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Accuracy of determining specific parameters of the urban forest using
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Introduction

The concept of urban forestry has been
defined as “the art, science, and technique
related to trees and forest resources’ man-
agement in urban and peri-urban areas in
order to provide communities with psycho-
logical, sociological, economic, and aes-
thetical benefits” (Miller 1997). According
to this definition, the term urban forestry
includes not only forests within urban ar-
eas, but also trees grown along roads, in
parks, squares, and graveyards, among
other places (Randrup et al. 2005, Konij-
nendijk et al. 2006). There are many bene-
fits to human well-being that trees bring to
our cities. Trees and other vegetation play
an important role in reducing air pollution,
thereby decreasing the incidence of respi-
ratory diseases (Nowak & Heisler 2010).
Appropriate placement of trees can reduce

This paper reviews the current state of knowledge in the field of urban forest
inventory and specific tree parameters derived by remote sensing. The paper
discusses the possibilities and limitations of using remote sensing to determine
the following characteristics of individual trees acquired during the inventory:
position (coordinates), tree height, breast height diameter, tree crown param-
eters (crown span, height of tree crown basis, crown projection surface),
health condition, and tree species. A total of 543 papers published in scientific
databases (Scopus® and ScienceDirect®) from the year 2000 to December 2017
have been analyzed; 86 of them were used for the review. The most important
outcomes are: (a) the integration of many datasets, in particular spectral data
(aerial images and satellite imageries) and structural data (LIDAR), allows the
most complex use of remote sensing data and helps to improve the accuracy of
parameter estimations as well as the correct identification of tree species; (b)
the highest precision of measurement is characteristic of TLS, while ALS data
has the largest operating system; (c) remote sensing data applications are as-
sociated with a large number of sophisticated processing on very large
datasets using often proprietary elaborations; (d) the use of remote sensing
data makes it possible to determine the characteristics of urban vegetation at
various levels of detail and at different scales.
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“heat island” effects, helping urban com-
munities adapt to the effects of climate

As reported by Tate (1985), and Bickmore
& Hall (1983), inventory is the tool that can

change by reducing heat stress (Takebaya-
shi & Moriyama 2007, Zupancic et al. 2015).
Access to parks and nature can have a posi-
tive influence on physical activity (Kerr et
al. 2012). Giles-Corti et al. (2005) proved
that people who use green spaces in cities
attain recommended levels of physicals ac-
tivity more easily than non-users. Stigsdot-
ter et al. (2010) found that people who
lived beyond 1 km from a green zone (i.e.,
park) had a worse score on the dimensions
of general and mental health and vitality,
as well as higher levels of stress, than peo-
ple who lived within 1 km of a green zone.
Forest, parks and trees also influence real
estate value and urban landscape aesthet-
ics, and can play a role in storm water man-
agement and wind speed reduction.
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be used for the efficient management of
greening in urban areas at various scales. A
tree inventory collects accurate informa-
tion on the condition, diversity and spatial
distribution of trees in urban areas. Inven-
tory results may constitute a starting point
for a number of different analyses, such as
variations in tree structure and species
within urban areas (Sjéman et al. 2012),
how trees shape the urban microclimate
(Nowak et al. 2001), the impact of trees on
reduction of air pollution and CO, accumu-
lation (McPherson et al. 1997, Nowak et al.
2006), the impact of greening on the value
of real estates (Anderson & Cordell 1988),
and monitoring the risk of damage to vege-
tation and vegetation health (Maruthave-
eran & Yaman 2010, Kronenberg 2012).
Three types of inventory can be used to
assess the vegetation in urban areas: par-
tial, total, and random (statistical). Partial
inventories are applied to selected urban
areas, e.g., a park, a square or a tree av-
enue. A total inventory is a comprehensive
description of all trees, groups of trees and
bushes, including the identification of pos-
sible areas for new planting within the bor-
ders of streets, parks, squares, and other
public spaces. Statistical methods are
based on random selection and measure
small parts of the area of interest, with
sample plots being measured in the field
(Escobedo & Andreu 2008, Clarke et al.
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2013). The size of the field sampling area is
selected in order to cover 5-10% of all trees
or entire area, depending on spatial cover-
age and species variability. Inventories are
usually carried out according to inventory
key which include e.g. the list of tree spe-
cies. Until now, inventories have been car-
ried out mainly along roads, and less fre-
quently for urban forests or parks (Thaiut-
sa et al. 2008, Sjéman et al. 2012). The main
aims of the studies conducted in urban en-
vironment were the maintenance of road
safety, the appropriate selection of species
for planting, and the monitoring of
changes in urban forestry (Keller & Konij-
nendijk 2012).

The varying aims of urban resources mon-
itoring, as well as the diversity of data re-
cipients, results in a large number of pa-
rameters being acquired for each single
tree. For example, research carried out us-
ing the Delphi method (a method used to
identify the most reliable responses to
questions from a group of experts in Scan-
dinavia — Ostberg et al. 2013) ended with
148 parameters assigned to single trees, all
of which were considered to be important.
Such a number of variables are difficult to
acquire and harmonize for practical use. To
increase ease of use, various attempts
have been made to normalize inventory
rules at the local or national level (Ostberg
et al. 20123, UNRI 2010). As a result, with
the help of practitioners, the ten most im-
portant tree parameters have been de-
fined: genus and species, health condition,
trunk position, class of damage hazard,
presence of fruit bodies, disease treat-
ments, conservation value, location (i.e.,
street/park), age class, and finally, stem cir-
cumference at 1 meter height at time of
planting (Ostberg et al. 2013). From an ur-
ban forest management perspective, infor-
mation about tree height, crown parame-
ters, and diameter at breast height (DBH)
is also important (Saarinen et al. 2014, Lee

et al. 2016).

The high costs associated with inventory
data collection, as well as the wide range
of acquired parameters and data applica-
tions, have increased the interest in finding
alternative methods to perform urban
greening inventories (Nielsen et al. 2014,
Lee et al. 2016). To determine parameters
for single trees or tree groups, or to ac-
quire information regarding vegetation
structure, remote sensing (RS) methods
have been used with increasing frequency.
The most commonly-used remote sensing
methods include airborne (ALS), terrestrial
(TLS) and mobile laser-scanning (MLS - Wu
et al. 2013, Tanhuanpéaa et al. 2014), satel-
lite imaging (Ardila et al. 2012), aerial pho-
tography (Xiao & McPherson 2005), and
more recently unmanned aerial vehicle
technology (Putut Ash Shidiq et al. 2017).
RS data can be expensive to acquire, and
each of the aforementioned technologies
has limitations and advantages. The aims
of this paper are therefore: (i) to present a
systematic overview of scientific publica-
tions in which RS methods were used to
determine the most important parameters
of single trees, in particular: location, spe-
cies, health condition, tree height, DBH,
crown span (extent), height of tree crown
base, and crown projection surface; (ii) to
analyze the accuracy of individual parame-
ters estimated through RS, and their viabil-
ity as an alternative to field measurements;
(iii) to specify which parameters of single
trees can be determined using different
spatial data, and how well they can be de-
termined; (iv) to specify the opportunities
and limitations associated with the various
RS techniques; and (v) to identify further
research directions in the subject area.

Material and methods

The review of international literature pre-
sented here is based on the search results
of two databases: Scopus® and Science Di-
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rect®. The literature search was carried out
pursuant to the guidelines formulated by
Pullin & Stewart (2006). Three keywords
were defined in a browser window, i.e., ur-
ban¥*, forest *, and inventory*, which were
searched for in categories such as title,
keywords, and abstract. The search was
conducted for papers published between
January 2000 and February 2017, and 543
records were retrieved. Search results
were refined based on title and abstract
content. Only those articles concerned
with tree inventories in urban environment
were selected for further analysis. Detailed
analysis of the selected articles showed
that nine of the studies were conducted us-
ing only field measurements. These articles
were also removed from the analysis (Cum-
ming et al. 2001, Brack 2006, Cumming et
al. 2008, Thaiutsa et al. 2008, Sobczynski et
al. 2011, Muthulingam & Thangavel 2012,
Clarke et al. 2013, Zygmunt et al. 2014,
Strunk et al. 2016). The final database in-
cluded 86 scientific papers. The selected
papers fulfilled the following criteria: the
study was published in English, the scope
of the study was urban forestry, and the
main focus of the study related to greening
inventory methods at the level of individual
trees and tree groups. The following infor-
mation was recorded in the metadata table
constructed for the search results: journal
name; year of publication; the country
where the research was carried out; the in-
ventory methodology; and a detailed syn-
opsis of the study content.

Results

Overview of scientific papers

The analyzed studies were carried out in
25 countries on all continents, except
Africa and Antarctica. Most papers were
performed in the United States (38 pa-
pers), followed by Germany (9 papers), Fin-
land (8 papers), and the United Kingdom (5
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papers — Fig. 1). This distribution reflects
the general number of studies performed
on urban forestry worldwide. As reported
by Bentsen et al. (2010), in the principal
journal in this subject area, Urban Forestry
and Urban Greening, 59% of papers in the
years 2000-2008 were performed in North
America and Scandinavia.

The number of scientific papers whose
focus is the determination of greening pa-
rameters has trended upward over time.
The increase has been shown to be a result
of improved access to RS data acquisition
technologies; the growth of forestry-fo-
cused scientific research, the results of
which can be used for analyses of greening
in urbanized areas (see Fig. S1 in Supple-
mentary material); and the increased avail-
ability of spatial data, resulting from the
creation of free-of-charge spatial data re-
positories (Banskota et al. 2014, Chi et al.
2016, Wulder et al. 2016, Kempeneers &
Soille 2017). A diverse range of RS technol-
ogies have been developed to determine
individual tree parameters and forest stand
characteristics (Fig. 2). Since 2010, data
from laser scanning has been acquired in
multiple studies (ALS and TLS: 19 published
studies). Researchers have also often per-
formed analyses from the acquisition and
combination of several sets of spatial data
(data fusion, DF: 32 published studies).

Accuracy of tree attributes determined
using remote sensing

Position

The identification of individual tree posi-
tions by means of RS requires two parame-
ters to be defined precisely, i.e., individual
tree detection and trunk location (X, Y -
Tab. 1). ALS data have predominantly been
used for the detection of individual trees,
and have been processed using the follow-
ing algorithms: the tree climbing algorithm
(Zhang & Qiu 2012), individual tree detec-
tion (ITD - Holopainen et al. 2013), and wa-
tershed segmentation (crown-level fusion
of hyperspectral imagery and ALS data -
Alonzo et al. 2014). Individual tree crowns
have been delineated using canopy height
models (Tanhuanpaa et al. 2014), image
segmentation (Phu La et al. 2015), local
maxima algorithms (LMA), and the Kouk-
oulas and Blackburn algorithm (KBA — Rah-
man & Rashed 2015), as well as a variable
window filter (Plowright et al. 2016). The
accuracy of detection ranged from 69%
(KBA method) to 99% (variable window fil-
ter method).

High spatial resolution satellite imaging is
an alternative to laser scanning for tree
species group detection. Ardila et al. (2012)
achieved 70% to 92% accuracy in species de-
tection, depending on the study area, with
the use of QuickBird satellite imaging. The
error of commissioning associated with
this technique was equal to 26% (mainly for
single trees with a crown area < 15 m?), and
the error of omission ranged from 18% to
30%. Apart from the method used, the
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Fig. 2 - Number of publications retrieved from Scopus® and ScienceDirect® databases
per year and the remote sensing technology used.

character of the research area also impact-
ed on the reliability of results, which varied
with, among other factors, dominant
species type (deciduous/coniferous), tree
age, and quality of reference data (Ster-
enczak 2013). Plowright et al. (2016), who
achieved the most accurate detection re-
sults, used the variable window filter algo-
rithm in their research, which, prior to that
study, had mainly been applied to forest ar-
eas (Popescu et al. 2003, Sterenczak 2013),
where the parameters of the tool were cal-
ibrated in accordance with species compo-
sition and age/height of the forest. In Plow-
right et al. (2016) research, the method
was calibrated against a single species, but
also indicated that it is possible to develop
equations for other tree species and apply
them in parallel. Rahman & Rashed (2015)
showed that combining the LMA and KBA
methods generates more reliable results
than using these methods separately. The
improvement in results is due to the limita-
tion of the KBA algorithm in identifying and
measuring the height of individual trees
and groups of trees, being overcome by
the LBA algorithm which has the ability to
identify individual trees with overlapping
canopies. Tanhuanpda et al. (2014) pointed
out that the time of data acquisition has an
impact on the obtained results, in that if
the reference data (field data) and RS data
were obtained on different dates, some
trees may have been removed, planted or
replanted. In this case, attention should be
paid to data cohesion. The main reasons
for that are a wide range of species (many
non-native species), and spatial/structural
variability (e.g., single tree growth, varying
light conditions, and tree shape modifica-
tion by human activities). A large variation
in the size and shape of tree crowns forces
the user to choose between the algorithms
generating too many or too few trees dur-
ing segmentation.

The problem of reference data quality
from GIS urban databases was emphasized
by Plowright et al. (2016), who showed the
importance of improving coordinate accu-
racy derived from RS databases, by cor-
recting positional errors, and removing
trees that may have been incorrectly re-
corded. Moreover, Tanhuanpdd et al.
(2014) pointed out that substantial prob-
lems in individual tree detection are caused
by the diversity of tall objects in the urban
environment, which confuse the algo-
rithms used to detect vertices; for exam-
ple, lamp posts, power lines, and tall vehi-
cles in the streets. Such issues present dif-
ferent challenges for researchers involved
in the detection of trees in urban environ-
ments, compared to studies that detect
trees in forest areas (Tanhuanpda et al.
2014, Zhang et al. 2015). Ardila et al. (2012)
pointed out that aerial images collected
during leaf-off conditions are usually sub-
ject to geometric distortions that affect
the accuracy of tree surface estimation,
but are only occasionally used. They also
emphasized that the urban environment is
more diverse than forest areas; in forests,
the picture is less complex and the adop-
tion of specific parameters in Geographic
Object-based Image Analysis (GEOBIA) ge-
nerates results with a similar degree of ac-
curacy in different areas. ITD methods are
available and in general give acceptable re-
sults for urban greening inventories. ALS
data are the most reliable, and multispec-
tral data are adequate for this purpose. In-
tegration of the various RS data, where
possible, improves the accuracy of results.
Most authors agreed that the urban envi-
ronment is more complex that the forest
environment, which causes many addi-
tional problems in the detection of individ-
ual trees.

Tompalski (2009) processed TLS data us-
ing the method of convex hulls generated
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Tab. 1 - Selected scientific publications reporting individual tree detection, tree height, DBH, and crown parameters. The research
area, data set, method and accuracy are reported. (-): this variable was not specified; (n/d): this variable was specified but no error

was given.
X,Y Tree crown
Single tree Coordinates Tree height DBH
s Study . A parameters s
Publication Data Set Method detection accurancy prediction . prediction
Area prediction
rate and results results
. s results
precision
Shrestha & us DF (ALS, satellite Manual (acquiring 1.34m 0.75 (RMSE) 0.11 (RMSE)
Wynne (2012) imagery) information from a (RMSE); 0.9 (RY) 0.82* (R?)
raster) 0.89 (R)
Lee et al. us DF (ALS, satellite Regional 1.64 m 1.07 m 0.10 m
(2016) imagery) maxima, manual (RMSE); (RMSE) (RMSE);
0.88 (R?)
Zhang & Qiu  US DF (ALS, Tree climbing algorithm 93.5% 0.57-1.11m 0.63-0.84 -
(2012), Zhang hyperspectral (RMSE); (R%)
et al. 2015) imagery) 0.93-0.98
(R)
Phu Laetal. US DF (ALS, Image segmentation 62.0-70.0% 0.45-0.97 0.26-0.96
(2015) hyperspectral (R?) (R?)
imagery)
Alonzo et al. US DF (ALS, Watershed 83% -
(2014) hyperspectral segmentation
imagery)
Banzhaf & Germany DF (Orthophotos, Geographic Object n/d -
Kollai (2015) ALS) Based Image Analysis
(OBIA)
lovan et al. France  DF (Orthophotos, SVM / obust region 78% -
(2008) ALS) growing algorithm based
on tree-shape criteria
Saarinen et Finland  DF (ALS, TLS) Watershed 0.1m -1.0-1.0 m - 0.39-0.76 m
al. (2014) segmentation/Visual (bias) (difference) (RMSE)
interpretation
Tompalski Poland  DF (TLS, ALS, Voxel-Based Method 1.77 m 0.46-0.56 0.03m
(2013) satellite imagery) /Convex (RMSE); (R?) (o)
hall/LasBoundary 0.94 (R?)
algorithm
Holopainen et Finland  DF (ALS, TLS, MLS) Individual Tree 73.29-  0.44-1.57 m -
al. (2013) Detection/ cylinder 79.22% (RMSE)
fitting
Plowright et Canada ALS Variable window filter 99.0% 1.09 m; -
al. (2016) 0.93 (RY)
Rahman & us ALS KBA/LMA 69.0-73.0% 0.81-0.87 -
Rashed (2015) (R?)
Tanhuanpaa Finland  ALS Watershed 88.8% 0.25m 1.27 m - 0.07 m
et al. (2014) segmentation (bias) (RMSE) (RMSE)
Wu et al. China TLS/MLS Voxel-Based Method 98.5 - 100% - 0.92-0.93 0.03m
(2013) (R%) (RMSE);
0.87 (R?)
Vonderach et Germany TLS/MLS Voxel-Based Method 0.5-1.6 m - -0.01-0.08
al. (2012) (difference) m
Moskal & us TLS/MLS Point Cloud Slicing (PCS) 0.75m - 91.0%; 0.09
Zheng (2012) (RMSE); m (RMSE)
0.57 (R?)
Rutzinger et  Holland  TLS/MLS 3D Modelling 86.0% n/d -
al. (2011)
Tompalski Poland  TLS/MLS Convex hulls 0.57 m 2.27 and -0.35m
(2009) (bias) 1.58 m (o) (bias)
Ardilaet al. Holland Satellite imagery = Geographic Object 70-82% - - -
(2012) Based Image Analysis
(OBIA)
Morgenroth & New Digital Photogrammetric 0.1m - 0.03 m
Gomez (2014) Zealand photographs stereo-measurements (bias)
conducted on digital
photographs taken on
the ground level
Patterson et  US Digital Manual measurements n/d n/d n/d
al. (2011) photographs in UrbanCrowns

software application
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at certain heights over the ground surface,
and found the position of trees was set
with an average error of 0.57 m. More ac-
curate results, with an average error of
0.10 m, were obtained by Saarinen et al.
(2014), who applied a visual interpretation
method. Holopainen et al. (2013) compared
the accuracy of determining tree trunk po-
sitional coordinates by TLS, MLS, and ALS.
The results of the study showed that TLS
data reproduced tree position with the
best accuracy, where root mean square er-
ror (RMSE) was equal to 0.12 m; whereas
MLS data had a RMSE = 0.36 m, and ALS
data a RMSE = 1.27 m. In the opinion of
Holopainen et al. (2013), the error in tree
position estimates based purely on ALS
data is caused by the variation in crown
shapes as well as the age of trees, which in-
fluences the size of the crown. The accu-
racy of tree positions determined from ALS
data in urban environments is similar to the
results obtained in forest areas by Kaarti-
nen et al. (2012). The results of these stud-
ies show that one advantage of TLS and
MLS data is the high accuracy with which
tree position can be determined, even for
those growing under dominant trees. ALS
data is associated with larger errors, but
the cost of data acquisition is much smaller
than for MLS and TLS. ALS data are abun-
dant and easy to access. MLS and ALS have
high operationality. The TLS technique is
more suited to small area inventories that
require very high precision.

Tree height

There are three methods that can be
used to extract information on tree height
from RS data: (i) point cloud processing of
data collected using active LiDAR technol-
ogy (ALS, MLS and TLS); (ii) stereopho-
togrammetric measurements extracted
from digital photographs taken at ground
level; and (iii) 3D point cloud processing us-
ing airborne digital image matching. A pre-
cise digital terrain model, which can be cre-
ated from ALS data, is a requirement of the
latter method. So far, studies using 3D
point cloud processing are rare.

The accuracy of tree height measure-
ments retrieved from ALS depends on fac-
tors such as flight and data acquisition pa-
rameters, tree species being measured,
data processing technology, and the meth-
od used for individual tree identification
(Sterenczak et al. 2008). Tanhuanpdd et al.
(2014) applied an ALS point cloud with a
density greater than 20 pts m?. The accu-
racy achieved with the watershed segmen-
tation method (RMSE = 1.08 m) was com-
parable to the accuracy achieved by Rah-
man & Rashed (2015) using the KBA meth-
od (RMSE = 1.08 m), and the LMA method
(RMSE = 1.3 m). The LMA method was also
used by Plowright et al. (2016), who
achieved a mean error in height measure-
ments equal to 1.09 m, using a point cloud
density equal to 25 pts m™ Zhang et al.
(2015) performed treetop detection using a
constrained tree climbing algorithm, and
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achieved accuracies ranging from 0.47 to
111 m (RMSE). The relatively low error
achieved in Zhang et al. (2015) may result
from the fact that most trees in the study
area were broadleaved with a wider top
than conifers, which increased the proba-
bility that laser pulses hit the treetops.
Shrestha & Wynne (2012) presented height
measurements for 9 tree species with an
average RMSE value of 1.34 m.

Vonderach et al. (2012) showed that
height determined from TLS data is regu-
larly underestimated. The differences in
TLS measurements and terrestrial mea-
surements fall within a range of 0.50 to
1.50 m. Similar results, with an RMSE equal
to 1.77 m, were achieved by Tompalski
(2013). With MLS, Wu et al. (2013) deter-
mined tree heights with an R* coefficient of
0.9, and an RMSE equal to 0.18 m. Morgen-
roth & Gomez (2014) used a point cloud
generated from ground level digital photo-
graphs taken from multiple positions. In
their studies, tree height estimates con-
tained an error of 0.10 m (2.59%).

The accuracy of tree height measure-
ments using ALS data depends not only on
data processing methods but also on the
tree species, and is also dependent on the
quality of field-based measurements (Miel-
carek et al. 2018). Their results show that
when relatively high point density ALS data
are used, the error in height estimation is
greater for some deciduous species (e.g.,
oaks) than for conifers and alder. This is
not related to the reliability of ALS mea-
surements, but rather to the difficulty asso-
ciated with precisely measuring the height
of old trees, such as oaks. Oak crowns are
usually irregular and complex; therefore, it
is difficult to clearly determine the top of
the tree from the ground. Measuring the
height of conifers is easier and more pre-
cise due to their compact and cone-shaped
crowns. Mielcarek et al. (2018) also noted
that errors for deciduous trees increased
slightly with increasing tree height. Such a
tendency was not found in coniferous and
alder trees. Further, ALS data itself can in-
fluence height measurements. Morsdorf et
al. (2008) proved that the underestimation
of tree heights by ALS increased by approx-
imately 0.3 m with an increase from 500 to
900 m flying altitude. Yu et al. (2004)
showed that tree height could be mea-
sured more accurately with a large foot-
print, because the laser pulse has a higher
probability of hitting the top of the trees.
Tanhuanpdd et al. (2014) and Orka & Bol-
landsas (2010) determined that ALS should
be collected during the leaf-on season, be-
cause the data generates less noise and
lower errors than leaf-off data, which can
be explained by the denser canopy under
leaf-on conditions. Tompalski (2013) show-
ed that there was no relation between the
height of a tree measured using TLS and
the distance of a tree from the scanner, or
the height of a tree and other features,
such as the type and number of points.
Contrasting results were achieved in a for-

est area by Olofsson et al. (2014), who
proved that the error in tree height mea-
surements depends on distance to the
scanner. According to Tompalski (2013),
scanning in unfavorable terrain with a high
density of trees does not prevent the ac-
quisition of exact tree height values. Tom-
palski (2013) also indicates that scanning
should be performed during the leaf-off
period, and the number and distribution of
scanning positions should be properly ar-
ranged.

Diameter at breast height

Previous studies have reported three dif-
ferent approaches for the determination of
the diameter at breast height (DBH). The
first involves the use of descriptive vari-
ables from ALS data, the second uses TLS
and MLS data and the third is based on a
cloud of points that are generated from
photographic images. Shrestha & Wynne
(2012) determined DBH with an indirect
method using two types of ALS variable.
DBH determined from tree crown size re-
sulted in R? coefficients of 0.82 for all trees,
0.84 for deciduous species, and 0.74 for
coniferous trees. Assessing DBH based on
average height resulted in inferior R* coeffi-
cients, i.e., 0.72 for all trees, 0.76 for decid-
uous species, and 0.54 for coniferous spe-
cies. By constructing convex hulls from TLS
data, Tompalski (2009) achieved DBH esti-
mates with an RMSE of 0.013 m and a stan-
dard deviation of 0.03 m. Using a point
cloud slicing (PCS) method based on voxel
data structure and circle fitting, Wu et al.
(2013), Moskal & Zheng (2012), and Vonder-
ach et al. (2012), achieved accuracies in
DBH estimations of 0.03 m (RMSE), 0.09 m
(RMSE), and -0.01 — 0.08 m (bias), respec-
tively. Results achieved by Vonderach et al.
(2012) are similar to Tompalski (2013). With
a point cloud constructed from a series of
digital photographs, Morgenroth & Gomez
(2014) calculated a DBH for an individual
tree with an error of 0.03 m. As Wu et al.
(2013) emphasized, despite the high quality
of results, TLS data have limited application
in urban areas, due to the limited coverage
that can be achieved from TLS devices. This
strongly contrasts with ALS data collection
methods. According to Tompalski (2013),
the circle fitting method is the most reli-
able, because it works better when trunk
cross-sections are only partially covered by
points. However, a large number of alter-
native solutions exist in the literature that
have not yet been tested in an urban envi-
ronment (Pueschel et al. 2013). Results can
also be improved by performing single or
multistation scans, which construct more
accurate reproductions of breast height
(Tompalski 2013).

Tree crown

The subject of determining the parame-
ters of the crown is often not addressed in
scientific publications. In studies where this
issue is considered, parameters were esti-
mated directly or indirectly from ALS, MLS,
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or TLS data, or from field-based photos.
Using ALS data, Shrestha & Wynne (2012)
determined crown spans with an R* coeffi-
cient of 0.90. Crown diameters were calcu-
lated in that study from ALS data using the
formula: 2 - radius = Vcrown area /i, with a
RMSE of 0.75 m. In the same study, a lower
correlation (R*= 0.75) was achieved by cal-
culating maximum heights and crown span
values from field measurements. Zhang et
al. (2015) using ALS data identified the
height of tree crown bases with a correla-
tion (r) value of 0.63-0.84, and a crown
span with R* values ranging from 0.7 to
0.84. With ground level laser scanning,
Tompalski (2013) calculated crown projec-
tion surfaces with an R* coefficient of 0.81.
Tompalski (2009) determined crown base
height with a mean error of -0.35 m. MLS
data was used by Wu et al. (2013) to deter-
mine crown spans with R* values ranging
from 0.92 to 0.93. Abd-Elrahman et al.
(2010) explored the effectiveness of using
different digital camera models to assess
crown span and crown base height. Based
on photographs, the errors in crown span
and crown base height values were deter-
mined to be 0.4 m and 0.05 m, respec-
tively. Accurate calculation of the crown
size parameter is vital for determining
crown coverage, which is one of the pa-
rameters that characterize the urban eco-
system. According to previous studies,
crown size estimated from ALS data is usu-
ally less accurate than tree height (Gill et al.
2000, Popescu et al. 2003). Low accuracy
can result from crown shape, low scanning
density and the overlap of the crowns of
adjacent trees (Zhang et al. 2015). The re-
sults obtained by Zhang et al. (2015) were
promising, and show that the accuracy of
key parameter estimates, such as base
height and depth of the crown, may be re-
lated to the accuracy of tree height esti-
mates. This is important because, even dur-
ing field measurements, it is difficult to
measure such parameters, especially in
densely forested areas. Zhang et al. (2015)
suggested that a higher scanning density
may lead to higher accuracy, as the proba-
bility of hitting lower branches will in-
crease.

Health condition

The majority of studies concerning vege-
tation health condition were performed us-
ing aerial (including hyperspectral) and
satellite imagery. A number of authors (Ho-
lopainen et al. 2006, Hanou 2010, Hu et al.
2014, Zhang et al. 2014, Pontius et al. 2017)
compared the health condition of healthy,
diseased and dead trees with vegetation
indices, or determined relationships be-
tween the variables obtained from RS data
and biophysical variables (e.g., defoliation
and discoloration). Malthus & Younger
(2000) determined the correlations be-
tween an overall tree condition index
(OTQ), defoliation, and selected vegetation
indices, such as the Normalized Difference
Vegetation Index (NDVI), the Green Nor-
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malized Difference Vegetation Index
(gNDVI), and the red edge position (REP).
A significant correlation was only observed
between the OTC and the gNDVI, and the
OTC and the REP. The authors did not find
any relation between the defoliation and
vegetation indices. Xiao & McPherson
(2005) carried out an analysis of tree
health at the two scales of individual tree
and individual pixels. The authors classified
trees as healthy if the ratio of healthy pix-
els determined by NDVI and the total num-
ber of pixels was higher than 70%; other-
wise, trees were classified as unhealthy or
dead. The total accuracy of classification
on the level of individual trees was 88.9%,
i.e., 86% for deciduous trees and 91.0% for
coniferous trees. Holopainen et al. (2006)
used aerial color infrared imagery to assess
the volume of trees damaged as a result of
drought. They achieved their results by vis-
ual interpretation of the images. Jarocinska
et al. (2016) applied the Photochemical Re-
flectance Index (PRI) and the Normalized
Difference Vegetation Index (NDVl,s) to
determine discoloration and defoliation,
respectively. Their results showed R? coeffi-
cient values of 0.43 and 0.44, with RMSE
ranging from 11% to 23%. The analysis was
performed using satellite imagery from the
beginning of July until the end of August.
Jarocinska et al. (2016) showed that it was
feasible to estimate the health condition of
urban forests by analyzing the values of
vegetation indices, defoliation and discol-
oration. Hanou (2010), Zhang et al. (2014),
Hu et al. (2014), and Pontius et al. (2017)
described the use of various datasets and
methods to identify ash trees and deter-
mine their health status. The need for this
kind of analysis emerged from the large
scale damage caused by the activity of the
emerald ash borer (EAB - Agrilus planipen-
nis Fairmare). Hanou (2010) proved that
there is a correlation between hyperspec-
tral signatures and the level of infestation
measured by the gallery counts per square
meter of measured material or trunk.
Zhang et al. (2014) estimated the EAB infes-
tation stages of a single ash tree by using
various types of spatial data (hyperspectral
and satellite imagery). To achieve this, they
used three input variables: the leaf chloro-
phyll content, tree crown spatial pattern,
and prior knowledge. The overall accuracy
(OA) was 62.5%, with an omission error of
22.5%, and a commission error of 18.5%.
Based on vegetation indices sensitive to
leaf chlorophyll content, Hu et al. (2014)
confirmed that the amount of chlorophyll
measured by vegetation indices is capable
of predicting the presence or absence of
the EAB in ash trees. The OA of the binary
classification used in that study (healthy/in-
fected) was 70%. It should be mentioned
that the authors used a limited number of
33 ash trees for the training and test sam-
ples. The health condition of ash trees was
estimated by Pontius et al. (2017), in which
identification accuracy ranged from 62%
(for the healthiest trees) to 22% (the sec-

ond healthiest out of five classes). To re-
duce classification error, they developed
multiple endmembers and a spectral un-
mixing technique to overcome the chal-
lenges posed by classification of spectrally
complicated study objects situated in an ur-
ban environment. An attempt to estimate
the health condition of trees from ALS was
also performed by Plowright et al. (2016).
Their estimates of crown density had an R?
coefficient of 0.62 for trees over 8 meters
high, 0.28 for trees between 5 and 8 m,
and 0.001 for smaller trees. The authors ap-
plied a coefficient of height variation (CV)
as a predictor of crown density (Tab. 2).

Tree species

The identification of tree species by RS is
a complex issue due to the large diversity
of species in urban areas. Trees are classi-
fied either on the single tree (object) or the
pixel scale. When single tree classification
is carried out, ALS- (image-)based single
tree detection is usually performed first,
and then segments are classified based ei-
ther on spectral (image) or structural
(point cloud) data, or both variables. Typi-
cally, RS data fusion is utilized for species
classification. The first studies incorporat-
ing Google™ Street View® (GSV) images
have begun to appear in the literature. The
global scale of the Google™ image data-
base is expected to revolutionize the study
of urban greening (Tab. S2 in Supplemen-
tary material).

In the most complex urban ecosystems,
Alonzo et al. (2014) performed classifica-
tion analyses of 29 dominant tree species.
The study used hyperspectral imagery with
ground resolution 3.4 and 3.7 m and ALS
data with resolutions of 22 pts m?. The OA
of classification for the 29 dominant tree
species was 83.40% (k= 0.82). The applica-
tion of ALS-based variables to the classifi-
cation model improved the OA by approxi-
mately 4.20%. Zhang & Qiu (2012) classified
40 species and achieved an OA of 68.80%.
The difference in OA values between the
studies was caused in part by the different
number of tree species classified, and more
importantly the fact that the point clouds
generated from ALS data had very differ-
ent densities (22.0 vs. 3.50 pts m?). Since
ALS-based variables are fundamental to
tree classification methods (Kaminska et al.
2018), denser point clouds provide better
descriptions of tree structure and signifi-
cantly improve classification results.

Voss & Sugumaran (2008) performed
classification of seven tree species using
two sets of hyperspectral data from the
summer and fall season, combined with
ALS data. The determination of tree spe-
cies was carried out using an object-ori-
ented classification with two variants. The
first variant used information from hyper-
spectral imagery (after minimum noise
fraction, MNF, transformation), and the
second used additional information from
ALS (intensity and height). The OA of classi-
fication in the first variant was 48% for sum-
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Tab. 2 - Selected scientific publications reporting tree health condition using remote sensing data. (UA): user accuracy; (OA): overall
accuracy; (*): Determination of health condition through variables.

. Study Date of RS 1oaith
Publication A Data Set Sensor Method data acqui- PR Accuracy
rea o Condition
sition
Zhang et  Canada DF (hyperspec- ProSpectTIR- Vegetation indices, leaf July 2010 Healthy/ 62.5% (OA)
al. (2014) tral imagery, VS2/Google chlorophyll content, High/medium/
aerial imagery) Earth imagery longitudinal profiles, low condition
Hu et al. Canada DF (ALS, hyper- 9 and 4 bands/ Individual tree crown 2009, ALS- Healthy/un- 70%
(2014) spectral image- ALS (1 pts./m?) summer 2007 healthy (1
ry) species - Ash)
Pontius et  US DF (ALS, hyper- GLiHT Segmentation June 2006 4 vigor classes 0-62%
al. (2017) spectral image-
ry, thermal im-
agery)
Plowright Canada ALS Leica ALS70-HP Crown density as the response April 2013 Crown density 0.62 (R?) for
et al. (25 pts./m?) variable and the percentage of trees in 8 m
(2016) non-ground LiDAR returns and to 14 m
the coefficient of variation of height class
return heights as separate
predictor variables
Hanou Canada Hyperspectral ProSpectTIR-VS2 Gallery Count / Area (DBH) July/August  Low/medium/hi 0.8 (R?)
(2010) imagery 2010 gh Emerald Ash
Borer
Malthus & UK Aerial imagery  CASI Correlation between: Visual September Defoliation and -0.14 - -0.83
Younger Stress Index (leaf colour x 1996 OTC index for 4  (correlation)
(2000) crown density); General Crown species
Condition Index (crown die-
back x crown density x Leaf
size x number of small dead
limbs); Foliage Index (foliage
colour x degree of leaf
chlorosis x degree of leaf
necrosis); Overall Tree
Condition Index (a combination
of the first threeindices prior
to equilibration, summed and
then normalised) and
vegetation indices
Xiao & us Aerial imagery  Wild RC10 Vegetation indices (NDVI) Summer 2003 Classification 88.9%
McPherson and 2004 (healthy/
(2005) unhealthy)
Holopainen Finland Aerial imagery - Photointerpretation July 2003 Assessing the
et al. volume of trees
(2006) damaged as a
result of drought
Jarocinska Poland  Hyperspectral HySpex Correlation with vegetation July and Discoloration 0.43 (R?)
et al. imagery indices August 2015 pefoliation 0.44 (R?)
(2016)

mer data, and 45% for fall data. In the sec-
ond variant with additional ALS data, the
general accuracy increased to 57% and 56%,
respectively. A 19 percentage point in-
crease in OA values was achieved by the in-
corporation of ALS data in Liu et al. (2017).
However, Ghosh et al. (2014) reported no
improvement in results, although they
used tree heights calculated exclusively
from ALS data.

Dian et al. (2016) combined hyperspectral
data (10 most informative channels after
MNF transformation), the Enhanced Vege-
tation Index (EVI), and ALS data (the nor-
malized Digital Surface Model and seg-
ments of individual tree crowns), achieving
a general classification accuracy of 79.20%
(x = 0.68). Jarocinska et al. (2016) at-
tempted to identify 12 tree species in the
area of Bialystok (Poland). The classifica-
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tion was carried out on the 40 most infor-
mative channels of hyperspectral imagery
(MNF transformation), using the spectral
angle mapper (SAM) method. Total classifi-
cation accuracy was 78.80% (k = 0.69). Pu
& Landry (2012) classified 7 tree and tree
group species using IKONOS and World-
View-2 satellite imaging. The general classi-
fication accuracy for the method was
56.98% (k = 0.48) based on IKONOS data,
and 62.93% (k = 0.42) for WorldView-2 data.
The authors developed a stepwise masking
protocol to distinguish between sunlit and
shaded tree canopies, and they compared
the accuracy of tree species mapping be-
tween four-band IKONOS imagery and
three different band combinations of
WorldView-2 imagery (four “traditional”
bands, four additional bands, and all eight
bands). Latif et al. (2012) used World-View

2 data to perform a classification of 8
species using the minimum distance algo-
rithm. They achieved a user’s accuracy
(UA) of 0-87.2% for the individual species.
Tooke et al. (2009) used QuickBird imagery
and information about shaded areas ob-
tained from ALS data. They used the deci-
sion tree classification algorithm and linear
spectral mixture analysis (SMA) to distin-
guish between low and high vegetation,
and then between coniferous and decidu-
ous trees with different health conditions
(manicured and mixed). Verli¢ et al. (2014)
combined ALS data and satellite imagery
(WorldView-2), to determine five different
species using example-based feature ex-
traction (ENVI 5 software), by applying the
support vector machine (SYM) model, and
achieved a UA from 12% (sweet chestnut)
to 69% (Norway spruce). Tigges et al. (2013)
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Tab. 3 - Accuracy evaluation of specific tree parameters (Grade 0: no data; Grade 1: R? < 0.5 or accuracy < 50%; Grade 2: 0.5 < R*< 0.7
or 50% < accuracy < 70%; Grade 3: 0.7 < R* =< 0.9 or 070% < accuracy < 85%; Grade 4: R* > 0.9 or accuracy > 85%). The listed number of
publications is reported in brackets. Last column shows the number of parameters (attributes) which could be measured using the

corresponding method.

. Tree Crown Height of _Cro'wn . Health Total

Data/Method Location height DBH span tree crown projection Species condition Attributes
basis surface

Aerial imagery - 4 (4) 1-3 (5) 2/8
ALS 4 (3) 4 (3) 3(1) - 0(1) 2 (1) 5/8
DF (ALS, TLS/MLS) 3(1) 4 (1) - - 0(1) 3/8
DF (ALS, Hyperspectral imagery) 4 (3) 4(2) - 4 (2) 4 (1) - 1-4 (10) 2-3 (3) 6/8
DF (ALS, Satellite imagery) 3/4 (1) 3/4(2) 3(2) 4 (2) - 1-4(2) 5/8
DF (TLS, ALS, Satellite imagery) - 4(1) 2 (1) 3(1) 3/8
Other (GSV) - 2(1) 2/8
Digital photographs 4(1) 4 (1) 4(2) 4(1) 4(1) - - - 5/8
TLS/MLS 4 (3) 4 (4) 4(3) 4(1) 4(1) - - - 5/7
Satellite imagery 3(1) - 2 (2) 2/7

performed the classification of the eight
species that are considered to be dominant
in Central Europe, by testing different
spectral and temporal band combinations
of five RapidEye images that were col-
lected during the vegetation season. To im-
prove the results, they used ancillary sur-
face and terrain models. The UA of each
classification depended on the tree species
and varied from 66% to 99%. Berland &
Lange (2017) used GSV materials to identify
tree species. In their study, a botanic spe-
cialist identified tree species based on GSV
pictures, and if the identification of tree
species was not possible, the type of tree
was identified. Furthermore, results were
compared with data from field measure-
ments. The classification accuracy was 66%
on the level of species and was 90% on the
level of genus.

It is almost impossible to compare results
that were obtained in different studies be-
cause there are too many differences be-
tween the study sites, the total number of
species and the time when data was col-
lected. In Xiao et al. (2004) work, a method
called the Number of Categories Adjusted
Index (NOCAI) was used to compare differ-
ent papers. The NOCAI is calculated by di-
viding the accuracy that was achieved by a
specific algorithm to give an expected ac-
curacy that would be obtained if trees
were randomly assigned to a species. The
expected accuracy is simply 1/k-100%,
where k is the number of species. The NO-
CAl was applied to works using ALS and hy-
perspectral data, with the highest NOCAI
value (27.52) being achieved by the algo-
rithm developed by Zhang & Qiu (2012).
Tigges et al. (2013) reported that NOCAI
values of 6.84 for studies that only used
ALS and satellite data for classification. The
most accurate results regarding tree spe-
cies was obtained by combining hyperspec-
tral imagery and ALS data during analysis
(zhang & Qiu 2012, Voss & Sugumaran
2008). As shown by previous studies, the
combination of these datasets can be used
to perform both pixel- and object-based
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classifications. A pixel-based approach en-
ables classification results with errors from
5.10% to 18.80% (OA) to be achieved, which
is better than results obtained by analyzing
single format data (Liu et al. 2017). It
should be noted that in a single tree
crown, the leaf-level spectral reflectance
may vary with leaf biochemistry and water
content. Dian et al. (2016) noted that the
variability in a class may be greater than
between classes. For hyperspectral data
this is not the case, since lower GSD data
area used because of the high cost of ac-
quisition. To obtain the best results two
strategies should be implemented: either
hyperspectral data (which enlarges spec-
tral information), or multispectral data
with ALS data (to compensate for the lack
of spectral information), should be com-
bined with structural information from ALS
data. Hyperspectral and ALS data are cur-
rently the best possible combination of RS
data for species classification.

The season in which data were obtained
had an impact on the accuracy of the
species classification. Voss & Sugumaran
(2008) achieved better classification re-
sults using data collected in summer (OA =
48% without ALS; OA = 57% with ALS)
rather than in autumn (OA = 45% without
ALS; OA = 56% with ALS), although the dif-
ference was small (3% without ALS, 1% with
ALS data), and had no practical meaning.
According to Liu et al. (2017), the most im-
portant parameters for detecting tree
species during the spring budburst stage
were the Anthocyanin Content Index and
the Photochemical Reflectance Index. The
most widely used classification algorithms
include the SVM, the SAM, the random for-
est (RF), and the maximum likelihood (ML).
Accurate results were generated by all al-
gorithms, but due to the diversity of study
sites, number of classified species, number
of reference data used, and the fusion of
various types of RS data acquired at differ-
ent times of the year, it is impossible to
identify which algorithm is most advanta-
geous (Forzieri et al. 2013).

Opportunities and limitations of
individual remote sensing technologies
From the point of view of public adminis-
tration, the information regarding individ-
ual tree position is one of the most impor-
tant attributes acquired during inventories.
Detailed location information constitutes
the basis for the efficient planning of
greening resources (cutting/planting), and
the construction of ground and terrestrial
infrastructure (Ostberg et al. 2012b). The
content of inventory maps produced from
these data is often essential to making ad-
ministrative decisions. According to the
technical standards set by the Ministry of
Internal Affairs and Administration in Po-
land regarding the execution of detailed
surveys, single trees, as well as parks,
squares, and lawns, are classified as Group
Il situational points. This classification re-
quires that their location on maps should
be specified within 0.30 m accuracy, in rela-
tion to geodetic control network points,
before results can be added to the National
Geodetic and Cartographic Database
(MIAA 2011). According to published stud-
ies, it is possible to identify tree locations
to this level of accuracy with TLS, but MLS
and ALS data do not currently meet this re-
quirement. Many of the tenders offered by
local authorities include unspecified en-
tries, e.g., the “identification of trees and
bushes in the area of [...] in order to in-
clude their specific position in an inventory
map”’ (Horbaczewska 2016). In the authors’
opinion, such an entry allows the applica-
tion of TLS or ALS techniques to acquire in-
formation on tree locations with an error
defined in the subject literature. Tender
documents (for example, in Poland) re-
lated to urban forest inventories indicate
that height and crown diameters should be
measured to an accuracy up to 0.50 m and
1.00 m, respectively, and a breast height di-
ameter with an accuracy of 0.01 m. The re-
sults of the literature reviewed here show
that TLS data can be used to determine all
parameters with the required accuracy
(Vonderach et al. 2012). MLS technology
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can be used to accurately measure crown
span and height, but the accuracy required
for DBH of up to a few centimeters may
not be sufficient for end users (Wu et al.
2013). Zhang et al. (2015) showed that it is
possible to measure tree height with an
RMSE value of 1.1 m with ALS (calculated
against field based measurements). If one
takes into account the error of 0.45 m as-
sociated with manual field measurements,
the resulting error in height measurements
derived using the ALS method will be ap-
prox. 0.7 m. In reality, this value can be
lower, since high density ALS data (which is
often acquired over cities) usually records
heights that are very close to the real
height of trees. The error will be within the
range of practitioners’ requirements. ALS
data may also be used as an alternative
source of data for crown span measure-
ments. It is not possible to measure DBH
directly using ALS methods, and assess-
ment of DBH via indirect methods is too
imprecise to constitute a substitute source
of reliable data (Shrestha & Wynne 2012).
The optimal dataset therefore comprises
individual tree positions and geometrical
attributes obtained from terrestrial and
aerial laser scanning data, tree heights ob-
tained from ALS data, and detailed infor-
mation about stem quality and precise tree
location from TLS data (Tanhuanpéda et al.
2014). It should be noted that no studies
were found that discuss the integration of
information collected by terrestrial laser
scanning and airborne laser scanning. Such
studies have been carried out in forest ar-
eas (Bazezew 2018), and it is likely that
they could be applied successfully to urban
areas.

Tree species is the most important at-
tribute acquired during an inventory (Ost-
berg et al. 2012b). Urban areas contain a
great variety of species; typically, native
tree species dominate the urban land-
scape, accompanied by a mixture of minor
non-native species. Alonzo et al. (2014) in-
dicated that it is possible to classify up to
approximately 30 of the most numerous
tree species in a given area. From a practi-
cal point of view, less numerous species
should be classified into an aggregate
group, i.e., deciduous/coniferous species.
Therefore, substantial limitations remain in
regard to the possibility of replacing the
field measurement of tree species with in-
formation obtained by RS.

RS data enables tree health to be recog-
nized with high accuracy (Xiao & McPher-
son 2005). A lower accuracy is provided by
methods that specify correlations between
vegetation indices or variables that are cal-
culated from a point cloud, and parameters
such as defoliation or discoloration. As
shown by Xiao & McPherson (2005), RS en-
ables fast acquisition of information re-
garding the health condition of individual
trees within the whole urban area. Infor-
mation regarding individual trees may be
used to plan cutting or replacement plant-
ing. Furthermore, the information from in-
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dividual pixels within crowns may deter-
mine the need for tree pruning, watering
or carrying out a site survey to determine
the cause of damage. Jarocinska et al.
(2016) showed that the use of continuous
data, such as RS data, enables greening
condition to be differentiated depending
on location (e.g., trees along roads are
characterized by worse health condition
than ones that are at a greater distance).
From a practical point of view, it is more
important to develop a model that could
help detect the occurrence of pathogens
at an early stage, so as to minimize nega-
tive effects, than to define the pre-existing
effects of various factors that have caused
deterioration in tree health. Comprehen-
sive data (e.g., age and species) are needed
to accurately assess the health condition of
trees, and parametrize models effectively.
The unavailability of such data may de-
crease the effectiveness of ALS data in de-
termining tree health conditions, since for
example height information from ALS can
be used as a proxy for tree age. It is not
possible to identify damage factors (e.g.,
fungal pathogens) from RS data, but it is
possible to determine the general condi-
tion of trees (e.g., good, average, poor),
which may constitute the basis for further
field investigations. The accuracy of assess-
ing selected tree attributes from different
data sets is presented in Tab. 3. The au-
thors evaluated the results in the literature
according to the following guidelines:
Grade 0: no data; Grade 1: R* < 0.5 or accu-
racy < 50%; Grade 2: 0.5 < R* £ 0.7 or 50% <
accuracy < 70%; Grade 3: 0.7 < R* < 0.9 or
70% < accuracy < 85%; Grade 4: R*> 0.9 or
accuracy > 85%. The compatibility of infor-
mation from different data sets constitutes
the other factor to be considered when se-
lecting RS data for inventories.

In studies that applied data fusion, the
authors, depending on the purpose of their
studies, did not always have to assess all of
the attributes that are listed in Tab. 3.
Therefore, based on the results of this liter-
ature review and the compatibilities of indi-
vidual data items, it can be concluded that
complete information regarding the eight
listed attributes may be obtained using ter-
restrial or airborne laser scanning and air-
borne photography (hyperspectral). Data
selection should also depend on field
based data and available financial re-
sources. Holopainen et al. (2013) suggested
that TLS measurements, due to their cost
and labor consumption, should be per-
formed only in environmentally significant
areas, where a more accurate assessment
of tree parameters other than location is
required. The application of MLS is reason-
able for trees that are growing in the vicin-
ity of roads or in parks. Airborne data
should be collected to compile inventories
over the area of a district or a city.

Remote sensing data collection methods
have their limits. Above all, the data are rel-
atively expensive and require sophisticated
methods of processing by specialists. Pub-

lic administration in city level currently
lacks the specialists and software which al-
low large datasets to be processed auto-
matically. Many of the publications in this
review use sophisticated, bespoke process-
ing techniques which are not available as
user-friendly software. This is a major con-
straint on the application of more sophisti-
cated processing and implementation of
such technologies to facilitate the determi-
nation of more detailed characteristics of
single trees. The need for specialist pro-
cessing results in not only the costs of ac-
quisition, but also data processing costs,
being higher, as well as study lengths being
longer. The most expensive data are those
which enable the highest measurement
precision; that is, TLS and MLS. Airborne or
satellite data acquisition techniques make
it possible to analyze large areas, but the
precision of such research is lower (Holo-
painen et al. 2013).

The ideal remote sensing technique for
data acquisition is dependent on the scale
of the analysis. In the case of urban vegeta-
tion, the optimal scale of analysis is a single
tree, however, many works are performed
throughout cities to determine vegetation
cover (Gupta et al. 2012, Mincey et al. 2013,
Ucar et al. 2016). Taking into the account
the shape and size of tree crowns in urban
environments, it is difficult to constrain an
optimal ground sample distance for a de-
fined area. In the aforementioned litera-
ture, the data densities range from several
to several dozens of points per square me-
ter, and spectral data resolution from sev-
eral dozens of centimeters to dozens of
meters. Myint et al. (2011) suggested that
pixel size used to classify objects should be
at least half the size of the object, as too
many small pixels for a single large object
causes large spectral change, making it
more difficult to classify the object.

Atmospheric conditions can pose a prob-
lem to remote sensing techniques. Remote
sensing data acquisition, in order to be use-
ful, must be carried out in optimal light
conditions, ideally without wind and with
no cloud cover (Ju & Roy 2008). In many
countries (e.g., Poland) such days, when
data acquisition is possible, are limited (30-
40% of the year). Cloud cover can make it
impossible to acquire data for several
weeks. This can have significant negative
impacts, considering that in order to ac-
quire accurate classification results, most
images need to be acquired in the vegeta-
tion period, which only lasts a few months
avyear.

The remote sensing data market does not
appear ready to carry out surveys for a
large number of towns, especially if multi-
temporal analyses are being considered.
Data is acquired at much greater effort in
multi-temporal analyses, and much bigger
datasets are acquired from single flights.
This prolongs the time required for data
processing, and thus the research output.
In a country with several dozens of big
cities, it is practically impossible to acquire
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RS data more often than once a year for a
single city. The ability to collect such data
depends on the remote sensing services
market in any particular country, the num-
ber and availability of hyperspectral scan-
ners, and many other factors related to the
acquisition of remote sensing data.

Conclusions

The use of remote sensing data makes it
possible to determine the characteristics of
urban vegetation at various levels of detail
and at different scales. The accuracy of
analyses depend on the type and quality of
the RS data used, and the environment in
which the analyses were carried out.

Laser scanning is a technology that col-
lects the most versatile RS data on the
characteristics of trees. TLS has the highest
precision of measurement, while ALS has
the largest operating system.

Spectral data, in particular hyperspectral
data, allow the classification of up to sev-
eral dozen species of tree in urban areas.
The integration of many datasets, particu-
larly spectral data (aerial images and satel-
lite images) and structural data (LIDAR), fa-
cilitates the most complex use of RS data
and helps to improve tree species classifi-
cation estimates.

To estimate the largest possible number
of significant parameters from RS data, it is
necessary to apply data that have been in-
tegrated from multiple sources.

The most important research challenges
in urban vegetation monitoring (apart
from the development of data processing
and data integration methods) are identi-
fied as refining species classification meth-
ods, tree segmentation methods, and
methods of determining specific tree char-
acteristics. There are no studies on these
topics that have been performed on large
datasets, carried out on a wide geographic
scale or on a homogeneous set of remote
sensing data.

Despite the fact that this review summa-
rized and attempted to compare the re-
sults of the different methods and tech-
nologies used in the estimation of tree fea-
tures and species, it is difficult to state
clearly which of them are the most accu-
rate. This is mainly due to the enormous va-
riety of data usage, processing methods,
ground data volumes and methods of inte-
grating different types of remote sensing
data.

At the moment, no “best practice” meth-
odologies for the use of RS in urban
forestry do exist. Such guidelines would
address issues such as the selection of RS
data for specific purposes, or the technical
specifications necessary to achieve particu-
lar objectives. In addition, there are no de-
dicated user-friendly applications designed
for the use of civil servants, who do not
necessarily have extensive knowledge
about remote sensing, but are responsible
for acquiring spatial information.
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