*
 

iForest - Biogeosciences and Forestry

*

Modelling the moisture status of habitats by using NDVI on the example of the Cerrado and Atlantic Forest biomes borderland (Brazil)

Adam Mlynarczyk (1-2)   , Monika Konatowska (3), Wojciech Kowalewski (4), Slawomir Królewicz (1), Kelly Cristina Tonello (2), Rogerio Hartung Toppa (2), Marcos Roberto Martines (2), Jan Piekarczyk (1), Pawel Rutkowski (3)

iForest - Biogeosciences and Forestry, Volume 18, Issue 6, Pages 375-381 (2025)
doi: https://doi.org/10.3832/ifor4413-018
Published: Dec 16, 2025 - Copyright © 2025 SISEF

Research Articles


The Brazilian Cerrado and the Atlantic Forest are important global biodiversity hotspots that are highly diverse in geological structure, soil, and climatic conditions, all of which directly affect vegetation diversity. The conservation of these biomes depends on recognizing variations in their humidity levels. Given the correlation between water access and plant health, as illustrated by NDVI, we assessed the feasibility of building an NDVI-based model to detect variations in habitat moisture. Using various statistical algorithms, the correctness of the NDVI-based habitat moisture assessment model was confirmed. In addition, it was determined that UMAP was the most favourable of the algorithms employed. Our method provides a practical, efficient tool for assessing habitat moisture that can benefit fields such as ecology, conservation biology, and land management.

  Keywords


Ipanema National Forest, NDVI, UMAP Algorithm, Habitat Moisture Index

Authors’ address

(1)
Adam Mlynarczyk 0000-0002-3607-0890
Slawomir Królewicz 0000-0003-1117-7832
Jan Piekarczyk 0000-0002-2405-6741
Environmental Remote Sensing and Soil Science Research Unit, Faculty of Geographic and Geological Sciences, Adam Mickiewicz University in Poznan, Wieniawskiego 1, 61-712 Poznan (Poland)
(3)
Monika Konatowska 0000-0001-6552-7055
Pawel Rutkowski 0000-0003-3614-8923
Department of Botany and Forest Habitats, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71F, 60-625 Poznan (Poland)
(4)
Wojciech Kowalewski
Department of Artificial Intelligence, Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznan, Wieniawskiego 1, 61-712 Poznan (Poland)

Corresponding author

 
Adam Mlynarczyk
adml@amu.edu.pl

Citation

Mlynarczyk A, Konatowska M, Kowalewski W, Królewicz S, Tonello KC, Toppa RH, Martines MR, Piekarczyk J, Rutkowski P (2025). Modelling the moisture status of habitats by using NDVI on the example of the Cerrado and Atlantic Forest biomes borderland (Brazil). iForest 18: 375-381. - doi: 10.3832/ifor4413-018

Academic Editor

Davide Travaglini

Paper history

Received: Jul 04, 2023
Accepted: Jun 06, 2025

First online: Dec 16, 2025
Publication Date: Dec 31, 2025
Publication Time: 6.43 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 36
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 8
Abstract Page Views: 15
PDF Downloads: 11
Citation/Reference Downloads: 0
XML Downloads: 2

Web Metrics
Days since publication: 1
Overall contacts: 36
Avg. contacts per week: 252.00

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Mar 2025)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Bai Y, Ochuodho TO, Jian Y (2019)
Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators 102: 51-64.
CrossRef | Gscholar
(2)
Béllard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp F (2014)
Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography 23: 1376-1386.
CrossRef | Gscholar
(3)
Cavarzere V, Silveira LF, Tonetti VR, Develey P, Ubaid FK, Regalado LB, Figueiredo LFA (2017)
Museum collections indicate bird defaunation in a biodiversity hotspot. Biota Neotropica 17 (4): 1-19.
CrossRef | Gscholar
(4)
Chen N, Wang A, An J, Zhang Y, Ji R, Jia Q, Zhao Z, Guan D (2020)
Modeling canopy carbon and water fluxes using a multilayered model over a temperate meadow in Inner Mongolia. International Journal of Plant Production 14: 141-154.
CrossRef | Gscholar
(5)
Chen T, De Jeu RAM, LiunYY, Van Der Werf GR, Dolman AJ (2014)
Using satellite based soil moisture to quantify the water driven variability in NDVI: a case study over mainland Australia. Remote Sensing of Environment 140: 330-338.
CrossRef | Gscholar
(6)
Da Silva RG, Santos AR, Pelúzio JBE, Fiedler NC, Juvanhol RS, Souza KB, Branco ERF (2021)
Vegetation trends in a protected area of the Brazilian Atlantic forest. Ecological Engineering 162 (1): 106180.
CrossRef | Gscholar
(7)
European Commission (2013)
Interpretation manual of European Union Habitats, vers. EUR28. DG Environment, European Commission, Brussels, Belgium, pp. 144.
Gscholar
(8)
Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf DE (2007)
The shuttle radar topography mission. Reviews of Geophysics 45 (2): 33.
CrossRef | Gscholar
(9)
Ferreira LG, Huete AR (2004)
Assessing the seasonal dynamics of the Brazilian Cerrado vegetation through the use of spectral vegetation indices. International Journal of Remote Sensing 25 (10): 1837-1860.
CrossRef | Gscholar
(10)
Freitas CH, Elli EF, Sentelhas PC, Carneiro RL, Alvares CA (2020)
Adaptation, calibration and evaluation of a simple agrometeorological model for wood eucalyptus productivity estimation. European Journal of Forest Research 139 (5): 759-776.
CrossRef | Gscholar
(11)
Freitas SR, Mello MCS, Cruz CBM (2005)
Relationships between forest structure and vegetation indices in Atlantic Rainforest. Forest Ecology and Management 218 (1-3): 353-362.
CrossRef | Gscholar
(12)
Géron A (2019)
Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc., Sebastopol, Ukraine, pp. 848.
Gscholar
(13)
Giuseppi A, Germanà R, Fiorini F, Delli Priscoli F, Pietrabissa A (2021)
UAV patrolling for wildfire monitoring by a dynamic Voronoi tessellation on satellite data. Drones 5 (130): 1-19.
CrossRef | Gscholar
(14)
IUSS/WRB (2015)
World reference base for soil resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports no. 106, FAO, Rome, Italy, pp. 192.
Online | Gscholar
(15)
Kisselle KW, Zepp RG, Burke RA, Pinto AS, Bustamante MMC, Opsahl S, Varella RF, Viana LT (2002)
Seasonal soil fluxes of carbon monoxide in burned and unburned Brazilian savannas. Journal of Geophysical Research: Atmospheres 107 (D20): 8051.
CrossRef | Gscholar
(16)
Klink CA, Machado RB (2005)
Conservation of the Brazilian Cerrado. Conservation Biology 19 (3): 707-713.
CrossRef | Gscholar
(17)
Lin M, Hou L, Qi Z, Wan L (2022)
Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us sandy land during 2000-2019. Ecological Indicators 142: 109164.
CrossRef | Gscholar
(18)
Londe V, Ferreira FS, Martins FR (2022)
Structure of a semideciduous seasonal forest in the national forest of Ipanema, Brazil: contributing to the floristic knowledge of a poorly studied protected area. Research in Ecology 4 (3): 10-19.
CrossRef | Gscholar
(19)
Marques MCM, Trindade W, Bohn A, Grelle CEV (2021)
The Atlantic Forest: an introduction to the megadiverse forest of South America. In: “The Atlantic Forest” (Marques MCM, Grelle CEV eds). Springer, Cham, Switzerland, pp. 3-23.
CrossRef | Gscholar
(20)
Mazón MM, Klanderud K, Finegan B, Veintimilla D, Bermeo D, Murrieta E, Delgado D, Sheila D (2020)
How forest structure varies with elevation in old growth and secondary forest in Costa Rica. Forest Ecology and Management 469: 118191.
CrossRef | Gscholar
(21)
Mróz W (2010)
Monitoring siedlisk przyrodniczych. Przewodnik metodyczny [Monitoring of natural habitats. Methodological guide]. Part I. GIO Ed., Warszawa, Poland, pp. 321. [in Polish].
Online | Gscholar
(22)
Pereira O, Ferreira L, Pinto F, Baumgarten L (2018)
Assessing pasture degradation in the Brazilian Cerrado based on the analysis of MODIS NDVI time-series. Remote Sensing 10 (11): 1761.
CrossRef | Gscholar
(23)
Piedallu C, Chéret V, Denux JP, Perez V, Azcona JS, Seynave I, Gégout JC (2019)
Soil and climate differently impact NDVI patterns according to the season and the stand type. Science of The Total Environment 651: 2874-2885.
CrossRef | Gscholar
(24)
Pravalie R, Sîrodoev I, Nita IA, Patriche C, Dumitrascu M, Rosca B, Tiscovschi A, Bandoc G, Savulescu I, Manoiu V, Birsan MV (2022)
NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987-2018. Ecological Indicators 136: 108629.
CrossRef | Gscholar
(25)
Reichert JM, Prevedello J, Gubiani PI, Vogelmann ES, Reinert DJ, Consensa COB, Soares JCW, Srinivasan R (2021)
Eucalyptus tree stockings effect on water balance and use efficiency in subtropical sandy soil. Forest Ecology and Management 497: 119473.
CrossRef | Gscholar
(26)
Rossi M (2017)
Mapa pedológico do Estado de São Paulo: revisado e ampliado [Soil map of the State of São Paulo: revised and expanded]. São Paulo, Instituto Florestal, vol. 1, pp. 118. [in Portuguese]
Gscholar
(27)
Saint-Hilaire A (1976)
Viagem à Província de São Paulo [Voyage to the province of São Paulo]. EDUSP, São Paulo, Brazil, pp. 312. [in Portuguese]
Gscholar
(28)
Sposito G, Chesworth W, Evans L, Chesworth W, Spaargaren O (2008)
Gleysols. In: “Encyclopedia of Soil Science” (Chesworth W ed). Encyclopedia of Earth Sciences Series, Springer, Dordrecht, Netherlands, pp. 299-300.
CrossRef | Gscholar
(29)
Strassburg BBN, Latawiec A, Balmford A (2016)
Brazil: urgent action on Cerrado extinctions. Nature 540 (7632): 199.
CrossRef | Gscholar
(30)
Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, Loyola R, Latawiec AE, Oliveira-Filho FJB, Scaramuzza CAM, Scarano FR, Soares-Filho B, Balmford A (2017)
Moment of truth for the Cerrado hotspot. Nature Ecology and Evolution 1 (4): 99.
CrossRef | Gscholar
(31)
Yadav SK, Borana SL (2019)
Modis derived NDVI based time series analysis of vegetation in the Jodhpur area. In: Proceedings of the “ISPRS-GEOGLAM-ISRS Joint Int. Workshop on “Earth Observations for Agricultural Monitoring”. New Delhi (India) 18-20 Feb 2019. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-3/W6, pp. 535-539.
CrossRef | Gscholar
(32)
Weaver D, Strong K, Walker KA, Sioris C, Schneider M, McElroy CT, Vömel H, Sommer M, Weigel K, Rozanov A, Burrows JP, Read WG, Fishbein E, Stiller G (2019)
Comparison of ground-based and satellite measurements of water vapour vertical profiles over Ellesmere Island, Nunavut. Atmospheric Measurement Techniques 12: 4039-4063.
CrossRef | Gscholar
(33)
Willmersdorf O (2017)
Plano de manejo da Floresta Nacional de Ipanema [Management plan for the Ipanema National Forest]. Instituto Chico Mendes - ICMBio, Revisão, Iperó, vol. 1, pp. 306. [in Portuguese]
Online | Gscholar
(34)
Zhang X, Zhang B, Yao Y, Wang J, Yu F, Liu J, Li J (2022)
Dynamics and climatic drivers of evergreen vegetation in the Qinling-Daba Mountains of China. Ecological Indicators 136: 108625.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info