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High resolution biomass mapping in tropical forests with LiDAR-derived 
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Tropical forests play a key role in global carbon cycle. Reducing Emissions from
Deforestation and forest Degradation (REDD+) program requires reliable mech-
anisms for Monitoring, Reporting and Verification (MRV). In this regard, new
methods  must  be  developed  using  updated  technologies  to  assess  carbon
stocks.  The  combination  of  LiDAR  technology  and  in  situ forest  networks
allows the estimation of biomass with high resolution in low data environ-
ments, such as tropical countries. However, the evaluation of current LiDAR
methods of biomass inventory, and the development of new methodologies to
reduce uncertainty and increase accuracy, is still needed. Our aim is to evalu-
ate new methodologies of spatially explicit LiDAR biomass inventories based on
local  and general  plot-aggregate allometry.  For this  purpose, 25 field plots
were inventoried, covering the structural and ecological variability of Poás Vol-
cano National Park (Costa Rica). Important differences were detected in the
estimation of aboveground biomass (92.74 t ha-1 considering the mean value of
plot sample) depending on the chosen tree allometry. We validated the general
aboveground biomass plot-aggregate allometry proposed by Asner & Mascaro
(2014) in our study area, and we fitted two specific models for Poás forests.
Both locals and general models depend on LiDAR top-of-canopy height (TCH),
basal area (BA) and wood density. Small deviations in the wood density plot
sample (0.60 ± 0.05) indicated that a single wood density constant value could
be used throughout the study area. A BA-TCH origin forced linear model was
fitted to estimate basal area, as suggested by the general methodology. Poás
forest has a larger biomass density for the same THC compared to the rest of
the forests previously studied, and shows that the BA-TCH relationship might
have different trends in each life zone. Our results confirm that the general
plot-aggregate methodology can be easily and reliably applied as aboveground
biomass in a new area could be estimated by only measuring BA in field plots
to obtain a local BA-TCH regression. For both local and general methods, the
estimation of BA is critical. Therefore, the definition of precise basal area field
measurement procedures is decisive to achieve reliable results in future stud-
ies.

Keywords:  Carbon, Remote Sensing,  REDD, LiDAR, Plot-level  Allometry, Bio-
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Introduction
The Fourth Assessment Report of the In-

tergovernmental Panel on Climate Change
(IPCC  2005)  reports  an  increment  in  the
global  average temperature related to an

increase of  70% in Greenhouse Gas (GHG)
emissions  due  to  human  activities  since
1970  (IPCC  2007).  Forests  play  a  double
role  of  particular  importance  on  adjust-
ment of the global carbon cycle, acting as

both  carbon  emission  sources  and  sinks.
Emissions  due  to  deforestation,  degrada-
tion of  the forests  and land use changes
encompass  17.3%  of  total  GHG  emissions
(IPCC  2007).  As  carbon  pools,  the  IPCC
(2007) estimates  that  forests  contain  77%
of  carbon stored in  global  forest  vegeta-
tion  and  39%  of  carbon  in  soils.  In  this
regard, tropical forests are very important
as they can store more carbon per hectare
than other forests (Houghton 2005), with
estimates in the order of 25% of carbon in
the biosphere (Bonan 2008). According to
the  FAO  Forest  Resources  Assessments
2010  (Simonian  et  al.  2010),  the  highest
deforestation  rates  can  be  found  in  the
tropics, hence tropical forests are the most
threatened ecosystems on earth.

In order to curb the GHG emissions due to
forest  losses,  Reducing  Emissions  from
Deforestation  and  forest  Degradation
(REDD+) scheme was recognized as a valid
mechanism against  climate  change in  the
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2010 Cancun Agreement (UNFCCC COP-16
Conference).  Costa  Rica  joined  this  initia-
tive integrating the carbon captured data
from  its  National  Parks  and  Biological
Reserves  into  the  schemes  framework,
which  consequently  became  one  of  the
main points in its REDD+ strategy approved
in 2008.

A transparent system for Monitoring, Re-
porting and Verification (MRV) is a neces-
sary requirement of REDD+ activity. If accu-
rate estimates of carbon are expected then
this process could prove costly; hence, it is
important to develop efficient methods to
carry out large-scale precise and inexpen-
sive measurements. Wall-to-wall high reso-
lution estimations of  biomass and carbon
stocks in tropical areas are crucial to quan-
tify  emissions  from  forest  loss,  gain  and
growth, but also to identify, describe, and
quantify  emissions  from  forest  degrada-
tion. Quantifying emissions from forest de-
gradation in tropical forests is a major con-
cern as forest degradation might represent
a  significant  percentage  of  nationwide  e-
missions of greenhouse gases (Murdiyarso
et al. 2008). Some authors pointed out that
those  emissions  from  forest  degradation
can  be  of  the  same  magnitude  as  those
caused  by  deforestation  (Sasaki  &  Putz
2009). Wall-to-wall mapping can lead to a
better understanding of land use dynamics
and  an  easier  identification  of  drivers  of
forest  degradation  and  deforestation.
Therefore,  the  incorporation  of  these
methods  could  lead  to  a  substantial  im-
provement  in  forest  management,  sup-
porting the formulation of  environmental
policies,  planning  tools  and  actions  to
improve  the  status  and  conservation  of
forests.

Light Detection and Ranging (LiDAR) is an
active remote sensing technique based on
a laser sensor. It is a powerful technology
for accurate estimates of  the spatial  vari-
ability  in  forest  carbon  stocks.  Although
LiDAR data  acquisition may  be expensive
(Gibbs  et  al.  2007,  Pirotti  2011),  it  is  the

most  appropriate  technology  at  scales
ranging  from  one  to  several  million  hec-
tares and is useful for calibrating broader-
scale  Interferometric  Synthetic  Aperture
Radar measurements (Sexton et al. 2009).
Other  authors  (Mitchard  et  al.  2012)
showed  that  space-based  LiDAR,  such  as
the  Geoscience  Laser  Altimeter  System,
might be useful as a resource to assist the
mapping of  forest  biomass carbon stocks
using  the  classification  of  high resolution
optical rather than radar data.

The effectiveness of LiDAR technology to
estimate forest variables in tropical forest
has been proved in different works.  Clark
et  al.  (2004) estimated  mean tree  height
for plantation plots at La Selva Biological
Station (Costa Rica) using plot mean LiDAR
height with a model R2 of 0.97 and 1.08 m
of root-mean-square error (RMSE). Clark et
al.  (2011),  also working in La Selva forest,
obtained an aboveground biomass model
with an R2 of  0.90 and RMSE of  38.3 Mg
ha-1 including in the model two LiDAR met-
rics (plot-level mean height and maximum
height).

Asner et al. (2012a) used the vertical cen-
ter  of  canopy  volumetric  profile,  also
known  as  mean  canopy  profile  height
(MCH) to fit regional and universal models.
These authors were able to predict above-
ground carbon density in different tropical
locations  using  a  single  universal  LiDAR
model (R2 = 0.80, RMSE = 27.6 Mg C ha-1).
Although this approach showed to be con-
sistent  when using a  single LiDAR sensor
(Asner et al. 2012a), an approach based on
the  variable  top-of-canopy  height  (TCH)
has  proved to  be more consistent  across
different  sensor  characteristics  (Asner  &
Mascaro  2014).  Therefore,  the  latter  au-
thors developed a general  plot-aggregate
allometry based on the TCH variable using
a  LiDAR  plot  network  of  tropical  forest
sites  in  Colombia,  Hawaii,  Madagascar,
Peru and Panama to evaluate carbon den-
sity across a wide range of tropical vegeta-
tion  conditions.  TCH  is  derived  from  the

LiDAR digital canopy model and is a consis-
tent index among different modern LiDAR
sensors (Asner & Mascaro 2014). According
to  them,  this  general  methodology  can
largely reduce fieldwork for LiDAR invento-
ries in tropical areas because aboveground
biomass could be estimated by only mea-
suring  basal  area  in  field  plots  to  obtain
regional basal area-TCH regression.

The  aim of  this  paper  is  to validate the
general aboveground biomass (AGB) plot-
aggregate equation developed by Asner &
Mascaro (2014) in Poás forest (Costa Rica)
and to compare the results found through
this model to those obtained through local
models fitted for the study area. The main
objective was to assess the validity of this
general  model  and the advantages  of  fit-
ting local models instead of using the As-
ner  & Mascaro’s  equations.  Poás  Volcano
National Park is an appropriate area to test
this  AGB plot-aggregate approach due to
the large structural and ecological variabil-
ity  in  the  area.  Furthermore,  to  evaluate
the  importance  of  the  tree  allometry  in
wall-to-wall  AGB estimations,  two general
individual  tree  allometric  biomass  equa-
tions proposed by Chave et al. (2005) have
been used.

Material and methods

Study area and input data
The study was carried out in the Poás Vol-

cano National Park (6506 ha), in the prov-
ince of Alajuela (Costa Rica – Fig. 1). It is a
stratovolcano  complex  with  a  generally
steep terrain ranging from 1099 to 2713 m
in elevation, with a mean annual precipita-
tion and temperature gradient of approxi-
mately  2300-5100  mm  y-1 and  9-15  oC,  re-
spectively.  Due  to  the  existence  of  two
slopes  (Atlantic  and  Pacific  slopes),  an
abrupt  topography  and  a  wide  altitude
range is observed, with significant fluctua-
tions in mean annual precipitation and tem-
perature throughout the study area.

According to the ecological map of Costa
Rica  (Bolaños  et  al.  2005).  Poás  Volcano
area hosts forests corresponding to Hold-
ridge’s life zones of montane rainforest (M-
RF),  lower  montane  rainforest  (LM-RF),
montane transition to lower montane rain-
forest (M-LM), premontane rainforest (PM-
RF) and lower montane wet forest (LM-WF
– Fig. 1).

Input  data  was  a  1-m  resolution  Digital
Elevation Model  (DEM) and a  Digital  Sur-
face Model (DSM) generated from an air-
borne  LiDAR  flight  executed  by  Stereo-
carto  S.L.  in July  2010.  The area was  sur-
veyed with the ALS50-II-MpiA sensor (multi
pulse in air) achieving a mean point density
of 1 point m-2. These data were projected in
the CR05 Reference System and the Trans-
versal  Mercator  projection for  Costa  Rica
CRTM05.  A  Digital  Canopy  Model  (DCM)
that  represents  the  maximum  vegetation
height in each 1-m pixel was obtained from
the subtraction of the DEM and the DSM.

In order to encompass the range of struc-
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Fig. 1 - Location of Poás Volcano National Park in Alajuela Province (Costa Rica) and
spatial distribution of field plots and Holdrige’s life zones in the area.
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LiDAR biomass mapping in Costa Rica

tural and ecological variability in the Park, a
stratified sample throughout the different
life zones of Holdridge was conducted. For
this,  we generated  LiDAR-derived  canopy
height  maps  to  identify  the  vertical  and
horizontal structural differences in the for-
est. Thus, a 20 m resolution raster was built
from a three statistics code. The three pa-
rameters  measured  in  each  20×20  pixel
were:  (i)  canopy  cover  as  percentage  of
0×1 m pixels above 2.00 m; (ii) 95th height
percentile  (P95);  and  (iii)  interquartile
range (IQ). They were codified in class val-
ues  taking  into  account  each  parameter
range (Tab. 1)

Field plot estimation
Transects  were  designed  following  the

roads and trails within the study area and a
total of 25 circular sampling plots of 0.04
ha  were  established  encompassing  the
structural  variability  of  the  area  through
the  generated code (Tab.  1).  Thus,  LiDAR
information was used in the sampling de-
sign process generating field sample plots
which included the highest percentage of
structural variability in the domain.

All  plot  locations  were  maintained  at  a
proper distance from the roads and trails
to  avoid  their  possible  effect  (Fig.  1).  In
each 0.04 ha plot, we measured and identi-
fied  all  woody  stems  with  diameter  at
breast height (DBH) ≥ 5 cm until the high-
est  possible  taxonomic  level.  The  heights
of all ferns and palms were measured with
hypsometer  Vertex  III.  All  plots  were
located  with  a  GPS  Garmin  GPSmap76Cx
using  the  CRTM05  projection.  This  GPS
device provides a typical Differential Global
Positioning  System  horizontal  accuracy
lower than 5 meters.

Aboveground biomass for each tree (agb)
inventoried  in  the  plots  was  estimated
using two different allometric models (Tab.
2). We used and compared the tropical wet
forest  stands  allometric  equations  pro-
vided by  Chave et al. (2005). In particular,
model I was expressed as follows (eqn1):

while model II had the following form (eqn.
2):

where  agb is the estimated individual tree
oven-dry  aboveground biomass  (kg),  DBH
is the tree stem diameter at 1.3m (cm), h is
the tree height (m) and ρ is the wood spe-
cific  gravity  (oven-dry  wood  over  green
volume, g cm-3).

Measuring  tree  height  is  a  hard  task  in
this type of forest, so we used a combina-
tion of LiDAR measurements and diameter-
based estimation to develop a height-diam-
eter  model.  The  maximum  LiDAR  height
was  related  through  a  power  regression
with the maximum field measured diame-
ter in each sample plot, in order to avoid

unrealistic tree height estimates (Asner et
al.  2013).  This  regression  was  applied  to
estimate each tree height.

Palms biomass was  estimated using the
equation  (eqn.  3)  proposed  by  Frangi  &
Lugo (1985) for the moist forests of Puerto
Rico  of  Prestoea  montana  (Graham)  G.
Nicholson. The equation (eqn. 4) proposed
by  Tiepolo  et  al.  (2002) for  the  Cyathea
genus of tropical montane moist forests of
Serra  do  Mar  National  Park,  Brazil  was
used to estimate a ferns biomass (eqn. 3,
eqn. 4):

where  agb is  the  estimated  oven-dry
aboveground  biomass  (kg)  and  h is  the
height (m) in both equations.

To estimate each tree wood specific grav-
ity, we followed the Global Wood Density
Database (Chave et al.  2009,  Zanne et al.
2009). When it was not possible to use a
value for  a  particular  species,  an average
value  at  genus  or  family  level  was  used.
The 2008 Readiness  Preparation Proposal
(MINAET/FONAFIFO  2010)  average  values
of wood density were applied when it was
not  possible  to  assign  species,  genus  or
family to the measured trees. These values
are based on the research of Chudnoff cit.
Solórzano (1992).

Aboveground biomass (AGB) of each field
plot  is  the  sum  of  the  oven-dry  above-
ground  biomass  of  all  individual  trees
(agb),  palms  and  ferns  in  the  plot,  ex-
pressed per hectare (Tab. 3).

Plot-aggregate allometry
We calculated for  each  sample plot  the

top-of-canopy height (TCH) (Asner & Mas-
caro 2014) which is considered as the aver-
age height of all 1 m resolution pixels of the

Digital Canopy Model inside sample plots.
Tropical tree crowns can reach over 20 m

in  diameter;  therefore,  large  probabilities
exist  for  tree crowns to overlap adjacent
20×20 m plots. This limitation of the avail-
able field data may affect the results of the
survey,  so we increased cell  size for  pro-
cessing LIDAR data to 25×25 m. In addition,
by increasing cell size it is possible to mini-
mize errors due to low GPS location accu-
racy, thus improving overlap between DCM
cells  and  sample  plots  and  ensuring  that
measured trees are taken into account in
the remote sensing analysis.

Asner et al. (2011) proposed a plot-aggre-
gate allometry inspired by the general tree
allometric  theory  of  Chave  et  al.  (2005),
which  assumes  that  biomass  follows  the
equation (eqn. 5):

where  agb is  individual  tree aboveground
biomass,  DBH is  stem diameter  (cm),  h is
canopy height (m), ρ is wood specific grav-
ity (wood density, g cm−3) and a, b1, b2 and
b3 are the model parameters.

On the basis of this model,  Asner & Mas-
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Tab.  1 -  Parameters  measured  in  each
20×20 pixel to generate a code charac-
terizing  the  vegetation  structure  of
Poás National Park (Costa Rica).

Variable Range Value
Canopy cover 0-85.5 % 1

85.5-99.5 % 2
99.5-100 % 3

P95 2-21 m 1
21-27 m 2

>27 m 3
IQ 0-5 m 1

5-8 m 2
>8 m 3

Tab. 2 - Tree allometric equations used for aboveground biomass estimates in Poás
Volcano National Park (Costa Rica). (nd): not determined.

Equation DBH range
(cm)

Number of
individuals

R2

Chave et al. (model I) ≥5 - 133.2 419 nd
Chave et al. (model II) ≥5 - 133.2 419 nd
Frangi & Lugo - 25 0.96
Tiepolo et al. - 22 0.88

Tab. 3 - Summary of the field plot parameters (n = 25) for aboveground biomass mod-
eling in Poás Volcano National Park (Costa Rica). AGB has been calculated using two
different tree-allometric equations from Chave et al. (2005)

Parameters Mean Minimum Maximum Standard
Deviation

BA (m2 ha-1) 58.50 30.97 84.11 13.04
Wood density (g cm-3) 0.60 0.51 0.70 0.05
Stem number (stems ha-1) 1699.00 425.00 2500.00 546.94
TCH (m) 15.28 8.51 20.74 3.34
AGB Chave’s model I (t ha-1) 312.42 133.76 580.32 104.62
AGB Chave’s model II (t ha-1) 405.16 168.26 987.69 175.10
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agb=a⋅DBH b 1
⋅hb2⋅ρ b3

agb=−
4266348

1−2792284⋅e0.313677⋅h

agb=10.0+6.4⋅h

agb=ρ⋅exp[−1.239+1.98⋅ln DBH
+0.207⋅(ln DBH )

2

−0.0281 ˙(ln DBH )
3]

agb=exp [−2.557+0.940⋅ln(ρ⋅DBH 2
⋅h) ]
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caro (2014) fitted a general model of plot-
aggregate  aboveground  biomass  using  a
LiDAR plot network of tropical forest sites
in Colombia, Hawaii, Madagascar, Peru and
Panama to evaluate carbon density across
a wide range of tropical vegetation condi-
tions (eqn. 6):

where  AGB is  the total  plot  aboveground
biomass (t ha-1),  TCH is LiDAR-derived top-
of-canopy height (m),  BA is  plot-averaged
basal  area  (m2 ha−1)  and  ρBA is  basal-area
weighted wood density (g cm−3). The gen-
eral model was originally fitted to estimate
aboveground  carbon  density.  A  factor  of
0.48-1 (Martin & Thomas 2011) was used to
convert aboveground carbon density mod-
el into aboveground biomass.

This  method  reduces  the  need  for  ex-
haustive  plot-based  inventories  (Asner  &
Mascaro 2014) by relating TCH with BA, and
TCH with  wood  density  at  regional  level.
Thus,  BA is  the  only  variable  to  be  mea-
sured during the inventory, since density is
considered  as  an  average  constant  value
for the plot.

We validated  the  general  Asner  &  Mas-
caro’s plot-aggregate allometry equation in
our study area and we also fitted two spe-
cific models for the Poás Volcano forest fol-
lowing  the  same  structure,  one  model
using  AGB estimations from Chave’s equa-
tions I and the other one using AGB estima-
tions from Chave’s equation II. In order to
fit  the  power  AGB models  we  used  the
Nonlinear  Least  Squares  (nls)  function
from the “stats” package included in the R
software (R Core Team 2013). This function
determines the nonlinear (weighted) least-
squares  estimate  of  the  parameters  of  a
nonlinear model using a Gauss-Newton al-
gorithm.

Asner & Mascaro (2014) proposed a sim-
ple linear model forced through the origin
to capture the BA variation in each region.
This  BA-TCH  origin  forced  regression  as-
sumes that with a TCH of zero, BA must not
be  greater  than zero.  This  ratio  between
BA and  TCH is called a stocking coefficient
(SC - Asner et al. 2012b) and explains struc-
tural  variability  across  different  tropical
forests.  In  our  study  area,  SC was  esti-
mated using a  similar  origin  forced linear
model.

Bias (b), root mean squared error (RMSE),
relative  bias  (b%)  and  relative  mean
squared error (RMSE%) were calculated as

principal contrasting statistics in the fitting
phase of  the  AGB local  model  and in the
validation  of  the  general  model  in  our
study area (eqn. 7, eqn. 8, eqn. 9, eqn. 10):

where AGBi is the true or reference above-
ground  biomass  measured  in  field  plots,
AGBi is  the  aboveground  biomass  esti-
mated by  the model,  n is  the number  of
plots and AGB is the mean of the AGB field
plot sample.

We  mapped  AGB across  the  landscape
with LiDAR metrics using resolution of 25×
25 m, i.e., each grid cell had the same area
as cells used for LiDAR metrics processing,
as  other  authors  have  already  indicated
(Magnussen  &  Boudewyn  1998).  Top-of-
canopy height,  basal  area  and  basal  area
weighted wood density were estimated in
each cell. We then applied to each grid cell
the general model and the two Poás forest
models specifically fitted for this area.

Results and discussion

Field measured biomass
AGB for  each  plot  was  calculated  using

two  different  Chave’s  equations  (eqn.  1
and eqn. 2).  In order to use eqn. 1,  single
tree heights obtained through the height-
diameter model were computed (eqn. 11)

(R2  = 0.49, RMSE = 3.97 m – see Fig. S1 in
Supplementary  material)  where  h is  total
tree height (m) and  DBH is stem diameter
(cm).

Aboveground biomass values (average ±
standard deviation) estimated from the 25
field plots were 312.42 ± 104.62 t ha -1 when
Chave’s  model  I  (eqn.  1)  was  used  and
405.16 ± 175.1 with Chave’s model II  (eqn.
2).  Mean basal area resulted in a value of
58.50 ± 13.04 m2 ha-1 and average estimated

wood density was 0.60 ± 0.05 g cm−3 (Tab.
3).

We observed important differences in the
estimation of  AGB (92.74 t ha-1 considering
the mean value of plot sample) depending
on  the  chosen  tree  allometry,  affecting
considerably and systematically the contin-
uous estimation of  AGB in the study area.
Measuring heights of several dominant and
intermediate trees with hypsometer in the
plots could have improved this regression
curve, though this option was not feasible
during fieldwork due to time and budget
constraints.  Allometric  errors,  including
systematic errors derived from the height-
diameter model, might be the main cause
of  the  differences  when  Chave’s  I  and
Chave’s  II  models  are  used  in  the  study
area.  Other  authors  have  fixed the maxi-
mum LiDAR height to the maximum mea-
sured diameter for the same field plot to
obtain a  height-diameter  model.  This  was
considered  as  a  conservative  method  to
constrain  their  field-estimated  carbon
stocks  for  tropical  dry  forests  and  man-
groves in Panama (Asner et al. 2013).

Plot-aggregate allometry
Basal area was related to TCH through the

origin forced linear regression BA-TCH (Tab.
4). Both variables show significant correla-
tion (p-value < 0.001). The stocking coeffi-
cient in our sampling (SC = 3.70) is higher
than those reported by  Asner & Mascaro
(2014) in  other  tropical  areas  (1.13-2.58).
This  situation shows that  Poás forest  has
larger  biomass  density  for  the  same  THC
than  the  rest  of  the  forests  studied  by
Asner & Mascaro (2014).

Asner & Mascaro (2014) suggests that the
SC varies regionally, e.g., Asner et al. (2013)
used only one  AGB-TCH model to estimate
aboveground  biomass  throughout  the
Republic of Panama. Although in this work
SC was estimated for the entire area,  the
results show that  SC might have different
trends  in  each life  zone (Fig.  2).  The low
number  of  plots  constrained  the  estima-
tion of reliable SC for different Holdridge’s
life zones.

Through the general model, aboveground
biomass was estimated using only the field
BA measurements. Asner & Mascaro (2014)
suggested that relascope methods may be
appropriate for quick BA measurements in-
field.  However,  this  method  requires  the
development  of  a  methodology  to  esti-
mate a reliable TCH in variable-radius inven-
tories.

There  was  no  significant  correlation  be-
tween basal  area weighted wood density
and  TCH (R2 = 0.0014 and p-value > 0.05).
These  results  combined  with  the  small
deviation  of  basal  area  weighted  wood
density in sampling (0.60 ± 0.05) suggest
that  it  is  possible  to  use  a  wood density
constant value for the entire study area.

In  the  fitting  phase  the  local  models
obtained a RMSE of 30.33 t ha-1 and 32.80 t
ha-1 and  were  generated  following  the
same structure as the general model (Tab.
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Tab. 4 - Stocking coefficient (SC), local and general AGB models used in the study area.
The parameters for the general model are taken from Asner & Mascaro (2014), while
parameters for the local models have been adjusted for this work.

Models Units a b1 b2 b3 SC RMSE
Local basal area model m2 ha-1 - - - - 3.7 15.62

General model (Asner&Mascaro) t ha-1 7.9912 0.2807 0.9721 1.3763 - 34.26
Local model (Chave’s model I) t ha-1 1.82137 0.3299 1.17488 1.05626 - 30.33

Local model (Chave’s model II) t ha-1 1.92262 0.30201 1.17260 0.59760 - 32.80
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4). The independent variables were signifi-
cant at the 0.05 level. However, the mod-
els were not as consistent as before when
basal  area  estimations  from  TCH were
incorporated in the local model (Fig. S2 in
the Supplementary material). This indicates
low fitting of  TCH and  BA  in this area and
therefore, larger plots and/or different fits
per life zone are required.

The comparison of  AGB  field  plots mea-
surements using Chave’s model I and Cha-
ve’s  model  II  with  AGB estimations  ob-
tained using the general model by Asner &
Mascaro (2014 – Tab. 5) shows a better per-
formance when Chave’s II is used (Fig. 3),
even though both models produce system-
atic deviations.

The general model was validated by the
field  plots  measured  data  (BA and  BA-
weighted  wood  density)  and  by  the  esti-
mated variables (predicted BA from SC and
predicted mean weighted wood density  –
Tab. 5). Using Chave’s equation II, the gen-
eral  model  had  low  bias  when  SC was
applied (b  = -27.5 t  ha-1,  b%  = -6.79%).  The
large RMSE in the general model validation
(more  than  100 t-1)  was  likely  due to  the
small  size  plot.  Small  size  plot  generates
large  errors  due  to  field  sampling  errors
(Réjou-Méchain  et  al.  2014).  In  addition,
small  size  plot  increase  the  influence  of
edge effect and GPS errors in TCH and AGB
field  plot  measurements.  Mauya  et  al.
(2015), working with  AGB plot-level LiDAR
models in northern Tanzania, reported that
relative root mean square error decreased
from 63.6 to 29.2% when the size plot was
increased from 0.02 to 0.3 ha. We obtained
a relative RMSE similar to that of Mauya et
al. (2015) for similar plot size (0.04 ha).

Differences between field plots size and
cell size for processing LiDAR data can be
considered  as  an  error  source.  Working
with a  large scale  global  data  set,  Réjou-
Méchain  et  al.  (2014) simulated  the  field
sampling  errors  derived  from  the  utiliza-
tion  of  different  sizes  in  field  plots  and
remote  sensing  footprint.  They  showed
that when field plots were very small (0.1
ha  and  below),  the  sampling  error  was
mostly due to the contribution from field
sampling, and was relatively insensitive to
footprint  area.  According to  that,  we ex-
pect  that  AGB  errors  in  Poás  forest  are
more likely influenced by the small size of
field plots than by the differences between
the field plots size and the cell size for pro-
cessing LiDAR data.

Our plot size (0.04 ha) was smaller than
the  one  used  for  generating  the  general
model  (0.1-1.0  ha).  Using  small  plots  for
estimating  AGB or  BA may  result  in  im-
proper estimations (Meyer et al. 2013, Mau-
ya et al. 2015). Optimizing plot size is likely
to be dependent not  on plot  size  per se,
but on the ratio of typical crown sizes to
the plot size (Asner & Mascaro 2014). Three
important  outcomes  are  achieved  using
larger plots (> 0.5 ha): (1) the accuracy of
plot-level  biomass  allometry  improves  as
the  number  of  trees  increases  (Asner  &
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Tab. 5 - Comparison of the results obtained by the Asner & Mascaro’s general model
with the Chave’s model I and model II and field measured basal area value (FM) or the
stocking coefficient basal area value (SC). b is the bias, RMSE is the root mean squared
error, b% is the relative bias and RMSE% is the relative mean squared error.

agb model BA b RMSE b% RMSE%
Chave’s model I FM -130.56 137.29 -41.79 43.94
Chave’s model I SC -120.24 166.83 -38.49 53.40
Chave’s model II FM -37.82 102.27 -9.33 25.24
Chave’s model II SC -27.50 164.62 -6.79 40.63

Fig.  2 -  Relationship  between  LiDAR  top  of  canopy  heights  (TCH)  and  basal  area
(stocking coefficient,  SC) in each Holdridge’s life zone of the Poás Volcano National
Park (Costa Rica).

Fig. 3 - Estimated values of aboveground biomass using LiDAR derived data and the
general  approach  (Asner  & Mascaro  2014)  against  estimated  aboveground  values
using field measurements and tree allometric equations of Chave’s model I and model
II in Poás Volcano National Park (Costa Rica).
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Mascaro  2014);  (2)  larger  plots  minimize
the negative effect produced by low loca-
tion  accuracy  due  to  GPS;  (3)  as  tree
crowns can exceed 20 m in diameter, it is
possible that a tree crown studied in LiDAR
data may not be part of a tree within the
sample plot, leading to the so-called “edge
effect”. These three effects could be mini-
mized by increasing plot size (Meyer et al.
2013),  though leading to higher inventory

costs. Additionally, size plots close to 1 ha
could also be appropriate, as recent stud-
ies  in  tropical  forests  demonstrated  that
uncertainties approach 10% when plot sizes
increase up to 1 ha (Asner & Mascaro 2014,
Zolkos et al. 2013).

Plot-aggregate  AGB models have biologi-
cal meaning since main biomass factors are
involved,  i.e.,  height,  diameter  (through
basal area) and wood gravity. Height and

diameter  determine  the  tri-dimensional
structure of  forests and wood gravity de-
tails the stored carbon per unit volume.

In  these  types  of  forests  large  tree
crowns  in  overstorey  layers  leads  to  an
increase  of  first  returns  from  the  upper
level of canopy recorded by the LiDAR sys-
tem,  overlooking  the  lower  strata  (Ediri-
weera et al. 2014). In this respect,  TCH has
broadly proved to be a good predictor of
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Fig. 4 – Top-of-canopy 
Height (TCH) and Basal 
Area (BA) values for Poás 
Volcano National Park 
(Costa Rica). TCH values 
were obtained through 
LiDAR data and BA values 
were derived from an ori-
gin-forced linear regression
BA-TCH.

Fig. 5 - Distribution of estimated AGB (t ha-1) in the study area of Poás Volcano National Park (Costa Rica). AGB was estimated by: (a)
the general model (Asner & Mascaro 2014 ); (b) the local model using Chave’s model I; and (c) the local model using Chave’s model
II.
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forest  structure,  carbon  density  and  bio-
mass in tropical vegetation (Asner & Mas-
caro 2014).

Mapping biomass
Basal area values for the entire National

Park were derived from the origin forced
linear regression  BA-TCH (Fig. 4). We used
three  AGB models (the general model and
the  two  local  fitted  models)  in  order  to
map  the  AGB throughout  the  Holdridge’s
life zones in the study area (Fig. 5). We did
not take into account cells with TCH under
4.5 m for a real comparison of stored bio-
mass in each Holdridge’s life zone, because
of  the extension of  bare and shrub land,
especially in the vicinity of crater areas and
the bare eroded areas by lava streams.

The  implementation  of  both  locals  and
general models resulted in consistent and
logical  maps  that  showed  no  big  differ-
ences between neighbor cells and yielded
biomass values within the expected range
for this type of forests (Fig. 5). The impor-
tant differences observed in the estimation
of AGB depending on the chosen tree allo-
metry  affects  systematically  to  AGB map-
ping  in  the  study  area  (Fig.  5).  The  total
amount of AGB for the study area is consid-
erably  larger  in  the  case  of  using  local
model  I  or  the  general  model  than using
local  model  II.  This  points  out  the impor-
tance of individual tree biomass allometry
in wall-to-wall aboveground biomass map-
ping.

Some authors have indicated the impor-
tance of the equivalence between the size
of  field  plots  and the size of  pixel  LiDAR
processing  (Magnussen  &  Boudewyn
1998).  We have utilized the same size for
the TCH computation in the field plots and
in  the  whole  area  (25×25  m).  This  size  is
slightly  smaller  than the  30×30 m resolu-
tion used by Clark et al. (2011) or the 33×33
m used by Asner et al. (2009), simulating a
typical biomass sample plot used in many
tropical forests studies (Phillips et al. 1998).

Average values of 461.54 t ha-1, 409.35 t
ha-1 and  336.08  t  ha-1of  AGB were  deter-
mined  for  forest  areas  of  Poás  Volcano
when  general  model,  local  model  II  and
local  model  I  were  used,  respectively.
There  are  significant  differences  in  total
AGB in  the  study  area  depending  on  the
applied  model.  The  general  model  pro-
vided higher AGB than the local models, 11%
higher  than  using  local  model  II  and  27%
higher than local model I. Tree allometry is
the  main  factor  to  explain  these  differ-
ences.  Asner & Mascaro (2014) prioritized
tree-level allometries based on local infor-
mation, and measured tree height at least
for the three largest trees in each plot, esti-
mating  the  remaining  tree  heights  using
height-diameter allometry at the species or
regional level. The general model was elab-
orated  using  a  more  adequate  local  tree
allometry  to  each particular  case,  instead
of the one used in this work. Therefore, the
results derived from the general model are
more likely adjusted to reality. The elabora-

tion of local allometry models is an expen-
sive process; thus, the general model is an
adequate alternative when LiDAR data but
not  local  tree-allometry  are available  in  a
specific area.

In all cases, the highest mean  AGB value
among life zones corresponded to premon-
tane wet forest, situated at lower altitude,
while the lowest value was achieved in the
highest areas, i.e., montane wet forest (Fig.
5).  Thus, there is a biomass gradient with
greater carbon stored in premontane wet
forests,  which  are  found  at  lower  eleva-
tions where there is the highest rainfall (>
4000 mm y-1) and located in the Pacific side
of the Park (Fig. 5). This gradient has in the
same trend reported by other tropical bio-
mass  studies  (Girardin  et  al.  2010,  Ulate
2010, Moser et al. 2011).

Conclusions
Allometry equations for the estimation of

individual tree biomass are a critical factor
to ensure wall-to-wall  unbiased and accu-
rate aboveground biomass mapping when
plot-aggregate AGB local models are to be
developed  in  new  areas.  AGB estimation
can  vary  considerably  depending  on  the
tree  allometric  equations  chosen  or  ad-
justed for a  given study area.  Differences
between the results obtained with the gen-
eral and the local models in our study area
were significantly influenced by the applied
tree  allometry.  The  construction  a  local-
specific  allometry  could  improve  the  r-
esults, but it is more expensive. Therefore,
a  cost-benefit  analysis  might  be  carried
out.

The  alternative  to  developing  specific
tree  allometry  and  local  plot-aggregate
models is the general plot-aggregate meth-
odology,  which can be easily  and reliably
applied.  Aboveground  biomass  in  a  new
study area could be estimated by measur-
ing only the basal area (BA) in field plots in
order to obtain a local BA-TCH regression. It
presents  an  advantage  over  traditional
intensive inventories for mapping biomass
and carbon density in tropical forests, since
local  tree  allometry  and  expensive  time-
consuming  inventories  are  no  longer  re-
quired.  It  shows  an  easier  approach  to
obtain  BA through  LiDAR  top-of-canopy
height (TCH) data, since BA is the only field
measurement required. Therefore, the def-
inition  of  precise  BA  field  measurement
procedures (e.g.,  location,  size and shape
of the field plots) is decisive to achieve reli-
able  results  in  future  studies.  We  con-
firmed the influence of plot size on BA-TCH
fittings; hence, an increment of plot size is
recommended for future studies.

The  results  of  this  study show  that  the
stocking coefficient  (SC)  may vary locally,
even in small geographical areas (few thou-
sand ha as the study area). More fieldwork
is  needed  to  demonstrate  how  SC varies
between different life zones. The Poás Vol-
cano National Park showed high values of
SC, which implied that its forests exhibit a
larger  biomass  density  for  the  same  THC

compared to the rest of the forests studied
by  Asner & Mascaro (2014). Average basal
area (58.50 ± 13.04 m2 ha-1) in the Poás Vol-
cano  National  Park  is  significantly  higher
than in other forests. This parameter has a
major  influence on  biomass  storage,  sug-
gesting  that  these  forests  might  play  an
important  role  as  carbon  sinks.  In  this
sense, their protection and conservation is
essential in a country devoted to a carbon
neutral goal.
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Fig. S2 - Fitting local Poás model with TCH-
derived basal  area (a)  resulted in greater
deviations than fitting with field measured
basal area (b).
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