iForest - Biogeosciences and Forestry


Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy

Giuseppe Mancino, Angelo Nolè   , Francesco Ripullone, Agostino Ferrara

iForest - Biogeosciences and Forestry, Volume 7, Issue 2, Pages 75-84 (2014)
doi: https://doi.org/10.3832/ifor0909-007
Published: Dec 18, 2013 - Copyright © 2014 SISEF

Research Articles

The NDVI (Normalized Difference Vegetation Index) differencing method using Landsat Thematic Mapping images was implemented to assess natural expansion of forests in the Basilicata region (southern Italy) for the period 1984 through 2010. Two Landsat TM (Thematic Mapper) images (1984-2010) were georeferenced and geographically corrected using the first order polynomial transformation, and the nearest neighbour method for resampling. The images were radiometrically corrected using the dark object subtraction model. The pre-processed Landsat TM images were used to calculate NDVI, and subsequently for NDVI differencing. Finally, a threshold for vegetation change detection was identified by visual analysis of Landsat TM RGB band composition, and ratios and visual comparison of digital aerial orthophotos. The methodology was validated using ground-truth observations over the study area. The applied method showed 91.8% accuracy in detection of natural forest expansion. During the examined period, total regional forest cover increased by 19.7% (70154 ha), consistent with National Forest Inventory data (1984-2005). The observed forest expansion was also examined in relationship with landscape physical characteristics and distribution of vegetation types in the Basilicata region. Surprisingly, considerable forest expansion also occurred on degraded soils in drought-prone Mediterranean areas.


NDVI Differencing, Landsat TM, Detection Change, Natural Forest Expansion

Authors’ address

Giuseppe Mancino
Angelo Nolè
Francesco Ripullone
Agostino Ferrara
School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, v. N. Sauro 10, Potenza (Italy)

Corresponding author

Angelo Nolè


Mancino G, Nolè A, Ripullone F, Ferrara A (2014). Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. iForest 7: 75-84. - doi: 10.3832/ifor0909-007

Academic Editor

Raffaele Lafortezza

Paper history

Received: Nov 20, 2012
Accepted: Sep 29, 2013

First online: Dec 18, 2013
Publication Date: Apr 02, 2014
Publication Time: 2.67 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 49073
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 35648
Abstract Page Views: 1491
PDF Downloads: 10497
Citation/Reference Downloads: 152
XML Downloads: 1285

Web Metrics
Days since publication: 2960
Overall contacts: 49073
Avg. contacts per week: 116.05

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Jul 2021)

Total number of cites (since 2014): 70
Average cites per year: 7.78


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Almutairi A, Warner AT (2010)
Change detection accuracy and image properties: a study using simulated data. Remote Sensing 2: 1508-1529.
CrossRef | Gscholar
Anderson L (2008)
Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA. International Journal of Remote Sensing 29 (14): 3987-4011.
CrossRef | Gscholar
Bagnouls F, Gaussen H (1953)
Saison séche et indice xérothermique. Document pour les Cartes des Productions végétales, Toulouse, France, Tome 3, vol. 1, pp. 47.
Balanda KP, MacGillivray HL (1988)
Kurtosis: a critical review. The American Statistician 42 (2): 111-119.
Banner AV, Lynham T (1981)
Multitemporal analysis of LANDSAT data for forest cutover mapping: a trial of two procedures. In: Proceedings of the “7 Canadian Symposium on Remote Sensing”. Canadian Remote Sensing Society, Winnipeg, MB, Canada, pp. 233-240.
Basso F, Bellotti A, Faretta S, Ferrara A, Mancino G, Pisante M, Quaranta G, Taberner M (1999)
Application of the proposed methodology for defining ESAs: the Agri basin. In: “The Medalus project Mediterranean desertification and land use. Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification” (Kosmas C, Kirkby, Geeson N eds). Report no. 18882, European Union, Brussels, Belgium, pp. 74-79. [ISBN 92-828-6349-2]
Biondi E, Casavecchia S, Pesaresi S (2006)
Spontaneous renaturalization processes of the vegetation in the abandoned fields (Central Italy). Annali di Botanica 6: 65-93.
Boone RB, Lackett JM, Galvin KA, Dennis S, Ojima DS, Compton J, Tucker III CJ (2007)
Links and broken chains: evidence of human-caused changes in land cover in remotely sensed images. Environmental Science and Policy 10: 135-149.
CrossRef | Gscholar
Braimoh AK, Vlek PL (2004)
Land-cover change analyses in the Volta basin of Ghana. Earth Interactions 8 (21): 1-17.
CrossRef | Gscholar
Bruzzone L, Fernandez Prieto D (2000a)
Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote Sensing 38: 1171-1182.
CrossRef | Gscholar
Bruzzone L, Fernandez Prieto D (2000b)
A minimum-cost thresholding technique for unsupervised change detection. International Journal of Remote Sensing 21: 3539-3544.
CrossRef | Gscholar
Callahan K (2001)
Validation of a radiometric normalization procedure for satellite derived imagery within a change detection framework. M.Sc., Utah State University, Salt Lake City, USA.
Online | Gscholar
Cantore V, Iovino F, Pontecorvo G (1987)
Aspetti climatici e zone fito-climatiche della Basilicata. C.N.R. IEIF, Cosenza, Grafiche Badiali, Arezzo, Italy, pp. 50. [in Italian]
Chavez PS (1996)
Image-based atmospheric corrections’revisited and revised. Photogrammetric Engineering and Remote Sensing 62 (9): 1025-1036.
Online | Gscholar
Coban HO, Koc A, Eker M (2010)
Investigation on changes in complex vegetation coverage using multi-temporal landsat data of Western Black sea region - a case study. Journal of Environmental Biology 31: 169-178.
Online | Gscholar
Cohen J (1960)
A coefficient of agreement for nominal scales. Educational and Psychological Measurement 1: 37-46.
CrossRef | Gscholar
Cohen WB, Fiorella M (1998)
Comparison of methods for detecting conifer forest change with Thematic Mapper imagery. In: “Remote Sensing Change Detection: Environmental Monitoring Methods and Applications” (Lunetta RS, Elvidge CD eds). Ann Arbor Press, Chelsea, MI, USA, pp. 318.
Congalton RG (1991)
A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37: 35-46.
CrossRef | Gscholar
Coppin PR, Bauer ME (1996)
Digital change detection in forest ecosystems with remotely sensed imagery. Remote Sensing Reviews 13: 207-234.
CrossRef | Gscholar
Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E (2004)
Digital change detection methods in ecosystem monitoring; a review. International Journal of Remote Sensing 25: 1565-1596.
CrossRef | Gscholar
Corona P, Barbati A, Tomao A, Bertani R, Valentini R, Marchetti M, Fattorini L, Perugini L (2012)
Land use inventory as framework for environmental accounting: an application in Italy. iForest 5: 204-209.
CrossRef | Gscholar
Costantini G, Bellotti A, Mancino G, Borghetti M, Ferrara A (2006)
Carta forestale della Basilicata - Atlante. INEA - Regione Basilicata, Potenza, pp. 99. [ISBN 88-8145-062-3] [in Italian]
De Beurs KM, Henebry GM (2005)
A statistical framework for the analysis of long image time series. International Journal of Remote Sensing 26 (8): 1551-1573.
CrossRef | Gscholar
Del Barba O, Pecci A, Rossi O, Rossi P, Zaccarelli N, Zurlini G (2006)
Modelli statistici nell’analisi dell’evoluzione dell’NDVI (Normalized Difference Vegetation Index) in Val Pola (Valtellina) prima e dopo la frana del Monte Coppetto (28 luglio 1987). In: Prooceedings of the “16 Meeting of the Italian Society of Ecology”. Viterbo/Civitavecchia (Italy) 19-22 Sep 2006, pp. 1-6. [in Italian]
Online | Gscholar
Dehnavi AG, Sarikhani R, Nagaraju D (2010)
Image processing and analysis of mapping alteration zones in environmental research, east of Kurdistan, Iran. World Applied Sciences Journal 11 (3): 278-283.
Online | Gscholar
Desclée B, Bogaert P, Defourny P (2006)
Forest change detection by statistical object-based method. Remote Sensing of Environment 102: 1-11.
CrossRef | Gscholar
Elvidge CD, Yuan D, Weerackoon RD, Lunetta RS (1995)
Relative radiometric normalization of Landsat Multispectral Scanner (MSS) data using and automatic scattergram-controlled regression. Photogrammetric Engineering and Remote Sensing 61 (10): 1255-1260.
Ferrara A, Bellotti A, Faretta S, Mancino G, Baffari P, D’ottavio A, Trivigno V (2005)
Map of desertification-prone areas in the Basilicata region, Italy. Forest@ 2 (1): 66-73. [in Italian with english abstract]
CrossRef | Gscholar
Ferrara A, Mancino G, Urbano V, Coletta V, Baffari P (2010)
Review on the use and the application of the ESA (Environmental Sensitive Areas) methodology and updating of the map of environmental sensitivity areas to desertification for the Basilicata Region, Italy. Forest@ 7 (1): 133-147. [in Italian with English abstract]
CrossRef | Gscholar
Ferrarini A, Zaccarelli N, Rossi P, Cristiano D, Orlandini L (2000)
Change detection degli habitat corine nel bacino del torrente Baganza (Parma) attraverso l’indice NDVI. Rivista Italiana di Telerilevamento 19: 29-35. [in Italian]
Fiorenzo F, Mancino G, Borghetti M, Ferrara A (2008)
Spatial interpolation methods for monthly rainfalls and temperatures in Basilicata. Forest@ 5 (1): 337-350. [in Italian with English abstract]
CrossRef | Gscholar
Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AHW, Gopal S, Schneider A, Cooper A (2002)
Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment 83: 287-302.
CrossRef | Gscholar
Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010)
MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environmen 114: 168-182.
CrossRef | Gscholar
Gibson PJ, Power CH (2000)
Introductory remote sensing: digital image processing and applications. Taylor and Francis Inc., New York, USA, pp. 58-63.
Giri CP (2012)
Remote sensing of land use and land cover: principles and applications remote sensing applications series. USGS/Earth EROS Center, CRC Press, Boca Raton, FL, USA, pp. 477.
Groeneveld RA, Meeden G (1984)
Measuring Skewness and Kurtosis. The Statistician 33 (4): 391-399.
CrossRef | Gscholar
Hayes DJ, Sader SA (2001)
Comparison of change-detection techniques for monitoring tropical forest clearing and vegetation regrowth in a time series. Photogrammetric Engineering and Remote Sensing 67: 1067-1075.
Online | Gscholar
Hodgson ME, Li X, Cheng Y (2004)
A parameterization model for transportation feature extraction. Photogrammetric Engineering and Remote Sensing 70 (12): 1399-1404.
Online | Gscholar
Horning N, Robinson AJ, Sterling EJ, Turner W, Spector S (2010)
Remote sensing for ecology and conservation. A handbook of techniques. Oxford University Press, Oxford, UK, pp. 448. [ISBN 13:9780199219957]
Hu Y, De Jong SM, Sluiter R (2004)
A modeling-based threshold approach to derive change/no change information over vegetation area. In: Proceedings of the “12 International Conference on Geoinformatics - Geospatial Information Research: Bridging the Pacific and Atlantic”. University of Gävle (Sweden) 7-9 June 2004, pp. 647-654.
Online | Gscholar
IFN (1988)
IFN Inventario Forestale Nazionale 1985: sintesi metodologica e risultati. Ministero dell’Agricoltura e delle Foreste, Direzione Generale delle Risorse Forestali, Montane ed Idriche, Corpo forestale dello Stato, Istituto sperimentale per l’Assestamento e per l’Alpicoltura, Trento, Italy, pp. 462. [in Italian]
Im J, Rhee J, Jensen JR, Hodgson ME (2007)
An automated binary change detection model using a calibration approach. Remote Sensing of Environment 106: 89-105.
CrossRef | Gscholar
INFC (2005)
Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. Ministero delle Politiche Agricole Alimentari e Forestali, Ispettorato Generale, Corpo Forestale dello Stato, CRA - Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura, Trento, Italy. [in Italian]
IPCC (2007)
Climate change 2007: the physical science basis. Contribution of Working Group I to the 4 Assessment Report of the IPCC (Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds). Cambridge University Press, Cambridge, UK and New York, NY, USA.
ISTAT (2001)
14° Censimento della popolazione e delle abitazioni. Istituto Nazionale di Statistica, web site. [in Italian]
Online | Gscholar
Jenness J, Wynne JJ (2005)
Cohen’s Kappa and classification table metrics 2.0: an ArcView 3x extension for accuracy assessment of spatially explicit models. Open-File Report OF 2005-1363, US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA.
Jensen JR (1996)
Introductory digital image processing: a remote sensing perspective (2 edn). Prentice Hall, New Jersey,USA.
Jensen JJ (2000)
Remote sensing of the environment, an earth resource perspective. Prentice Hall, Upper Saddle River, NJ, USA, pp. 544. [ISBN 0-13-489733-1]
Jomaa I, Bou Keir R (2003)
Multitemporal unsupervised classification and NDVI to monitor land cover change in Lebanon. Options Méditerranéennes Série B 46: 43-49.
Justel A, Peña D, Zamar R (1997)
A multivariate Kolmogorov-Smirnov test of goodness-of-fit. Statistics and Probability Letters 35 (3): 251-259.
CrossRef | Gscholar
Kendall MG, Stuart A (1969)
The advanced theory of statistics. Vol. 1 (3 edn). Charle Griffin and Company Ltd., London, UK, pp. 439.
Kosmas C, Ferrara A, Bellotti A, Detsis V, Faretta S, Gerontidis S, Mancino G, Marathainou M, Pisante M (2000)
A comparative analysis of the physical environment of two Mediterranean areas threatened by desertification. In: “Mediterraneo”. Istituto Mediterranico, Universitade Nova De Lisboa, Lisboa, Portugal.
Lilliefors HW (1967)
On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62 (318): 399-402.
CrossRef | Gscholar
Lillesand TM, Kiefer RW (1999)
Remote sensing and image interpretation (4 edn). John Wiley and Sons Inc., New York, NY, USA, pp. 724. [ISBN 0-471-25515-7]
Lu D, Weng Q (2007)
A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28: 823-870.
CrossRef | Gscholar
Lu D, Mausel P, Batistella M, Moran E (2004)
Comparison of land-cover classification methods in the Brazilian Amazonia basin. Photogrammetric Engineering and Remote Sensing 70: 723-731.
Lu D, Mausel P, Brondizio E, Moran E (2002)
Assessment of atmosheric correction methods for Landsat TM data applicable to Amazon basin LBA research. International Journal of Remote Sensing 13: 2651-2671.
CrossRef | Gscholar
Lunetta RS, Ediriwickrema J, Johnson DM, Lyon JG, McKerrow A (2002)
Impacts of vegetation dynamics on the identification of land-cover change in a biologically complex community in North Carolina, USA. Remote Sensing of Environment 82: 258-270.
CrossRef | Gscholar
Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006)
Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment 105: 142-154.
CrossRef | Gscholar
Lyon JG, Yuan D, Lunetta RS, Elvidge CD (1998)
A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing 64 (2): 143-150.
Online | Gscholar
Mancino G, Nolè A, Urbano V, Amato M, Ferrara A (2009)
Assessing water quality by remote sensing in small lakes: the case study of Monticchio lakes in Southern Italy. iForest 2: 154-161.
CrossRef | Gscholar
Mandrone S, Rossi D, Rossi L (2006)
Metodo di stima della fragilità intrinseca di habitats boschivi nei bacini di drenaggio di laghi Vulcanici. In: Proceedings of the “16 Meeting of the Italian Society of Ecology”. Viterbo/Civitavecchia (Italy) 19-22 September 2006, pp. 1-7.
Online | Gscholar
Martinez B, Gilabert MA (2009)
Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment 113:1823-1842.
CrossRef | Gscholar
Mas JF (1999)
Monitoring land-cover changes: a comparison of change detection techniques. International Journal of Remote Sensing 20:139-152.
CrossRef | Gscholar
Mateos CJB, Pinilla CP, Gonzalez-Crespo R, Castillo-Sanz AC (2010)
Relative radiometric normalization of multitemporal images. International Journal of Artificial Intelligence and Interactive Multimedia 1(3): 54-59
Online | Gscholar
Metternicht G (1999)
Change detection assessment using fuzzy sets and remotely sensed data: an application of topographic map revision. ISPRS Journal of Photogrammetry and Remote Sensing 54:221-233.
CrossRef | Gscholar
Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (2007)
Contribution of Working Group III to the 4 Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK and New York, NY, USA.
Miller LD, Nualchawee K, Tom C (1978)
Analysis of the dynamics of shifting cultivation in the tropical forests of northern Thailand using landscape modelling and classification of Landsat imagery. NASA Tech. Mem. 79545, Goddard Space Flight Center, Greenbelt, MD, USA, pp. 19.
Milne AK (1988)
Change detection analysis using Landsat imagery: a review of methodology. In: Proceedings of the “IGARSS 1988 Symposium”. Edinburgh (Scotland - UK), European Space Agency, Neuilly, France, 13-16 September 1988, pp. 541-544.
Muchoney DM, Haack BN (1994)
Change detection for monitoring forest defoliation. Photogrammetric Engineering and Remote Sensing 60: 1243-1251.
Online | Gscholar
Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang X (2007)
Forestry. In: “Climate Change 2007: Mitigation” (Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA eds). Contribution of Working Group III to the 4 Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK and New York, NY, USA.
Nordberg ML, Evertson J (2004)
Monitoring change in mountainous dry-heath vegetation at a regional scale using multitemporal Landsat TM data. Ambio 32 (8): 502-509.
Online | Gscholar
Nordberg ML, Evertson J (2005)
Vegetation index differencing and linear regression for change detection in a Swedish mountain range using Landsat TM® and ETM+® imagery. Land Degradation and Development 16 (2): 139-149.
CrossRef | Gscholar
Over M, Schöttker B, Braun M, Menz G (2003)
Relative radiometric normalisation of multitemporal Landsat data - a comparison of different approaches. In: Proceedings of the Symposium “IGARSS 03: Geoscience and Remote Sensing”. Toulouse (France) 21-25 July 2003. IEEE International 6: 3623-3625.
CrossRef | Gscholar
Penman J, Gytarsky M, Hiraushi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003)
Good practice guidance for land use, land use change and forestry. Chapter 3: Annex 3A.1 biomass default tables for section 3.2 forest land good practice guidance for land use, land-use change and forestry. The Institute for Global Enviromental Strategies for the IPCC and the Intergovernmental Panel on Climate Change, Hayama, Kanagawa, Japan, pp. 21.
Petit C, Scudder T, Lambin E (2001)
Quantifying processes of land-cover change by remote sensing: resettlement and rapid land-cover changes in south-eastern Zambia. International Journal of Remote Sensing 22:3435-3456.
CrossRef | Gscholar
Phuaa MH, Tsuyuki S, Furuya N, Lee JS (2008)
Detecting deforestation with a spectral change detection approach using multitemporal Landsat data: a case study of Kinabalu Park,Sabah, Malaysia. Journal of Environmental Management 88: 784-795.
CrossRef | Gscholar
Pielke RA (2005)
Land use and climate change. Science 310: 1625-1626.
CrossRef | Gscholar
Piussi P (2005)
Woodland recolonisation and postagricultural development in Italy. In: “Mountain ecosystems” (Broll G, Keplin B eds). Springer, Berlin, Heidelberg, Germany, pp. 237-251.
Podeh SS, Oladi J, Pormajidian MR, Zadeh MM (2009)
Forest change detection in the north of Iran using TM/ETM+ imagery. Asian Journal of Applied Sciences 2:464-474.
CrossRef | Gscholar
Pu R, Gong P, Tian Y, Miao X, Carruthers RI, Anderson GL (2008)
Invasive species change detection using artificial neural networks and CASI hyperspectral imagery. Environmental Monitoring and Assessment 140 (1-3): 15-32.
CrossRef | Gscholar
Richards JA, Xiuping J (2006)
Remote sensing digital image analysis: an introduction (4 edn). Springer Birkhäuser, Basel, Switzerland.
Roy DP, Borak JS, Devadiga S, Wolfe RE, Zheng M, Descloitres J (2002)
The MODIS Land product quality assessment approach. Remote Sensing of Environment 83 (1-2): 62-76.
CrossRef | Gscholar
Sabins F (1997)
Remote sensing: principles and interpretation (3 edn). Waveland Press Inc, Illinois, USA, pp. 494
Sader SA, Bertrand M, Wilson EH (2003)
Satellite change detection of forest harvest patterns on an Industrial forest landscape. Forest Science 49 (3): 341-353.
Sarp G (2012)
Determination of vegetation change using thematic mapper imagery in Afgin-Elbistan lignite basin; SE Turkey. Procedia Technology 1: 407-411.
CrossRef | Gscholar
Schroeder TA, Cohen WB, Song C, Canty MJ, Yang Z (2006)
Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment 103: 16-26.
CrossRef | Gscholar
Schowengerdt RA (1997)
Remote sensing: models and methods for image processing (2 edn). Academic Press, San Diego, CA, USA. [ISBN 0126289816]
Sepehry A, Liu G (2006)
Flood Induced land cover change detection using multitemporal ETM+ imagery. In: Proceedings of the “2 Workshop of the EARseL SIG on Land Use and Land Cover: Application and Development” (Braun M ed). Center for Remote Sensing of Land Surfaces, European Association of Remote Sensing Laboratories and Universität Bonn, Bonn, Germany, pp. 399-406.
Setiawan Y, Yoshino K (2012)
Change detection in land-use and land-cover dynamics at a regional scale from MODIS time-series imagery. ISPRS Annals of Photogrammetry, Remote Sensing and the Spatial Information Sciences I-7: 243-248.
CrossRef | Gscholar
Short NM (1982)
The Landsat tutorial workbook. Basics of satellite remote sensing. NASA Reference Pub. 1078, Superintendent of Documents, US Government Printing Office, Washington, DC, USA, pp. 553.
Shoshany M (2000)
Satellite remote sensing of natural Mediterranean vegetation: a review within an ecological context. Progress in Physical Geography 24: 153-178.
Simoniello T, Carone MT, Grippa A, Liberti M, Coppola R, Macchiato M (2008)
Inter-calibration of Landsat-TM/ETM scenes in heterogeneous areas. Geophysical Research Abstracts 10: EGU2008-A-11986.
Online | Gscholar
Sinch A (1986)
Change detection in the tropical forest environment of northeastern India using Landsat. In: “Remote Sensing and Tropical Land Management” (Eden MJ, Parry JT eds). John Wiley and Sons, London, UK, pp. 237-254.
Singh A (1989)
Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing 10: 989-1003.
CrossRef | Gscholar
Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001)
Classification and change detection using Landsat TM data: when and how to correct atmospheric effect. Remote Sensing of Environment 75: 230-244.
CrossRef | Gscholar
Story M, Congalton RG (1986)
Accuracy assessment: a user’s perspective. Photogrammetric Engineering and Remote Sensing 52 (3): 397-399.
Tucker CJ (1979)
Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127-150.
CrossRef | Gscholar
Turner BL, Lambin EF, Reenberg A (2007)
The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences USA 104 (52): 20666-20671.
CrossRef | Gscholar
Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010)
Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment 114: 106-115.
CrossRef | Gscholar
Wallace J, Behn G, Furb S (2006)
Vegetation condition assessment and monitoring from sequences of satellite imagery. Ecological Management and Restoration 7: 31-36.
CrossRef | Gscholar
Wang FY, Xu YJ (2010)
Comparison of remote sensing change detection techniques for assessing hurricane damage to forests. Environ Monitoring and Assessment 162: 311-326.
CrossRef | Gscholar
Wilson EH, Sader SA (2002)
Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment 80: 385-396.
CrossRef | Gscholar
Win RN, Suzuki R, Takeda S (2012)
Remote sensing analysis of forest damage by selection logging in the Kabaung Reserved Forest, Bago Mountains, Myanmar. Journal of Forest Research 17: 121-128.
CrossRef | Gscholar
Yacouba D, Guangdao H, Xingping W (2009)
Assessment of land use cover changes using ndvi and dem in Puer and Simao counties, Yunnan Province, China. World Rural Observations 1 (2): 1-11.
Yang XI, Lo PC (2000)
Relative radiometric normalization for change detection from multi-date satellite images. Photogrammetric Engineering and Remote Sensing 66 (8): 967-980.
Yuan D, Elvidge CD (1996)
Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing 51 (3): 117-126.
CrossRef | Gscholar
Yuan D, Elvidge CD, Lunetta RS (1998)
Survey of multispectral methods for land cover change analysis. In: “Remote Change Detection. Environmental Monitoring Methods and Applications” (Lunetta RS, Elvidge CD eds). Ann Arbor Press, Chelsea, Michigan, USA, pp. 21-39.

This website uses cookies to ensure you get the best experience on our website. More info