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Accuracy of determining specific parameters of the urban forest using 
remote sensing

Mariusz Ciesielski, 
Krzysztof Sterenczak

This paper reviews the current state of knowledge in the field of urban forest
inventory and specific tree parameters derived by remote sensing. The paper
discusses the possibilities and limitations of using remote sensing to determine
the following characteristics of individual trees acquired during the inventory:
position (coordinates), tree height, breast height diameter, tree crown param-
eters  (crown span,  height  of  tree  crown  basis,  crown projection  surface),
health condition, and tree species. A total of 543 papers published in scientific
databases (Scopus® and ScienceDirect®) from the year 2000 to December 2017
have been analyzed; 86 of them were used for the review. The most important
outcomes are: (a) the integration of many datasets, in particular spectral data
(aerial images and satellite imageries) and structural data (LIDAR), allows the
most complex use of remote sensing data and helps to improve the accuracy of
parameter estimations as well as the correct identification of tree species; (b)
the highest precision of measurement is characteristic of TLS, while ALS data
has the largest operating system; (c) remote sensing data applications are as-
sociated  with  a  large  number  of  sophisticated  processing  on  very  large
datasets using often proprietary elaborations; (d) the use of remote sensing
data makes it possible to determine the characteristics of urban vegetation at
various levels of detail and at different scales.

Keywords: Urban Forestry, Remote Sensing, Green Inventory, Laser Scanning,
Hyperspectral Imaging, Satellite Imaging

Introduction
The concept of urban forestry has been

defined as “the art, science, and technique
related to trees and forest resources’ man-
agement in urban and peri-urban areas in
order to provide communities with psycho-
logical,  sociological,  economic,  and  aes-
thetical  benefits” (Miller  1997).  According
to this definition, the term urban forestry
includes not  only forests within urban ar-
eas,  but  also trees grown along roads,  in
parks,  squares,  and  graveyards,  among
other  places  (Randrup  et  al.  2005,  Konij-
nendijk et al. 2006). There are many bene-
fits to human well-being that trees bring to
our cities. Trees and other vegetation play
an important role in reducing air pollution,
thereby decreasing the incidence of respi-
ratory  diseases  (Nowak  &  Heisler  2010).
Appropriate placement of trees can reduce

“heat island” effects,  helping urban com-
munities  adapt  to  the  effects  of  climate
change by reducing heat stress (Takebaya-
shi & Moriyama 2007, Zupancic et al. 2015).
Access to parks and nature can have a posi-
tive influence on physical activity (Kerr et
al.  2012).  Giles-Corti  et  al.  (2005) proved
that people who use green spaces in cities
attain recommended levels of physicals ac-
tivity more easily than non-users.  Stigsdot-
ter  et  al.  (2010) found  that  people  who
lived beyond 1 km from a green zone (i.e.,
park) had a worse score on the dimensions
of general and mental health and vitality,
as well as higher levels of stress, than peo-
ple who lived within 1 km of a green zone.
Forest, parks and trees also influence real
estate value and urban landscape aesthet-
ics, and can play a role in storm water man-
agement and wind speed reduction.

As reported by Tate (1985), and Bickmore
& Hall (1983), inventory is the tool that can
be used for  the efficient  management  of
greening in urban areas at various scales. A
tree  inventory  collects  accurate  informa-
tion on the condition, diversity and spatial
distribution of trees in urban areas. Inven-
tory results may constitute a starting point
for a number of different analyses, such as
variations  in  tree  structure  and  species
within  urban  areas  (Sjöman  et  al.  2012),
how  trees  shape  the  urban  microclimate
(Nowak et al. 2001), the impact of trees on
reduction of air pollution and CO2 accumu-
lation (McPherson et al. 1997, Nowak et al.
2006), the impact of greening on the value
of real estates (Anderson & Cordell 1988),
and monitoring the risk of damage to vege-
tation and vegetation health  (Maruthave-
eran & Yaman 2010, Kronenberg 2012).

Three types of inventory can be used to
assess the vegetation in urban areas: par-
tial,  total,  and random (statistical).  Partial
inventories  are applied  to  selected  urban
areas,  e.g.,  a  park,  a  square or a  tree av-
enue. A total inventory is a comprehensive
description of all trees, groups of trees and
bushes, including the identification of pos-
sible areas for new planting within the bor-
ders of streets, parks,  squares, and other
public  spaces.  Statistical  methods  are
based  on  random  selection  and  measure
small  parts  of  the  area  of  interest,  with
sample plots  being measured in  the field
(Escobedo  &  Andreu  2008,  Clarke  et  al.
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2013). The size of the field sampling area is
selected in order to cover 5-10% of all trees
or entire area, depending on spatial cover-
age and species variability. Inventories are
usually carried out according to inventory
key which include  e.g. the list of tree spe-
cies. Until now, inventories have been car-
ried out  mainly along roads,  and less fre-
quently for urban forests or parks (Thaiut-
sa et al. 2008, Sjöman et al. 2012). The main
aims of the studies conducted in urban en-
vironment were the maintenance of  road
safety, the appropriate selection of species
for  planting,  and  the  monitoring  of
changes in urban forestry (Keller & Konij-
nendijk 2012).

The varying aims of urban resources mon-
itoring, as well as the diversity of data re-
cipients,  results  in  a  large number  of  pa-
rameters  being  acquired  for  each  single
tree. For example, research carried out us-
ing the Delphi method (a method used to
identify  the  most  reliable  responses  to
questions from a group of experts in Scan-
dinavia  – Östberg et al.  2013) ended with
148 parameters assigned to single trees, all
of which were considered to be important.
Such a number of variables are difficult to
acquire and harmonize for practical use. To
increase  ease  of  use,  various  attempts
have  been  made  to  normalize  inventory
rules at the local or national level (Östberg
et al.  2012a,  UNRI 2010). As a result,  with
the help of practitioners, the ten most im-
portant  tree  parameters  have  been  de-
fined: genus and species, health condition,
trunk  position,  class  of  damage  hazard,
presence  of  fruit  bodies,  disease  treat-
ments,  conservation  value,  location  (i.e.,
street/park), age class, and finally, stem cir-
cumference  at  1  meter  height  at  time of
planting (Östberg et al. 2013). From an ur-
ban forest management perspective, infor-
mation about tree height,  crown parame-
ters, and diameter at breast height (DBH)
is also important (Saarinen et al. 2014,  Lee

et al. 2016).
The high costs associated with inventory

data collection, as well as the wide range
of  acquired parameters  and data  applica-
tions, have increased the interest in finding
alternative  methods  to  perform  urban
greening  inventories  (Nielsen  et  al.  2014,
Lee et al. 2016). To determine parameters
for  single  trees  or  tree  groups,  or  to  ac-
quire  information  regarding  vegetation
structure,  remote  sensing  (RS)  methods
have been used with increasing frequency.
The most commonly-used remote sensing
methods include airborne (ALS), terrestrial
(TLS) and mobile laser-scanning (MLS – Wu
et al. 2013,  Tanhuanpää et al. 2014), satel-
lite imaging (Ardila et al. 2012), aerial pho-
tography  (Xiao  &  McPherson  2005),  and
more  recently  unmanned  aerial  vehicle
technology (Putut Ash Shidiq et al.  2017).
RS data can be expensive to acquire, and
each of  the aforementioned technologies
has  limitations  and  advantages.  The  aims
of this paper are therefore: (i) to present a
systematic  overview  of  scientific  publica-
tions  in  which RS methods were used to
determine the most important parameters
of single trees, in particular: location, spe-
cies,  health  condition,  tree  height,  DBH,
crown span (extent), height of tree crown
base, and crown projection surface; (ii) to
analyze the accuracy of individual parame-
ters estimated through RS, and their viabil-
ity as an alternative to field measurements;
(iii)  to specify which parameters of single
trees  can  be  determined  using  different
spatial data, and how well they can be de-
termined; (iv) to specify the opportunities
and limitations associated with the various
RS techniques;  and (v) to identify further
research directions in the subject area.

Material and methods
The review of international literature pre-

sented here is based on the search results
of two databases: Scopus® and Science Di-

rect®. The literature search was carried out
pursuant to  the guidelines  formulated by
Pullin  &  Stewart  (2006).  Three  keywords
were defined in a browser window, i.e., ur-
ban*, forest *, and inventory*, which were
searched  for  in  categories  such  as  title,
keywords,  and  abstract.  The  search  was
conducted  for  papers  published  between
January 2000 and February 2017,  and 543
records  were  retrieved.  Search  results
were  refined  based  on  title  and  abstract
content.  Only  those  articles  concerned
with tree inventories in urban environment
were selected for further analysis. Detailed
analysis  of  the  selected  articles  showed
that nine of the studies were conducted us-
ing only field measurements. These articles
were also removed from the analysis (Cum-
ming et al.  2001,  Brack 2006,  Cumming et
al. 2008, Thaiutsa et al. 2008, Sobczynski et
al.  2011,  Muthulingam  &  Thangavel  2012,
Clarke  et  al.  2013,  Zygmunt  et  al.  2014,
Strunk et  al.  2016).  The final  database in-
cluded  86  scientific  papers.  The  selected
papers  fulfilled  the  following  criteria:  the
study was published in English, the scope
of the study was urban forestry,  and the
main focus of the study related to greening
inventory methods at the level of individual
trees and tree groups. The following infor-
mation was recorded in the metadata table
constructed for the search results: journal
name;  year  of  publication;  the  country
where the research was carried out; the in-
ventory methodology; and a detailed syn-
opsis of the study content.

Results

Overview of scientific papers
The analyzed studies were carried out in

25  countries  on  all  continents,  except
Africa  and  Antarctica.  Most  papers  were
performed  in  the  United  States  (38  pa-
pers), followed by Germany (9 papers), Fin-
land (8 papers), and the United Kingdom (5
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Fig. 1 - Number of
publications per 
country, re-
trieved in the 
Scopus® and Sci-
enceDirect® data-
bases. (*): The 
number of papers
published in Pol-
ish magazines 
was 12.
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papers  – Fig.  1).  This  distribution  reflects
the general number of studies performed
on urban forestry worldwide. As reported
by  Bentsen  et  al.  (2010),  in  the  principal
journal in this subject area, Urban Forestry
and Urban Greening, 59% of papers in the
years 2000-2008 were performed in North
America and Scandinavia.

The  number  of  scientific  papers  whose
focus is the determination of greening pa-
rameters  has  trended  upward  over  time.
The increase has been shown to be a result
of improved access to RS data acquisition
technologies;  the  growth  of  forestry-fo-
cused  scientific  research,  the  results  of
which can be used for analyses of greening
in  urbanized areas  (see Fig.  S1  in  Supple-
mentary material); and the increased avail-
ability  of  spatial  data,  resulting  from  the
creation of  free-of-charge spatial  data re-
positories (Banskota et al.  2014,  Chi et al.
2016,  Wulder  et  al.  2016,  Kempeneers  &
Soille 2017). A diverse range of RS technol-
ogies  have been developed to  determine
individual tree parameters and forest stand
characteristics  (Fig.  2).  Since  2010,  data
from laser  scanning has been acquired in
multiple studies (ALS and TLS: 19 published
studies). Researchers have also often per-
formed analyses from the acquisition and
combination of several sets of spatial data
(data fusion, DF: 32 published studies).

Accuracy of tree attributes determined 
using remote sensing

Position
The identification of individual tree posi-

tions by means of RS requires two parame-
ters to be defined precisely,  i.e., individual
tree detection and trunk location (X,  Y  –
Tab. 1). ALS data have predominantly been
used for the detection of individual trees,
and have been processed using the follow-
ing algorithms: the tree climbing algorithm
(Zhang & Qiu 2012),  individual tree detec-
tion (ITD – Holopainen et al. 2013), and wa-
tershed  segmentation (crown-level  fusion
of  hyperspectral  imagery  and ALS  data  –
Alonzo et al. 2014). Individual tree crowns
have been delineated using canopy height
models  (Tanhuanpää  et  al.  2014),  image
segmentation  (Phu  La  et  al.  2015),  local
maxima algorithms (LMA),  and the Kouk-
oulas and Blackburn algorithm (KBA – Rah-
man & Rashed 2015), as well as a variable
window filter  (Plowright et  al.  2016).  The
accuracy  of  detection  ranged  from  69%
(KBA method) to 99% (variable window fil-
ter method).

High spatial resolution satellite imaging is
an  alternative  to  laser  scanning  for  tree
species group detection. Ardila et al. (2012)
achieved 70% to 92% accuracy in species de-
tection, depending on the study area, with
the use of QuickBird satellite imaging. The
error  of  commissioning  associated  with
this technique was equal to 26% (mainly for
single trees with a crown area < 15 m2), and
the error of omission ranged from 18% to
30%.  Apart  from  the  method  used,  the

character of the research area also impact-
ed on the reliability of results, which varied
with,  among  other  factors,  dominant
species  type  (deciduous/coniferous),  tree
age,  and  quality  of  reference  data  (Ster-
enczak 2013).  Plowright et al. (2016), who
achieved the most  accurate  detection re-
sults, used the variable window filter algo-
rithm in their research, which, prior to that
study, had mainly been applied to forest ar-
eas (Popescu et al. 2003, Sterenczak 2013),
where the parameters of the tool were cal-
ibrated in accordance with species compo-
sition and age/height of the forest. In Plow-
right  et  al.  (2016) research,  the  method
was calibrated against a single species, but
also indicated that it is possible to develop
equations for other tree species and apply
them in parallel.  Rahman & Rashed (2015)
showed that combining the LMA and KBA
methods  generates  more  reliable  results
than using these methods separately. The
improvement in results is due to the limita-
tion of the KBA algorithm in identifying and
measuring  the  height  of  individual  trees
and  groups  of  trees,  being  overcome  by
the LBA algorithm which has the ability to
identify  individual  trees  with  overlapping
canopies. Tanhuanpää et al. (2014) pointed
out that the time of data acquisition has an
impact  on the obtained results,  in  that  if
the reference data (field data) and RS data
were  obtained  on  different  dates,  some
trees may have been removed, planted or
replanted. In this case, attention should be
paid  to  data  cohesion.  The  main  reasons
for that are a wide range of species (many
non-native  species),  and  spatial/structural
variability (e.g., single tree growth, varying
light  conditions,  and tree shape modifica-
tion by human activities). A large variation
in the size and shape of tree crowns forces
the user to choose between the algorithms
generating too many or too few trees dur-
ing segmentation.

The  problem  of  reference  data  quality
from GIS urban databases was emphasized
by Plowright et al. (2016), who showed the
importance of improving coordinate accu-
racy  derived  from  RS  databases,  by  cor-
recting  positional  errors,  and  removing
trees  that  may  have  been  incorrectly  re-
corded.  Moreover,  Tanhuanpää  et  al.
(2014) pointed  out  that  substantial  prob-
lems in individual tree detection are caused
by the diversity of tall objects in the urban
environment,  which  confuse  the  algo-
rithms used to  detect  vertices;  for  exam-
ple, lamp posts, power lines, and tall vehi-
cles in the streets. Such issues present dif-
ferent challenges for researchers involved
in the detection of trees in urban environ-
ments,  compared  to  studies  that  detect
trees  in  forest  areas  (Tanhuanpää  et  al.
2014, Zhang et al. 2015). Ardila et al. (2012)
pointed  out  that  aerial  images  collected
during leaf-off  conditions  are usually  sub-
ject  to  geometric  distortions  that  affect
the  accuracy  of  tree  surface  estimation,
but  are  only  occasionally  used.  They also
emphasized that the urban environment is
more diverse than forest areas; in forests,
the picture is less complex and the adop-
tion of  specific  parameters  in Geographic
Object-based Image Analysis (GEOBIA) ge-
nerates results with a similar degree of ac-
curacy in different areas. ITD methods are
available and in general give acceptable re-
sults  for  urban  greening  inventories.  ALS
data are the most reliable, and multispec-
tral data are adequate for this purpose. In-
tegration  of  the  various  RS  data,  where
possible, improves the accuracy of results.
Most authors agreed that the urban envi-
ronment is more complex that the forest
environment,  which  causes  many  addi-
tional problems in the detection of individ-
ual trees.

Tompalski (2009) processed TLS data us-
ing the method of convex hulls generated

iForest 12: 498-510 500

Fig. 2 - Number of publications retrieved from Scopus® and ScienceDirect® databases
per year and the remote sensing technology used.
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Tab. 1 - Selected scientific publications reporting individual tree detection, tree height, DBH, and crown parameters. The research
area, data set, method and accuracy are reported. (-): this variable was not specified; (n/d): this variable was specified but no error
was given.

Publication Study 
Area

Data Set Method
Single tree
detection

rate

X,Y
Coordinates
accurancy

and
precision

Tree height
prediction

results

Tree crown
parameters
prediction

results

DBH
prediction

results

Shrestha & 
Wynne (2012)

US DF (ALS, satellite 
imagery)

Manual (acquiring 
information from a 
raster)

- - 1.34 m
(RMSE); 
0.89 (R2)

0.75 (RMSE)
0.9 (R2)

0.11 (RMSE)
0.82* (R2)

Lee et al. 
(2016)

US DF (ALS, satellite 
imagery)

Regional 
maxima,manual

- - 1.64 m
(RMSE);

1.07 m
(RMSE)

0.10 m
(RMSE);
0.88 (R2)

Zhang & Qiu 
(2012), Zhang 
et al. 2015)

US DF (ALS, 
hyperspectral 
imagery)

Tree climbing algorithm 93.5% - 0.57–1.11 m
(RMSE);

0.93–0.98
(R2)

0.63–0.84
(R2)

-

Phu La et al. 
(2015)

US DF (ALS, 
hyperspectral 
imagery)

Image segmentation 62.0–70.0% - 0.45–0.97
(R2)

0.26–0.96
(R2)

-

Alonzo et al. 
(2014)

US DF (ALS, 
hyperspectral 
imagery)

Watershed 
segmentation

83% - - - -

Banzhaf & 
Kollai (2015)

Germany DF (Orthophotos, 
ALS)

Geographic Object 
Based Image Analysis 
(OBIA)

n/d - - - -

Iovan et al. 
(2008)

France DF (Orthophotos, 
ALS)

SVM / obust region 
growing algorithm based
on tree-shape criteria

78% - - - -

Saarinen et 
al. (2014)

Finland DF (ALS, TLS) Watershed 
segmentation/Visual 
interpretation

- 0.1 m
(bias)

-1.0–1.0 m
(difference)

- 0.39–0.76 m
(RMSE)

Tompalski 
(2013)

Poland DF (TLS, ALS, 
satellite imagery)

Voxel-Based Method 
/Convex 
hall/LasBoundary 
algorithm

- - 1.77 m
(RMSE); 
0.94 (R2)

0.46–0.56
(R2)

0.03 m
(σ)

Holopainen et
al. (2013)

Finland DF (ALS, TLS, MLS) Individual Tree 
Detection/ cylinder 
fitting

73.29–
79.22%

0.44–1.57 m
(RMSE)

- - -

Plowright et 
al. (2016)

Canada ALS Variable window filter 99.0% - 1.09 m;
0.93 (R2)

- -

Rahman & 
Rashed (2015)

US ALS KBA/LMA 69.0-73.0% - 0.81 - 0.87
(R2)

- -

Tanhuanpää 
et al. (2014)

Finland ALS Watershed 
segmentation

88.8% 0.25 m
(bias)

1.27 m
(RMSE)

- 0.07 m
(RMSE)

Wu et al. 
(2013)

China TLS/MLS Voxel-Based Method 98.5 - 100% - - 0.92-0.93
(R2)

0.03 m
(RMSE);
0.87 (R2)

Vonderach et 
al. (2012)

Germany TLS/MLS Voxel-Based Method - - 0.5–1.6 m
(difference)

- -0.01–0.08
m

Moskal & 
Zheng (2012)

US TLS/MLS Point Cloud Slicing (PCS) - - 0.75 m
(RMSE); 
0.57 (R2)

- 91.0%; 0.09
m (RMSE)

Rutzinger et 
al. (2011)

Holland TLS/MLS 3D Modelling 86.0% - n/d - -

Tompalski 
(2009)

Poland TLS/MLS Convex hulls - 0.57 m
(bias)

2.27 and
1.58 m (σ)

-0.35 m
(bias)

-

Ardila et al. 
(2012)

Holland Satellite imagery Geographic Object 
Based Image Analysis 
(OBIA)

70-82% - - - -

Morgenroth & 
Gomez (2014)

New 
Zealand

Digital 
photographs

Photogrammetric 
stereo-measurements 
conducted on digital 
photographs taken on 
the ground level

- - 0.1 m - 0.03 m
(bias)

Patterson et 
al. (2011)

US Digital 
photographs

Manual measurements 
in UrbanCrowns 
software application

- - n/d n/d n/d
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at certain heights over the ground surface,
and  found  the  position  of  trees  was  set
with an average error of 0.57 m. More ac-
curate  results,  with  an  average  error  of
0.10  m,  were  obtained  by  Saarinen et  al.
(2014), who applied a visual interpretation
method. Holopainen et al. (2013) compared
the accuracy of determining tree trunk po-
sitional coordinates by TLS, MLS, and ALS.
The results of the study showed that TLS
data  reproduced  tree  position  with  the
best accuracy, where root mean square er-
ror (RMSE) was equal to 0.12 m; whereas
MLS data had a RMSE = 0.36 m, and ALS
data  a  RMSE  =  1.27  m.  In  the  opinion  of
Holopainen et al.  (2013), the error in tree
position  estimates  based  purely  on  ALS
data  is  caused  by  the  variation  in  crown
shapes as well as the age of trees, which in-
fluences the size of the crown. The accu-
racy of tree positions determined from ALS
data in urban environments is similar to the
results  obtained in forest areas by  Kaarti-
nen et al. (2012). The results of these stud-
ies  show  that  one  advantage of  TLS  and
MLS data is the high accuracy with which
tree position can be determined, even for
those growing under dominant trees. ALS
data  is  associated  with  larger  errors,  but
the cost of data acquisition is much smaller
than for MLS and TLS. ALS data are abun-
dant and easy to access. MLS and ALS have
high  operationality.  The  TLS  technique  is
more suited to small area inventories that
require very high precision.

Tree height
There  are  three  methods  that  can  be

used to extract information on tree height
from RS data: (i) point cloud processing of
data collected using active LiDAR technol-
ogy  (ALS,  MLS  and  TLS);  (ii)  stereopho-
togrammetric  measurements  extracted
from digital photographs taken at ground
level; and (iii) 3D point cloud processing us-
ing airborne digital image matching. A pre-
cise digital terrain model, which can be cre-
ated from ALS data, is a requirement of the
latter  method.  So  far,  studies  using  3D
point cloud processing are rare.

The  accuracy  of  tree  height  measure-
ments retrieved from ALS depends on fac-
tors such as flight and data acquisition pa-
rameters,  tree  species  being  measured,
data processing technology, and the meth-
od  used  for  individual  tree  identification
(Sterenczak et al. 2008). Tanhuanpää et al.
(2014) applied  an ALS point  cloud with  a
density greater than 20 pts m-2. The accu-
racy achieved with the watershed segmen-
tation method (RMSE = 1.08 m) was com-
parable to the accuracy achieved by  Rah-
man & Rashed (2015) using the KBA meth-
od (RMSE = 1.08 m), and the LMA method
(RMSE = 1.3 m). The LMA method was also
used  by  Plowright  et  al.  (2016),  who
achieved a mean error in height measure-
ments equal to 1.09 m, using a point cloud
density  equal  to  25  pts  m-2.  Zhang  et  al.
(2015) performed treetop detection using a
constrained  tree  climbing  algorithm,  and

achieved accuracies  ranging from 0.47  to
1.11  m  (RMSE).  The  relatively  low  error
achieved in  Zhang et al.  (2015) may result
from the fact that most trees in the study
area  were  broadleaved  with  a  wider  top
than conifers, which increased the proba-
bility  that  laser  pulses  hit  the  treetops.
Shrestha & Wynne (2012) presented height
measurements  for 9 tree species with an
average RMSE value of 1.34 m.

Vonderach  et  al.  (2012) showed  that
height determined from TLS data is regu-
larly  underestimated.  The  differences  in
TLS  measurements  and  terrestrial  mea-
surements  fall  within  a  range  of  0.50  to
1.50 m. Similar results, with an RMSE equal
to  1.77  m,  were  achieved  by  Tompalski
(2013).  With  MLS,  Wu et  al.  (2013) deter-
mined tree heights with an R2 coefficient of
0.9, and an RMSE equal to 0.18 m. Morgen-
roth  & Gomez  (2014) used  a  point  cloud
generated from ground level digital photo-
graphs  taken  from  multiple  positions.  In
their  studies,  tree  height  estimates  con-
tained an error of 0.10 m (2.59%).

The  accuracy  of  tree  height  measure-
ments using ALS data depends not only on
data processing methods but  also on the
tree species, and is also dependent on the
quality of field-based measurements (Miel-
carek et al.  2018). Their results show that
when relatively high point density ALS data
are used, the error in height estimation is
greater  for some deciduous species  (e.g.,
oaks)  than  for  conifers  and  alder.  This  is
not  related to  the reliability  of  ALS  mea-
surements, but rather to the difficulty asso-
ciated with precisely measuring the height
of old trees, such as oaks. Oak crowns are
usually irregular and complex; therefore, it
is difficult to clearly determine the top of
the tree from the ground.  Measuring the
height of conifers is easier and more pre-
cise due to their compact and cone-shaped
crowns.  Mielcarek et al. (2018) also noted
that  errors  for  deciduous trees  increased
slightly with increasing tree height. Such a
tendency was not found in coniferous and
alder trees. Further, ALS data itself can in-
fluence height measurements. Morsdorf et
al. (2008) proved that the underestimation
of tree heights by ALS increased by approx-
imately 0.3 m with an increase from 500 to
900  m  flying  altitude.  Yu  et  al.  (2004)
showed  that  tree  height  could  be  mea-
sured  more  accurately  with  a  large  foot-
print, because the laser pulse has a higher
probability of hitting the top of the trees.
Tanhuanpää et al.  (2014) and  Orka & Bol-
landsås (2010) determined that ALS should
be collected during the leaf-on season, be-
cause  the  data  generates  less  noise  and
lower errors than leaf-off data, which can
be explained by the denser canopy under
leaf-on conditions.  Tompalski (2013) show-
ed that there was no relation between the
height of  a tree measured using TLS and
the distance of a tree from the scanner, or
the  height  of  a  tree  and  other  features,
such  as  the  type  and  number  of  points.
Contrasting results were achieved in a for-

est  area  by  Olofsson  et  al.  (2014),  who
proved that the error in tree height mea-
surements  depends  on  distance  to  the
scanner.  According  to  Tompalski  (2013),
scanning in unfavorable terrain with a high
density of  trees does not prevent the ac-
quisition of exact tree height values.  Tom-
palski  (2013) also  indicates  that  scanning
should  be  performed  during  the  leaf-off
period, and the number and distribution of
scanning positions  should  be properly  ar-
ranged.

Diameter at breast height
Previous studies have reported three dif-

ferent approaches for the determination of
the diameter at breast  height (DBH).  The
first  involves  the  use  of  descriptive  vari-
ables from ALS data, the second uses TLS
and MLS data and the third is based on a
cloud  of  points  that  are  generated  from
photographic  images.  Shrestha  &  Wynne
(2012) determined  DBH  with  an  indirect
method  using two types  of  ALS  variable.
DBH determined from tree crown size re-
sulted in R2 coefficients of 0.82 for all trees,
0.84  for  deciduous  species,  and  0.74  for
coniferous trees. Assessing DBH based on
average height resulted in inferior R2 coeffi-
cients, i.e., 0.72 for all trees, 0.76 for decid-
uous species, and 0.54 for coniferous spe-
cies. By constructing convex hulls from TLS
data,  Tompalski (2009) achieved DBH esti-
mates with an RMSE of 0.013 m and a stan-
dard  deviation  of  0.03  m.  Using  a  point
cloud slicing (PCS) method based on voxel
data structure and circle fitting,  Wu et al.
(2013), Moskal & Zheng (2012), and Vonder-
ach  et  al.  (2012),  achieved  accuracies  in
DBH estimations of 0.03 m (RMSE), 0.09 m
(RMSE), and -0.01  – 0.08 m (bias), respec-
tively. Results achieved by Vonderach et al.
(2012) are similar to Tompalski (2013). With
a point cloud constructed from a series of
digital photographs, Morgenroth & Gomez
(2014) calculated  a  DBH  for  an  individual
tree with an error of 0.03 m. As  Wu et al.
(2013) emphasized, despite the high quality
of results, TLS data have limited application
in urban areas, due to the limited coverage
that can be achieved from TLS devices. This
strongly contrasts with ALS data collection
methods.  According  to  Tompalski  (2013),
the circle  fitting  method is  the most  reli-
able,  because it  works better when trunk
cross-sections are only partially covered by
points. However,  a large number of alter-
native solutions exist in the literature that
have not yet been tested in an urban envi-
ronment (Pueschel et al. 2013). Results can
also be improved by performing single or
multistation  scans,  which  construct  more
accurate  reproductions  of  breast  height
(Tompalski 2013).

Tree crown
The subject  of  determining the  parame-

ters of the crown is often not addressed in
scientific publications. In studies where this
issue is considered, parameters were esti-
mated directly or indirectly from ALS, MLS,
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or  TLS  data,  or  from  field-based  photos.
Using ALS data,  Shrestha & Wynne (2012)
determined crown spans with an R2 coeffi-
cient of 0.90. Crown diameters were calcu-
lated in that study from ALS data using the
formula: 2 · radius = √crown area /π, with a
RMSE of 0.75 m. In the same study, a lower
correlation (R2  = 0.75) was achieved by cal-
culating maximum heights and crown span
values from field measurements.  Zhang et
al.  (2015) using  ALS  data  identified  the
height of tree crown bases with a correla-
tion  (r)  value  of  0.63-0.84,  and  a  crown
span  with  R2 values  ranging  from  0.7  to
0.84.  With  ground  level  laser  scanning,
Tompalski  (2013) calculated crown projec-
tion surfaces with an R2 coefficient of 0.81.
Tompalski  (2009) determined crown base
height with a mean error of -0.35 m. MLS
data was used by Wu et al. (2013) to deter-
mine crown spans with R2 values  ranging
from  0.92  to  0.93.  Abd-Elrahman  et  al.
(2010) explored the effectiveness of using
different  digital  camera  models  to  assess
crown span and crown base height. Based
on photographs, the errors in crown span
and crown base height values were deter-
mined  to  be  0.4  m  and  0.05  m,  respec-
tively.  Accurate  calculation  of  the  crown
size  parameter  is  vital  for  determining
crown  coverage,  which  is  one  of  the  pa-
rameters that characterize the urban eco-
system.  According  to  previous  studies,
crown size estimated from ALS data is usu-
ally less accurate than tree height (Gill et al.
2000,  Popescu et al.  2003).  Low accuracy
can result from crown shape, low scanning
density and the overlap of  the crowns of
adjacent trees (Zhang et al.  2015). The re-
sults obtained by  Zhang et al. (2015) were
promising, and show that the accuracy of
key  parameter  estimates,  such  as  base
height and depth of the crown, may be re-
lated to  the  accuracy  of  tree  height  esti-
mates. This is important because, even dur-
ing  field  measurements,  it  is  difficult  to
measure  such  parameters,  especially  in
densely forested areas.  Zhang et al. (2015)
suggested that  a  higher  scanning density
may lead to higher accuracy, as the proba-
bility  of  hitting  lower  branches  will  in-
crease.

Health condition
The majority of studies concerning vege-

tation health condition were performed us-
ing  aerial  (including  hyperspectral)  and
satellite imagery. A number of authors (Ho-
lopainen et al. 2006, Hanou 2010,  Hu et al.
2014, Zhang et al. 2014, Pontius et al. 2017)
compared the health condition of healthy,
diseased  and  dead  trees  with  vegetation
indices,  or  determined  relationships  be-
tween the variables obtained from RS data
and biophysical  variables (e.g.,  defoliation
and  discoloration).  Malthus  &  Younger
(2000) determined  the  correlations  be-
tween  an  overall  tree  condition  index
(OTC), defoliation, and selected vegetation
indices, such as the Normalized Difference
Vegetation  Index  (NDVI),  the  Green  Nor-

malized  Difference  Vegetation  Index
(gNDVI), and the red edge position (REP).
A significant correlation was only observed
between the OTC and the gNDVI, and the
OTC and the REP. The authors did not find
any relation  between the  defoliation and
vegetation  indices.  Xiao  &  McPherson
(2005) carried  out  an  analysis  of  tree
health at the two scales of individual tree
and individual pixels. The authors classified
trees as healthy if the ratio of healthy pix-
els determined by NDVI and the total num-
ber of  pixels  was  higher  than 70%;  other-
wise, trees were classified as unhealthy or
dead.  The  total  accuracy  of  classification
on the level of individual trees was 88.9%,
i.e., 86% for deciduous trees and 91.0% for
coniferous trees.  Holopainen et al.  (2006)
used aerial color infrared imagery to assess
the volume of trees damaged as a result of
drought. They achieved their results by vis-
ual interpretation of the images. Jarocinska
et al. (2016) applied the Photochemical Re-
flectance Index (PRI)  and the Normalized
Difference  Vegetation  Index  (NDVI705)  to
determine  discoloration  and  defoliation,
respectively. Their results showed R2 coeffi-
cient values of  0.43 and 0.44,  with RMSE
ranging from 11% to 23%. The analysis was
performed using satellite imagery from the
beginning of July until the end of August.
Jarocinska et al. (2016) showed that it was
feasible to estimate the health condition of
urban  forests  by  analyzing  the  values  of
vegetation indices,  defoliation and discol-
oration.  Hanou (2010),  Zhang et al. (2014),
Hu et al.  (2014), and  Pontius et al.  (2017)
described the use of various datasets and
methods  to  identify  ash  trees  and  deter-
mine their health status. The need for this
kind  of  analysis  emerged  from  the  large
scale damage caused by the activity of the
emerald ash borer (EAB – Agrilus planipen-
nis Fairmare).  Hanou  (2010) proved  that
there is a correlation between hyperspec-
tral signatures and the level of infestation
measured by the gallery counts per square
meter  of  measured  material  or  trunk.
Zhang et al. (2014) estimated the EAB infes-
tation stages of a single ash tree by using
various types of spatial data (hyperspectral
and satellite imagery). To achieve this, they
used three input variables: the leaf chloro-
phyll  content,  tree crown spatial  pattern,
and prior knowledge. The overall accuracy
(OA) was 62.5%, with an omission error of
22.5%,  and  a  commission  error  of  18.5%.
Based  on  vegetation  indices  sensitive  to
leaf  chlorophyll  content,  Hu  et  al.  (2014)
confirmed that the amount of chlorophyll
measured by vegetation indices is capable
of  predicting the presence or  absence  of
the EAB in ash trees. The OA of the binary
classification used in that study (healthy/in-
fected)  was  70%.  It  should  be  mentioned
that the authors used a limited number of
33 ash trees for the training and test sam-
ples. The health condition of ash trees was
estimated by Pontius et al. (2017), in which
identification  accuracy  ranged  from  62%
(for the healthiest trees) to 22% (the sec-

ond healthiest  out  of  five classes).  To re-
duce  classification  error,  they  developed
multiple  endmembers  and  a  spectral  un-
mixing  technique  to  overcome  the  chal-
lenges posed by classification of spectrally
complicated study objects situated in an ur-
ban environment. An attempt to estimate
the health condition of trees from ALS was
also performed by  Plowright et al.  (2016).
Their estimates of crown density had an R2

coefficient of 0.62 for trees over 8 meters
high,  0.28  for  trees  between  5  and  8  m,
and 0.001 for smaller trees. The authors ap-
plied a coefficient of height variation (CV)
as a predictor of crown density (Tab. 2).

Tree species
The identification of tree species by RS is

a complex issue due to the large diversity
of species in urban areas. Trees are classi-
fied either on the single tree (object) or the
pixel scale. When single tree classification
is  carried  out,  ALS-  (image-)based  single
tree  detection  is  usually  performed  first,
and then segments are classified based ei-
ther  on  spectral  (image)  or  structural
(point cloud) data, or both variables. Typi-
cally, RS data fusion is utilized for species
classification.  The first  studies  incorporat-
ing  Google™ Street  View® (GSV)  images
have begun to appear in the literature. The
global  scale  of  the  Google™ image  data-
base is expected to revolutionize the study
of urban greening (Tab. S2 in Supplemen-
tary material).

In the most complex urban ecosystems,
Alonzo  et  al.  (2014) performed  classifica-
tion analyses of 29 dominant tree species.
The study used hyperspectral imagery with
ground resolution 3.4 and 3.7  m and ALS
data with resolutions of 22 pts m-2. The OA
of classification for  the 29 dominant tree
species was 83.40% (κ= 0.82). The applica-
tion of ALS-based variables to the classifi-
cation model improved the OA by approxi-
mately 4.20%. Zhang & Qiu (2012) classified
40 species and achieved an OA of 68.80%.
The difference in OA values between the
studies was caused in part by the different
number of tree species classified, and more
importantly the fact that the point clouds
generated from ALS data had very differ-
ent densities (22.0  vs. 3.50 pts m-2).  Since
ALS-based  variables  are  fundamental  to
tree classification methods (Kaminska et al.
2018),  denser point clouds provide better
descriptions  of  tree  structure  and  signifi-
cantly improve classification results.

Voss  &  Sugumaran  (2008) performed
classification  of  seven  tree  species  using
two  sets  of  hyperspectral  data  from  the
summer  and  fall  season,  combined  with
ALS data.  The determination of  tree spe-
cies  was  carried  out  using  an  object-ori-
ented classification with two variants. The
first variant used information from hyper-
spectral  imagery  (after  minimum  noise
fraction,  MNF,  transformation),  and  the
second  used  additional  information  from
ALS (intensity and height). The OA of classi-
fication in the first variant was 48% for sum-
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mer data, and 45% for fall data. In the sec-
ond variant with additional  ALS data,  the
general accuracy increased to 57% and 56%,
respectively.  A  19  percentage  point  in-
crease in OA values was achieved by the in-
corporation of ALS data in Liu et al. (2017).
However,  Ghosh et al. (2014) reported no
improvement  in  results,  although  they
used  tree  heights  calculated  exclusively
from ALS data.

Dian et al. (2016) combined hyperspectral
data  (10  most  informative  channels  after
MNF transformation), the Enhanced Vege-
tation Index (EVI), and ALS data (the nor-
malized  Digital  Surface  Model  and  seg-
ments of individual tree crowns), achieving
a general classification accuracy of 79.20%
(κ  =  0.68).  Jarocinska  et  al.  (2016) at-
tempted to identify 12 tree species in the
area  of  Bialystok  (Poland).  The  classifica-

tion was carried out on the 40 most infor-
mative channels  of  hyperspectral  imagery
(MNF  transformation),  using  the  spectral
angle mapper (SAM) method. Total classifi-
cation accuracy was 78.80% (κ = 0.69).  Pu
& Landry (2012) classified 7  tree and tree
group  species  using  IKONOS  and  World-
View-2 satellite imaging. The general classi-
fication  accuracy  for  the  method  was
56.98% (κ = 0.48) based on IKONOS data,
and 62.93% (κ = 0.42) for WorldView-2 data.
The authors developed a stepwise masking
protocol to distinguish between sunlit and
shaded tree canopies, and they compared
the accuracy of  tree species mapping be-
tween  four-band  IKONOS  imagery  and
three  different  band  combinations  of
WorldView-2  imagery  (four  “traditional”
bands, four additional bands, and all eight
bands).  Latif et al. (2012) used World-View

2  data  to  perform  a  classification  of  8
species using the minimum distance algo-
rithm.  They  achieved  a  user’s  accuracy
(UA) of 0-87.2% for the individual species.
Tooke et al. (2009) used QuickBird imagery
and  information  about  shaded  areas  ob-
tained from ALS data. They used the deci-
sion tree classification algorithm and linear
spectral  mixture  analysis  (SMA) to  distin-
guish  between  low  and  high  vegetation,
and then between coniferous and decidu-
ous trees with different health conditions
(manicured and mixed).  Verlič et al. (2014)
combined  ALS  data  and  satellite  imagery
(WorldView-2), to determine five different
species  using  example-based  feature  ex-
traction (ENVI 5 software), by applying the
support vector machine (SVM) model, and
achieved a UA from 12% (sweet chestnut)
to 69% (Norway spruce). Tigges et al. (2013)
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Tab. 2 - Selected scientific publications reporting tree health condition using remote sensing data. (UA): user accuracy; (OA): overall
accuracy; (*): Determination of health condition through variables.

Publication
Study 
Area Data Set Sensor Method

Date of RS 
data acqui-
sition

Health 
Condition* Accuracy

Zhang et 
al. (2014)

Canada DF (hyperspec-
tral imagery, 
aerial imagery)

ProSpectTIR-
VS2/Google 
Earth imagery

Vegetation indices, leaf 
chlorophyll content, 
longitudinal profiles,

July 2010 Healthy/ 
High/medium/ 
low condition

62.5% (OA)

Hu et al. 
(2014)

Canada DF (ALS, hyper-
spectral image-
ry)

9 and 4 bands/ 
ALS (1 pts./m2)

Individual tree crown 2009, ALS- 
summer 2007

Healthy/un-
healthy (1 
species - Ash)

70%

Pontius et 
al. (2017)

US DF (ALS, hyper-
spectral image-
ry, thermal im-
agery)

GLiHT Segmentation June 2006 4 vigor classes 0-62%

Plowright 
et al. 
(2016)

Canada ALS Leica ALS70-HP 
(25 pts./m2)

Crown density as the response 
variable and the percentage of
non-ground LiDAR returns and 
the coefficient of variation of 
return heights as separate 
predictor variables

April 2013 Crown density 0.62 (R2) for
trees in 8 m

to 14 m
height class

Hanou 
(2010)

Canada Hyperspectral 
imagery

ProSpectTIR-VS2 Gallery Count / Area (DBH) July/August 
2010

Low/medium/hi
gh Emerald Ash 
Borer

0.8 (R2)

Malthus & 
Younger 
(2000)

UK Aerial imagery CASI Correlation between: Visual 
Stress Index (leaf colour × 
crown density); General Crown
Condition Index (crown die-
back × crown density × Leaf 
size × number of small dead 
limbs); Foliage Index (foliage 
colour × degree of leaf 
chlorosis × degree of leaf 
necrosis); Overall Tree 
Condition Index (a combination
of the first threeindices prior 
to equilibration, summed and 
then normalised) and 
vegetation indices

September 
1996

Defoliation and 
OTC index for 4 
species

-0.14 – -0.83
(correlation)

Xiao & 
McPherson 
(2005)

US Aerial imagery Wild RC10 Vegetation indices (NDVI) Summer 2003 
and 2004

Classification 
(healthy/
unhealthy)

88.9 %

Holopainen
et al. 
(2006)

Finland Aerial imagery - Photointerpretation July 2003 Assessing the 
volume of trees 
damaged as a 
result of drought

-

Jarocinska 
et al. 
(2016)

Poland Hyperspectral 
imagery

HySpex Correlation with vegetation 
indices

July and 
August 2015

Discoloration 0.43 (R2)

Defoliation 0.44 (R2)
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performed  the  classification  of  the  eight
species that are considered to be dominant
in  Central  Europe,  by  testing  different
spectral  and temporal band combinations
of  five  RapidEye  images  that  were  col-
lected during the vegetation season. To im-
prove the results,  they used ancillary sur-
face and terrain  models.  The UA of  each
classification depended on the tree species
and  varied  from  66%  to  99%.  Berland  &
Lange (2017) used GSV materials to identify
tree species. In their study, a botanic spe-
cialist identified tree species based on GSV
pictures,  and  if  the  identification  of  tree
species was not possible, the type of tree
was identified.  Furthermore,  results  were
compared  with  data  from  field  measure-
ments. The classification accuracy was 66%
on the level of species and was 90% on the
level of genus.

It is almost impossible to compare results
that were obtained in different studies be-
cause there are too many differences be-
tween the study sites, the total number of
species and the time when data was col-
lected. In Xiao et al. (2004) work, a method
called the Number of Categories Adjusted
Index (NOCAI) was used to compare differ-
ent papers. The NOCAI is calculated by di-
viding the accuracy that was achieved by a
specific algorithm to give an expected ac-
curacy  that  would  be  obtained  if  trees
were randomly assigned to a species. The
expected  accuracy  is  simply  1/k·100%,
where k is the number of species. The NO-
CAI was applied to works using ALS and hy-
perspectral  data,  with  the  highest  NOCAI
value (27.52)  being achieved by  the  algo-
rithm  developed  by  Zhang  &  Qiu  (2012).
Tigges  et  al.  (2013) reported  that  NOCAI
values  of  6.84  for  studies  that  only  used
ALS and satellite data for classification. The
most accurate results  regarding tree spe-
cies was obtained by combining hyperspec-
tral imagery and ALS data during analysis
(Zhang  &  Qiu  2012,  Voss  &  Sugumaran
2008).  As shown by previous studies,  the
combination of these datasets can be used
to  perform  both  pixel-  and  object-based

classifications. A pixel-based approach en-
ables classification results with errors from
5.10% to 18.80% (OA) to be achieved, which
is better than results obtained by analyzing
single  format  data  (Liu  et  al.  2017).  It
should  be  noted  that  in  a  single  tree
crown,  the  leaf-level  spectral  reflectance
may vary with leaf biochemistry and water
content.  Dian et al.  (2016) noted that the
variability  in  a  class  may be greater  than
between  classes.  For  hyperspectral  data
this is not the case, since lower GSD data
area used because of the high cost of ac-
quisition.  To  obtain  the  best  results  two
strategies  should  be  implemented:  either
hyperspectral  data  (which  enlarges  spec-
tral  information),  or  multispectral  data
with ALS data (to compensate for the lack
of  spectral  information),  should  be  com-
bined with structural information from ALS
data. Hyperspectral and ALS data are cur-
rently the best possible combination of RS
data for species classification.

The season in which data were obtained
had  an  impact  on  the  accuracy  of  the
species  classification.  Voss  &  Sugumaran
(2008) achieved  better  classification  re-
sults using data collected in summer (OA =
48%  without  ALS;  OA  =  57%  with  ALS)
rather than in autumn (OA = 45% without
ALS; OA = 56% with ALS), although the dif-
ference was small (3% without ALS, 1% with
ALS data),  and had no practical  meaning.
According to Liu et al. (2017), the most im-
portant  parameters  for  detecting  tree
species  during  the  spring  budburst  stage
were the Anthocyanin Content Index and
the Photochemical Reflectance Index. The
most widely used classification algorithms
include the SVM, the SAM, the random for-
est (RF), and the maximum likelihood (ML).
Accurate results were generated by all  al-
gorithms, but due to the diversity of study
sites, number of classified species, number
of reference data used, and the fusion of
various types of RS data acquired at differ-
ent  times  of  the  year,  it  is  impossible  to
identify which algorithm is most  advanta-
geous (Forzieri et al. 2013).

Opportunities and limitations of 
individual remote sensing technologies

From the point of view of public adminis-
tration,  the information regarding individ-
ual tree position is one of the most impor-
tant attributes acquired during inventories.
Detailed  location  information  constitutes
the  basis  for  the  efficient  planning  of
greening resources (cutting/planting), and
the construction of ground and terrestrial
infrastructure  (Östberg  et  al.  2012b).  The
content of inventory maps produced from
these data is often essential to making ad-
ministrative  decisions.  According  to  the
technical standards set by the Ministry of
Internal  Affairs  and  Administration  in  Po-
land  regarding  the  execution  of  detailed
surveys,  single  trees,  as  well  as  parks,
squares, and lawns, are classified as Group
II  situational  points.  This  classification  re-
quires that their location on maps should
be specified within 0.30 m accuracy, in rela-
tion  to  geodetic  control  network  points,
before results can be added to the National
Geodetic  and  Cartographic  Database
(MIAA 2011).  According to published stud-
ies, it is possible to identify tree locations
to this level of accuracy with TLS, but MLS
and ALS data do not currently meet this re-
quirement. Many of the tenders offered by
local  authorities  include  unspecified  en-
tries,  e.g.,  the “identification of trees and
bushes  in  the area of  […] in order  to in-
clude their specific position in an inventory
map” (Horbaczewska 2016). In the authors’
opinion, such an entry allows the applica-
tion of TLS or ALS techniques to acquire in-
formation on tree locations with an error
defined  in  the  subject  literature.  Tender
documents  (for  example,  in  Poland)  re-
lated to  urban  forest  inventories  indicate
that height and crown diameters should be
measured to an accuracy up to 0.50 m and
1.00 m, respectively, and a breast height di-
ameter with an accuracy of 0.01 m. The re-
sults of the literature reviewed here show
that TLS data can be used to determine all
parameters  with  the  required  accuracy
(Vonderach  et  al.  2012).  MLS  technology
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Tab. 3 - Accuracy evaluation of specific tree parameters (Grade 0: no data; Grade 1: R2 ≤ 0.5 or accuracy ≤ 50%; Grade 2: 0.5 < R2 ≤ 0.7
or 50% < accuracy ≤ 70%; Grade 3: 0.7 < R2 =< 0.9 or 070% < accuracy ≤ 85%; Grade 4: R2 > 0.9 or accuracy > 85%). The listed number of
publications is reported in brackets. Last column shows the number of parameters (attributes) which could be measured using the
corresponding method.

Data/Method Location Tree
height

DBH Crown
span

Height of
tree crown

basis

Crown
projection

surface
Species Health

condition
Total

Attributes

Aerial imagery - - - - - - 4 (4) 1-3 (5) 2/8

ALS 4 (3) 4 (3) - - 3 (1) - 0 (1) 2 (1) 5/8

DF (ALS, TLS/MLS) 3 (1) 4 (1) - - - 0 (1) - - 3/8

DF (ALS, Hyperspectral imagery) 4 (3) 4 (2) - 4 (2) 4 (1) - 1-4 (10) 2-3 (3) 6/8

DF (ALS, Satellite imagery) 3/4 (1) 3/4 (2) 3 (2) 4 (2) - - 1-4 (2) - 5/8

DF (TLS, ALS, Satellite imagery) - 4 (1) - - 2 (1) 3 (1) - - 3/8

Other (GSV) - - - - - - 2 (1) - 2/8

Digital photographs 4 (1) 4 (1) 4 (2) 4 (1) 4 (1) - - - 5/8

TLS/MLS 4 (3) 4 (4) 4 (3) 4 (1) 4(1) - - - 5/7

Satellite imagery 3 (1) - - - - - 2 (2) - 2/7
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can be used to accurately measure crown
span and height, but the accuracy required
for  DBH of  up to a  few centimeters  may
not be sufficient for end users (Wu et al.
2013).  Zhang et al. (2015) showed that it is
possible  to  measure  tree  height  with  an
RMSE value of 1.11 m with ALS (calculated
against field based measurements). If one
takes into account the error of 0.45 m as-
sociated with manual field measurements,
the resulting error in height measurements
derived using the ALS method will  be ap-
prox.  0.7  m.  In  reality,  this  value  can  be
lower, since high density ALS data (which is
often acquired over cities) usually records
heights  that  are  very  close  to  the  real
height of trees. The error will be within the
range of  practitioners’  requirements.  ALS
data  may  also  be  used  as  an  alternative
source  of  data  for  crown  span  measure-
ments.  It  is not possible to measure DBH
directly  using  ALS  methods,  and  assess-
ment  of  DBH  via indirect  methods  is  too
imprecise to constitute a substitute source
of reliable data (Shrestha & Wynne 2012).
The  optimal  dataset  therefore  comprises
individual  tree  positions  and  geometrical
attributes  obtained  from  terrestrial  and
aerial laser scanning data, tree heights ob-
tained from ALS data,  and detailed  infor-
mation about stem quality and precise tree
location from TLS data (Tanhuanpää et al.
2014).  It  should be noted that  no studies
were found that discuss the integration of
information  collected  by  terrestrial  laser
scanning and airborne laser scanning. Such
studies have been carried out in forest ar-
eas  (Bazezew  2018),  and  it  is  likely  that
they could be applied successfully to urban
areas.

Tree  species  is  the  most  important  at-
tribute acquired during an inventory (Öst-
berg et  al.  2012b).  Urban areas  contain  a
great  variety  of  species;  typically,  native
tree  species  dominate  the  urban  land-
scape, accompanied by a mixture of minor
non-native species.  Alonzo et al. (2014) in-
dicated that it is possible to classify up to
approximately  30  of  the  most  numerous
tree species in a given area. From a practi-
cal  point  of  view,  less  numerous  species
should  be  classified  into  an  aggregate
group,  i.e.,  deciduous/coniferous  species.
Therefore, substantial limitations remain in
regard  to  the  possibility  of  replacing  the
field measurement of tree species with in-
formation obtained by RS.

RS data enables tree health to be recog-
nized with high accuracy (Xiao & McPher-
son 2005). A lower accuracy is provided by
methods that specify correlations between
vegetation indices or variables that are cal-
culated from a point cloud, and parameters
such  as  defoliation  or  discoloration.  As
shown by Xiao & McPherson (2005), RS en-
ables  fast  acquisition  of  information  re-
garding the health condition of  individual
trees  within  the whole urban area.  Infor-
mation regarding  individual  trees  may  be
used to plan cutting or replacement plant-
ing. Furthermore, the information from in-

dividual  pixels  within  crowns  may  deter-
mine the need for tree pruning, watering
or carrying out a site survey to determine
the  cause  of  damage.  Jarocinska  et  al.
(2016) showed that the use of continuous
data,  such  as  RS  data,  enables  greening
condition  to  be  differentiated  depending
on  location  (e.g.,  trees  along  roads  are
characterized  by  worse  health  condition
than ones that are at a greater distance).
From a practical point of view, it  is more
important  to develop a  model  that  could
help detect  the  occurrence of  pathogens
at an early stage, so as to minimize nega-
tive effects, than to define the pre-existing
effects of various factors that have caused
deterioration  in  tree  health.  Comprehen-
sive data (e.g., age and species) are needed
to accurately assess the health condition of
trees, and parametrize models effectively.
The  unavailability  of  such  data  may  de-
crease the effectiveness of ALS data in de-
termining tree health conditions, since for
example height information from ALS can
be used as a proxy for tree age.  It is not
possible  to  identify  damage factors  (e.g.,
fungal pathogens) from RS data, but it  is
possible  to  determine  the  general  condi-
tion  of  trees  (e.g.,  good,  average,  poor),
which may constitute the basis for further
field investigations. The accuracy of assess-
ing selected tree attributes from different
data  sets  is  presented  in  Tab.  3.  The  au-
thors evaluated the results in the literature
according  to  the  following  guidelines:
Grade 0: no data; Grade 1: R2 ≤ 0.5 or accu-
racy ≤ 50%; Grade 2: 0.5 < R2 ≤ 0.7 or 50% <
accuracy ≤ 70%; Grade 3: 0.7 < R2 ≤ 0.9 or
70% < accuracy ≤ 85%; Grade 4: R2  > 0.9 or
accuracy > 85%. The compatibility of infor-
mation from different data sets constitutes
the other factor to be considered when se-
lecting RS data for inventories.

In  studies  that  applied  data  fusion,  the
authors, depending on the purpose of their
studies, did not always have to assess all of
the  attributes  that  are  listed  in  Tab.  3.
Therefore, based on the results of this liter-
ature review and the compatibilities of indi-
vidual data items, it can be concluded that
complete information regarding the eight
listed attributes may be obtained using ter-
restrial  or airborne laser scanning and air-
borne  photography  (hyperspectral).  Data
selection  should  also  depend  on  field
based  data  and  available  financial  re-
sources. Holopainen et al. (2013) suggested
that TLS measurements, due to their cost
and  labor  consumption,  should  be  per-
formed only in environmentally significant
areas, where a more accurate assessment
of tree parameters  other  than location is
required. The application of MLS is reason-
able for trees that are growing in the vicin-
ity  of  roads  or  in  parks.  Airborne  data
should be collected to compile inventories
over the area of a district or a city.

Remote sensing data collection methods
have their limits. Above all, the data are rel-
atively expensive and require sophisticated
methods of processing by specialists. Pub-

lic  administration  in  city  level  currently
lacks the specialists and software which al-
low large datasets to be processed auto-
matically.  Many of the publications in this
review use sophisticated, bespoke process-
ing techniques  which are not available as
user-friendly software. This is a major con-
straint on the application of more sophisti-
cated  processing  and  implementation  of
such technologies to facilitate the determi-
nation of  more detailed characteristics  of
single  trees.  The  need  for  specialist  pro-
cessing results in not only the costs of ac-
quisition,  but  also  data  processing  costs,
being higher, as well as study lengths being
longer. The most expensive data are those
which  enable  the  highest  measurement
precision; that is, TLS and MLS. Airborne or
satellite data acquisition techniques make
it possible to analyze large areas, but the
precision of such research is  lower (Holo-
painen et al. 2013).

The  ideal  remote  sensing  technique  for
data acquisition is dependent on the scale
of the analysis. In the case of urban vegeta-
tion, the optimal scale of analysis is a single
tree, however, many works are performed
throughout cities to determine vegetation
cover (Gupta et al. 2012, Mincey et al. 2013,
Ucar et al.  2016).  Taking into the account
the shape and size of tree crowns in urban
environments, it is difficult to constrain an
optimal  ground sample distance for a de-
fined  area.  In  the  aforementioned  litera-
ture, the data densities range from several
to several dozens of points per square me-
ter, and spectral data resolution from sev-
eral  dozens  of  centimeters  to  dozens  of
meters.  Myint et al. (2011) suggested that
pixel size used to classify objects should be
at least half the size of the object, as too
many small pixels for a single large object
causes  large  spectral  change,  making  it
more difficult to classify the object.

Atmospheric conditions can pose a prob-
lem to remote sensing techniques. Remote
sensing data acquisition, in order to be use-
ful,  must  be  carried  out  in  optimal  light
conditions,  ideally  without wind and with
no cloud cover (Ju & Roy 2008). In many
countries  (e.g.,  Poland)  such  days,  when
data acquisition is possible, are limited (30-
40% of the year). Cloud cover can make it
impossible  to  acquire  data  for  several
weeks.  This  can have  significant  negative
impacts,  considering  that  in  order  to  ac-
quire  accurate  classification  results,  most
images need to be acquired in the vegeta-
tion period, which only lasts a few months
a year.

The remote sensing data market does not
appear  ready  to  carry  out  surveys  for  a
large number of towns, especially if multi-
temporal  analyses  are  being  considered.
Data is acquired at much greater effort in
multi-temporal analyses, and much bigger
datasets  are  acquired  from  single  flights.
This  prolongs  the  time  required  for  data
processing, and thus the research output.
In  a  country  with  several  dozens  of  big
cities, it is practically impossible to acquire
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RS data more often than once a year for a
single city. The ability to collect such data
depends  on  the  remote  sensing  services
market in any particular country, the num-
ber and availability  of  hyperspectral  scan-
ners, and many other factors related to the
acquisition of remote sensing data.

Conclusions
The use of remote sensing data makes it

possible to determine the characteristics of
urban vegetation at various levels of detail
and  at  different  scales.  The  accuracy  of
analyses depend on the type and quality of
the RS data used, and the environment in
which the analyses were carried out.

Laser  scanning is  a  technology that  col-
lects  the  most  versatile  RS  data  on  the
characteristics of trees. TLS has the highest
precision of  measurement,  while  ALS has
the largest operating system.

Spectral data, in particular hyperspectral
data, allow the classification of up to sev-
eral dozen species of tree in urban areas.
The integration of many datasets, particu-
larly spectral data (aerial images and satel-
lite images) and structural data (LIDAR), fa-
cilitates the most complex use of RS data
and helps to improve tree species classifi-
cation estimates.

To estimate the largest possible number
of significant parameters from RS data, it is
necessary to apply data that have been in-
tegrated from multiple sources.

The most important research challenges
in  urban  vegetation  monitoring  (apart
from the development of data processing
and data integration methods) are identi-
fied as refining species classification meth-
ods,  tree  segmentation  methods,  and
methods of determining specific tree char-
acteristics.  There are no studies on these
topics that have been performed on large
datasets, carried out on a wide geographic
scale or on a homogeneous set of remote
sensing data.

Despite the fact that this review summa-
rized  and  attempted  to  compare  the  re-
sults  of  the  different  methods  and  tech-
nologies used in the estimation of tree fea-
tures  and  species,  it  is  difficult  to  state
clearly which of  them are the most accu-
rate. This is mainly due to the enormous va-
riety  of  data  usage,  processing  methods,
ground data volumes and methods of inte-
grating different  types of  remote sensing
data.

At the moment, no “best practice” meth-
odologies  for  the  use  of  RS  in  urban
forestry  do  exist.  Such  guidelines  would
address issues such as the selection of RS
data for specific purposes, or the technical
specifications necessary to achieve particu-
lar objectives. In addition, there are no de-
dicated user-friendly applications designed
for  the  use of  civil  servants,  who do not
necessarily  have  extensive  knowledge
about remote sensing, but are responsible
for acquiring spatial information.
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