLiDAR = 0.86 x 
HLorey - 0.30; R2 = 0.64; P <0.001; trees with 
DBH > 4.5 cm -  Fig.  3). The underestima-
tion of mean height using LiDAR is proba-
bly due to difficulties in detecting small dia-
meter trees because of the low posting den-
sity.  This  density  was  probably enough  in 
the case of adult or mature forests, but it was 
insufficient for thicket or pole wood where 
stem density could be more than 2000 trees 
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Fig. 2 - Forest structure map.

κ=Pr(a)−Pr(e)
1−Pr (e)

Tab. 3 - Contingency table and calculation of Kappa Cohen’s coefficient for the validation  
of cover use map.

LIDAR map
Field plots

bare soil forest shrubs Samples
bare soil 603 5 23 631
forest 2 917 9 928
shrubs 12 5 118 135
Samples 617 927 150 1694

Sample size 1694
Correctly classified 1638
Accuracy 97%
P chance 47%
K-Cohen 94%
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ha-1. In fact, if only trees with a DBH greater 
than 12.5 cm were considered,  there was a 
strong agreement between LiDAR-estimated 
mean height and Lorey’s mean height (HLiDAR 

=  HLorey -  5.35;  intercepts  not  significantly 
different from zero; R2 = 0.57; P< 0.001).

The  correlation  between  stem density es-
timated from LiDAR data and measured in 
the field was not significant when conside-
ring all categories (data not shown), whereas 
correlation  considering  adult  and  mature 
forest (DBH greater than 12.5 cm) was signi-
ficant (DLiDAR = 0.31 x Dplot + 174; R2 = 0.71; 
P <0.01) although the LiDAR tended to un-
derestimate the density.

The overall accuracy of the LiDAR forest 
structure  map  was  68%  (25  of  32  ground 
points matched with those reported from the 
map). Thus, a moderate agreement was de-
tected  between  the  map  and  ground  data 
(Kappa Cohen coefficient was equal to 58% 
-  Landis  & Koch 1977).  The major discre-
pancies  were  found  especially  for  pole 
woods  and  multilayered  stands,  while  the 
greatest agreement was found for adult  and 
mature forests. Again, this can be attributed 
to the high tree density in the young phases 
(pole  wood  and  thicket)  and  to  the  low 
LiDAR posting density.

If only the 25 points for which there was a 
perfect correspondence between the ground 
and LiDAR are considered (Fig. 4), it is pos-
sible to describe the vertical distribution of 
the trees within  the canopy.  In  the thicket, 
most of the trees were below 10 m and no 
significant  differences  were  detected  bet-
ween LiDAR and ground plot  data for any 
height  class  (P  > 0.05).  In  the pole  wood, 
most of the trees were between 10-20 m and 
a significant difference between LiDAR and 
ground  survey  was  detected  only  for  the 
class  10-20  m class  (P  <0.001).  The  adult 
forest was mainly composed of trees higher 
than 20 m and no differences were detected 
between LiDAR and ground survey for any 
height class (P > 0.05). In the case of mature 
forest,  a significant difference was detected 
for the class 10-20 m and for the class > 25 
m (P  <  0.001).  In  the  multilayered  stands 
there was not a dominant height class and no 
differences  were  detected  between  LiDAR 
and ground survey.

If  the  points  for  which  there  was  not  a 
match  between  map  and  ground  data  are 
considered  (data  not  shown),  the two most 
common  differences  between  LiDAR  and 
ground survey results were respectively: (1) 
multilayer  forest  instead  of  pole  wood;  (2) 
mature forest instead of multilayer forest. In 
the  first  case,  the  classification  error  was 
probably  related  to  the  impossibility  for 
LiDAR  to  detect  correctly  the  dominant 
plants.  In  the second case,  the discrepancy 
may be related to plot size that did not allow 
us to detect trees of the old cycle. Moreover, 
this error may also be related to the fact that 
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Fig. 3 - LiDAR-estimated mean height vs. Lorey’s mean height (all trees with DBH greater 
than 4.5 cm). The continuous line indicates the regression line. The intercept is not signifi-
cantly different from zero (P = 0.90). The dashed lines indicate 95% confidence intervals.

Tab. 4 - Area covered by each forest category and forest type identified from LiDAR data.

Category Type Area 
(ha)

Category 
(% of total area)

Type 
(% of total area)

Scrubland Scrubland 127.9 12 12
Regeneration 
phase

Regeneration 1 0 0 0.2
Regeneration 2 1.8 0.2

Thicket Thicket 1 45.4 4 11
Thicket 2 74.7 7

Pole wood Pole wood 1 60.1 6
21Pole wood 2 152.5 14

Pole wood 3 10.6 1
Adult forest Adult forest 168.9 16 16
Mature forest Mature forest 180.3 17 17
Multilayer forest Two-layered forest 22.8 2 2

Multilayer forest 207.3 20 20
Total - 1052.3 - -

Tab. 5 - Characteristics of the main forest categories derived from ground plots (mean ± 
standard  error).  (Hlorey):  Lorey’s  mean height;  (Hd):  dominant  height  (mean height  of the 
dominant trees in an even-aged stands); (S): top height (mean height of the trees with the  
largest DBH in a stand uneven-aged stands).

Category
Stand density

(n ha-1)
Basal area
(m2 ha-1) HLorey

(m)
Hd or S

(m)
total d > 12.5 cm total d > 12.5 cm

Thicket 2746 ± 1761 386 ± 9 23.0 ± 4.4 12.8 ± 1.8 15.5 ± 3.4 22.3 ± 1.3
Pole wood 2246 ± 286 689 ± 91 36.4 ± 3.7 27.8 ± 4.8 18.4 ± 1.3 24.2 ± 1.2
Adult forest 691 ± 101 656 ± 93 45.3 ± 5.2 45.1 ± 5.2 24.6 ± 0.7 28.5 ± 0.8
Mature forest 537 ± 88 471 ± 69 63.9 ± 5.1 63.4 ± 5.3 30.7 ± 1.1 34.3 ± 0.9
Multilayer 
forest

1014 ± 169 569 ± 86 43.0 ± 5.1 40.4 ± 4.9 25.1 ± 1.1 34.2 ± 1.2
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Fig. 4 - Mean stem distribution in height classes for the different structural categories. The twenty-five points for which there was a perfect 
correspondence between the ground and LiDAR data are reported. The category “multilayer forest” includes also “two-layer stands”. The ho -
rizontal bars indicate the standard error of the mean. Asterisks indicate a significant difference (P<0.001) between LiDAR and ground survey  
for a specific height class.

Fig. 5 - Model calibration 
to estimate total above-
ground standing volume 
(A) and its validation (B). 
For calibration 19 plots 
were randomly selected 
and standing volume was 
plotted against LiDAR- 
estimated mean height. 
For validation, the re-
maining plots were used. 
The dashed lines repre-
sent the 95% confidence 
intervals.
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LiDAR data refers to 2006-2009, while the 
measurements were carried out in 2010-2011 
and then the plants of the old cycle may have 
already been cut in the meantime.

Volume and aboveground carbon stocks
On average, total standing volume derived 

from ground plots was equal to 509 ± 37 m3 

ha-1,  while  standing  volume  for  trees  with 
DBH  greater  than  12.5  cm  was  equal  to 
469 ± 42  m3 ha-1.  Mature  forest  had  the 
highest total  standing volume (805 ± 83 m3 

ha-1) followed by adult and multilayer forest 
(589 ± 63 and 521 ± 75 m3 ha-1,  respective-
ly). Thicket had the lowest standing volume 
(201 ± 27  m3 ha-1)  followed  by pole  wood 

(419 ± 49 m3 ha-1).
A power  function  was  fitted  on  standing 

volume  data  using  LiDAR-estimated  mean 
height  as  independent  variable.  For  model 
calibration, we randomly selected 19 ground 
plots.  Total  standing  volume  was  signifi-
cantly related to the average height derived 
from LiDAR data (V = 16.2 · H1.19; R2=0.80; 
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Fig. 6 - Model calibration to 
estimate total aboveground 
carbon stock (A) and its va-
lidation (B). For calibration 
19 plots were randomly se-
lected and aboveground car-
bon stock was plotted 
against LiDAR-estimated 
mean height. For validation, 
the remaining plots were 
used. The dashed lines re-
present the 95% confidence 
intervals.

Fig. 7 - Overall biodiversity 
indexes and LiDAR forest 
structural categories. Diffe-
rent letter indicate statistical 
significance (P<0.05).

Fig. 8 - Forest layers bio-
diversity indexes and LiDAR 
forest structural categories. 
Different letter indicate sta-
tistical significance (P<0.05).
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P<0.0001 -  Fig.  5a) explaining 80% of the 
volume  variability.  Model  validation  was 
performed using the remaining plots  and it 
was  also  significant  (R2=0.58;  P  <0.001  - 
Fig. 5b). Similar to the volume, LiDAR-es-
timated mean height was a good estimator of 
the  aboveground  carbon  stock  (C  =  3.33 
H1.27; R2=0.76; P<0.0001 -  Fig. 6a and  Fig.
6b).  Overall,  the  carbon stock in  the study 
area  was  128.631  MgC,  corresponding  to 
139 MgC ha-1. Most of the stock was located 
in  adult  and  mature  forests  (27 808  and 
39 116 MgC, respectively).

Vegetation analysis

Biodiversity and life-form plant functional 
type

In total,  144  taxa (including species, sub-
species and variety) belonging to 49 families 
were identified,  with an average of 24  taxa 
for each plot. A significant difference in flo-
ristic diversity indexes (species richness - R; 
Shannon  index  -  H’)  was  found  between 
pole wood (R=15 and H’=2.8; P <0.01 - Fig.
7) and multilayer forest (R=31 and H’=3.4) 
or  thicket  (R=28  and  H’=3.4),  where  both 
the indexes reached their  maximum values. 
On  the  other  hand,  mature  (R=25  and 
H’=3.2) and adult forests (R=22 and H’=3.1) 
did  not  significantly  differ  from the  other 
LiDAR classes (P>0.05 - Fig. 7). Plant bio-
diversity  was  mainly related  to  the  under-
story richness (Fig. 8) and in particular to the 
herb layer contribution which, on the avera-
ge, showed 22 taxa and an H’ of 3.0. Within 
the  herb  layer,  multilayer  forest  had  the 
highest  values for  both the indexes (R=29, 
H’=3.3),  while  pole  wood  showed  signifi-
cant  lower  values  (R=15,  H’=2.6).  An  in-
crease  in  herbaceous  species  number  from 
young (pole wood) to mature stages (mature 
and adult forest) was also found. For shrub 
layer  diversity,  significant  differences  bet-
ween  thicket  and  pole  wood,  mature  and 
adult forest were found (Fig. 8).

As  expected,  all  forest  stands  were  quite 
homogeneous in terms of tree species com-
position.  However,  the highest  tree species 
number  was  found  in  thicket  (R=3.0)  and 
multilayer  forest  (R=2.2)  while  pole  wood, 
adult and mature forest showed the same va-
lues (R=1.8).

In terms of biological spectrum, the hemi-

cryptophytes (H: 55%), geophytes (G: 23 %) 
and phanerophytes (P: 15%) were the most 
represented life forms groups while chamae-
phytes  (Ch:  6%)  and  therophytes  (T:  1%) 
showed the low values.

Comparing  the  structural  categories,  only 
geophytes group displayed significant diffe-
rences  (Tab.  6).  Pole  wood  showed  the 
highest  values,  while  other  structural  cate-
gories (mature and old forest) had interme-
diate  ones:  hemicryptophytes  and  chamae-
phytes showed higher values in thicket/mul-
tilayer  stands  and  pole  wood,  respectively; 
phanerophytes  reached  the maximum value 
in  thicket  stands  while  therophytes  were 
minor.

Characterization of vegetation by 
structure map stand

CCA showed that 13 % of the variability 
was explained by constrained variables (P < 
0.01 -  Tab. 7,  Fig. 9). The remaining varia-
bility was due to the great heterogeneity of 
the site flora, as better described by cluster 
analysis.  Despite  of  the  low percentage  of 
explained variability, it was possible to high-
light  two main trends.  In  particular,  CCA1 
axis identified a positive trend related to soil 
evolution  from  primitive  limestone  (i.e., 
thicket, pole wood), characterized by pioneer 
shrub  species (e.g.,  Salix spp.  and  Corylus  
avellana), to medium evolved limestone soil, 
characterized  by  exigent  species  such  as 
Lonicera caerulea,  Dactylorhiza fuchsii and 
Listera cordata. CCA2 axis described a suc-
cessional  process of forest  evolution which 
discriminates  young  and  open  forests  (i.e., 
thicket  and  multilayer  forest)  and  mature 
forests  (i.e.,  pole  wood,  mature  and  adult 
stands). This trend was explained by a pro-
gressive  change  from  pioneer  and  open 
forest species to high environmental stability 
and  demanding mix forest  species,  such as 
Cardamine pentaphyllos, Actaea spicata and 
Stellaria nemorum.

Species  scored  permitted  the  discrimina-

tion of a set of species strictly related with 
each LiDAR structure type:
• thicket was characterized by shrub species 

(e.g.,  Salix spp,  Corylus avellana,  Sorbus  
chamaemespilus);

• multilayer forest was mainly characterized 
by  Orthilia  secunda,  Festuca  altissima, 
Abies alba (tree level);

• pole  wood  was  characterized  by  Sorbus  
aria,  Veratrum lobelianum and  Lonicera  
nigra;

• mature  forest  was  characterized  by  Myo-
sotis  sylvatica,  Galeopsisi  speciosa and 
Carex sylvatica;

• adult  forest  was characterized by  Neottia  
nidus-avis,  Ranunculus  auricomus (aggr.) 
and Anemone trifolia.
In terms of community characterization, all 

the stands were ascribable to the association 
Anemono-Fagetum (Marincek  et  al.  1989), 
which includes all the Illyrian mixed forests 
dominated  by  Fagus  sylvatica and  Picea 
abies,  developed on limestone of mountain 
belt  of  the  Querco-Fagetea class  (Mucina 
1997). The connection with the association 
Anemono-Fagetum was  guaranteed  by  the 
constant  presence  of  the  Vaccinio-Piceetea 
class  elements  such as  Picea abies,  Vacci-
nium myrtillus, Vaccinium vitis-idaea subsp. 
vitis-idaea, and Carex alba. The connection 
with  the  higher  syntaxonomical  levels  was 
guaranteed  by a  large nucleus  of  characte-
ristics species, such as Luzula sylvatica sub-
sp.  sieberi and  Polystichum lonchitis of the 
suballiance  (Saxifrago-Fagenion),  or  Ane-
mone trifolia and Fagus sylvatica for alliace 
(Aremonio-Fagion)  and  order  (Fagetalia  
sylvaticae) characteristics.

The  cluster  analysis  identified  four  main 
groups as variations of the trait plant com-
munity (Fig.  10).  The identified types con-
firmed the general homogeneity in the ana-
lyzed stands and had not any syntaxonomical 
significance.  However,  the  separation  of 
these vegetation types represents a contribu-
tion for the interpretation of the relationship 
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Tab. 6 - Frequencies of life forms in each LiDAR structure category. (Ch): Chamaephytes; (G): Geophytes; (H): Hemicryptophytes; (P):  
Phanerophytes; (NP): Nano- Phanerophytes; (T): Therophytes. Mean values and standard deviation (± SD) are showed. Different letters in-
dicate a significant difference (P<0.05) .

Category Ch G H P (inc. NP) T
Thicket 0.08 ± 0.02 0.28 ± 0.10 ab 0.38 ± 0.09 0.26 ± 0.05 -
Pole wood 0.04 ± 0.05 0.41 ± 0.11 a 0.33 ± 0.09 0.22 ± 0.07 -
Adult forest 0.08 ± 0.06 0.35 ± 0.05 a 0.36 ± 0.11 0.21 ± 0.06 0.00 ± 0.01
Mature forest 0.07 ± 0.06 0.30 ± 0.09 ab 0.44 ± 0.10 0.17 ± 0.04 0.01 ± 0.02
Multilayred forest 0.10 ± 0.06 0.23 ± 0.06 b 0.47 ± 0.13 0.19 ± 0.07 0.01 ± 0.01

Tab. 7 - CCA eigenvalues. Total inertia = 3.88, Constrained = 0.50 (13%, P>0.01).

Parameters CCA1 CCA2 CCA3 CCA4
Eigenvalues for constrained axes 0.17 0.15 0.12 0.07
Proportion explained 0.34 0.29 0.24 0.13
Cumulative proportion 0.34 0.63 0.87 1.00
Species-environment correlations 0.89 0.82 0.84 0.81
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between structure,  dynamics and ecological 
value of the forest (French et al. 2008). Spe-
cifically,  the cluster tree was split  into two 
main groups: (1) mixed forests on primitive 
or  medium evolved  neutral  substrates,  cor-
responding  mainly to  pole  wood  and  mul-
tilayer forest,  which have low species rich-

ness; (2) mixed forests evolved or primitives, 
rich in  species,  mainly owing to mature or 
old forest.  Within the first group the follo-
wing  sub-groups  were  found:  (a)  pioneer 
stages with few association and sub alliance 
characteristic species, depleted floristic rich-
ness  and  ferns  richness,  and  (b)  acids 

evolved soil, with high frequency of blueber-
ries  (Vaccinium  myrtillus,  Vaccinium  vit-
is-idaea subsp.  vitis-idaea)  and few of sub 
alliance  and  order  characteristic  species. 
Within the second group the following two 
clusters  were  identified:  (c)  heterogeneous 
stands  with  high  floristic  richness,  many 
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Fig. 9 - CCA biplot. The 
numbers indicate samples 
sites, and the solid circles in-
dicate plant species.

Fig. 10 - Cluster dendrogram of vegetation survey (similarity ratio, ward method). (1), (2) = first cut; a, b, c, d = second cut. The numbers in -
dicate sample sites.
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characteristics  species  and  participation  of 
Larix  decidua,  and  (d)  mature  stands  with 
the highest number of characteristics species. 
Even  though  the  structural  classes  did  not 
perfectly match with each of the groups ob-
tained from multivariate analysis (Tab. 8), a 
high  correspondence  between  mature  and 
adult  forest  stand  and  vegetation  group  2 
was pointed out.

Discussion
The most common methods to detect tree 

vertexes  using  LiDAR  data  are  based  on 
Canopy Height Models (CHM) created from 
the difference between a DTM and a Digital 
Surface Model  (DSM - where cell value is 
the height of the highest laser point). In such 
cases, a stem is detected for every local ma-
ximum of the central  cell  of a  n-sized mo-
ving window (Persson et al. 2002), where n 
can  also  vary as  a  function  of  tree  height 
(Popescu et al. 2002). The combined use of 
LiDAR and multi-spectral  image data  (Po-
pescu & Wynne 2004), as well as the local 
maximum of the correlation value between a 
moving-window  template  and  the  CHM 
above  a  threshold,  has  also  been  already 
tested  (Pirotti  2010).  However,  all  these 
methods  are  heavily dependent  on  the  cell 
size of the raster models and on the moving 
window size,  which  tends  to  be a limiting 
factor when applied to complex stand condi-
tions (Rowell et al. 2006). On the contrary, 
the method used in the present paper directly 
relies on the raw data (points) and has shown 
a good accuracy in  extracting tree vertexes 
and detecting forest  area (land cover map). 
In  term  of  coniferous/broadleaf  map,  the 
main difficulty in  distinguishing coniferous 
from mixed stands was probably due to the 
higher  tree  density,  which  decreases  the 
number of points per crown available for the 
curve approximation, and/or the low LiDAR 
posting density (2.8  points  m-2),  which  did 
not  allow us to proper characterize the un-
derstory  vegetation  (Barilotti  et  al.  2009). 
This low post density is typical of not dedi-
cated flight (Clementel et al. 2012) and had 
also  an  influence  in  the  accuracy  of  the 
structure map. A full-waveform (FW) survey 
would have probably been very supportive: 

post-processing a full-waveform could have 
doubled the number of returns (Reitberger et 
al.  2009),  thus  adding  information  for  the 
cluster analysis and successive classification. 
It  is  also documented in  literature that low 
posting density will lead to an underestima-
tion of the tree height metrics, because it is 
likely that most of the tree vertexes will not 
be hit by a laser pulse (Nilsson 1996, Naes-
set 1997, Popescu et al. 2002).

Nilsson (1996), in a similar study in Swe-
den  (4.0  ha  area  and  26  plots),  explained 
78% of the variability in forest stem volume 
using variables extracted from LIDAR. Pre-
vious studies  in  the Alps demonstrated the 
existing of correlation between stand volume 
and mean height derived from LiDAR data 
(Tonolli et al. 2011a, 2011b). In the present 
study,  according  to  model  validation, 
LiDAR-estimated mean height describes up 
to  58% of  volume  variability  and  62% of 
carbon stocks variability in agreement  with 
Naesset (2004). These results can be deemed 
as  positive  considering  the  different  forest 
types, structures and categories considered in 
this study. However, they also underline the 
importance for an integration of ground and 
remotely sensed data to avoid bias in volume 
estimation,  as model parameters are always 
site-specific.

In  terms of plant  species composition,  all 
the stands were ascribable to the association 
Anemono-Fagetum (Marincek  et  al.  1989). 
The overall biological spectrum agreed with 
other  literature  spectra  of  local  mixed  de-
ciduous forest (Poldini & Nardini 1993, Del 
Favero et  al.  1998) and the comparison  of 
each biological spectrum with structural ca-
tegories (Tab. 6) highlighted an overall ho-
mogeneity  across  all  structural  categories. 
However, while hemicryptophytes, phanero-
phytes  and  chamaephytes  did  not  discrimi-
nate LiDAR structural categories, the distri-
bution of geophytes seem to be a good guide 
group (Hermy et al. 1999). In particular, as 
shown in  other  forest  types  (Decocq  et  al. 
2004,  Gondard  et  al.  2006,  Aubin  et  al. 
2009), the abundance of geophytes group is 
strictly related to the shading degree of the 
forest stand (i.e., tree density, canopy cover). 
In our studied stands, this occurs especially 

in  pole  wood  and  adult  forest,  where  the 
coverage  of  the  canopy  reaches  its  maxi-
mum.

The  high  richness  of  thicket  and  mul-
tilayered stands was due to the presence of a 
large number of shrub and herb species com-
ing from open environments  (i.e.,  pastures, 
alpine prairie and scree pioneer vegetation), 
as confirmed by the vegetation analysis. This 
trend may be explained by two different phe-
nomena: (i) involvements of pioneer species 
in  the  early phases  after  forest  disturbance 
(i.e., regeneration after harvest in thicket), in 
agreement with the intermediate-disturbance 
hypothesis  (Grime  1973,  Connell  1978, 
Battles et al. 2001); (ii) discontinuous struc-
ture  of  tree  cover  in  multilayered  stands, 
which  allows  the  occurrence  of  grassland 
and  light-demanding  species  (Vetaas  1997, 
Gondard et  al.  2006,  Bongers  et  al.  2009). 
On the other  hand,  the higher  biodiversity, 
especially in the understory flora, was due to 
an increase in the complexity for this paracli-
max communities,  where  rare  species  were 
more present (Lust et al. 1998, Battles et al. 
2001).  Vegetation  type  identification  ob-
tained through LiDAR structures, CCA and 
vegetation  analysis  (cluster)  allowed  us  to 
detect a set of species that characterized each 
forest  stand.  These  pools  of  characteristic 
species also explained the existence of dif-
ferent  ecological  features  amongst  LiDAR 
structures (e.g., soil evolution, development-
al phases of phytocoenoses).

The integration of floristic and phytosocio-
logical  analyses  allowed  us  to  highlight  a 
different  contribution  of  LiDAR  structural 
categories on vegetation characterization. In 
particular,  the  classical  phytosociological 
analysis, exclusively focused on the vegeta-
tion  resemblance,  partially  explained  the 
variability observed among the LiDAR cate-
gories.  Indeed,  this  emphasized the role  of 
other  ecological  factors  in  influencing  the 
species composition of each forest structural 
category  that  were  not  considered  in  this 
analysis,  such as flora natural turnover  and 
forest management.

Conclusions
The  forest  structure  map  derived  from 

LiDAR data have proved to be a reliable tool 
for  the  characterization  of  forest  stands  in 
areas  with  an  high  natural  interest  if  ade-
quately  supplemented  by  field  analysis.  In 
particular, the approach used in the present 
study  was  able  to  describe  the  study  area 
from different points of view, all important 
for land management and planning.  In fact, 
we were able to distinguish forest from non-
forest  areas,  coniferous  from  broadleaf  or 
mixed  stands  and  to  deeply  characterize 
forest structure. The discrepancies we found 
between  LiDAR  forest  structure  map  and 
ground points was probably due to the low 
LiDAR  posting  density  (2.8  points  m-2), 
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Tab. 8 - Cluster groups sharing into LiDAR structural categories. (1), (2): first cut of cluster  
dendrogram; (a), (b), (c), (d): second cut of cluster dendrogram.

Groups
(1) (2)

total
a b total 1 c d total 2

Regeneration phase - - - - - - -
Thicket 1 1 2 3 - 3 5
Pole wood 4 - 4 3 2 5 9
Adult forest 1 - 1 4 2 6 7
Mature forest - 1 1 3 3 6 7
Two-layred forest 1 1 2 - - - 2
Multilayred forest - 2 2 4 1 5 7
Overall 7 5 12 17 8 25 37
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which  did  not  allow to proper  characterize 
the understory vegetation, and relative small 
ground-plot size (531 m2) in comparison to 
the minimum LiDAR derived polygon area. 
LiDAR-estimated  mean height  was  able  to 
describe volume variability in the study area 
even though the integration of ground data 
and  remotely  sensed  data  is  important  to 
avoid bias in the estimation. In terms of ve-
getation  characterization,  the  present  study 
allowed  to  highlight  the  power  of  LiDAR 
structural maps to asses biodiversity and to 
characterize  vegetation  ecological  stability. 
In  particular,  LiDAR derived mean heights 
allowed to characterized different structural 
phases which,  in our  case, were mainly re-
lated  to  different  successional  stages.  This 
strong  link  between  LiDAR structure  map 
and biodiversity is mainly due to the fact that 
ecological conditions (i.e., light) are mainly 
influenced  by vertical  forest  structure  (i.e., 
discontinuous structure of tree cover in mul-
tilayered stands) and/or disturbance (i.e., re-
generation after harvest in thicket). The ap-
proach proposed  in  this  paper  permitted to 
discriminate high natural values forest struc-
tures,  where a careful  management is more 
needed from a conservationist point of view. 
Moreover,  some driver species were identi-
fied and related to each structural class.

In conclusion, this study highlights the po-
tential  of  LiDAR-based  approaches  for  the 
accurate  classification  and  characterization 
of forest structures and succession phases in 
mixed  coniferous  forests.  However,  further 
research  should  be  conducted  across  diffe-
rent forests types, characterized by different 
complexity and ecological diversity.
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