*
 

iForest - Biogeosciences and Forestry


Climate change is being intensified by anthropogenic emission of greenhouse gasses, highlighting the value of forests for carbon dioxide storing carbon in their biomass. Seasonally dry tropical forests are a neglected, threatened, but potentially critical biome for helping mitigate climate change. In South America, knowing the amount and distribution of carbon in Caatinga seasonally dry vegetation is essential to understand its contribution to the global carbon cycle and subsequently design a strategic plan for its conservation. The present study aimed to model and map the spatial distribution of the potential forest biomass stock across 32 forest fragments of Caatinga, in the state of Bahia, Brazil, using regression kriging and Inverse Square of Distance techniques, building from point measurements of vegetation biomass made on-the-ground in ecological plots. First, a model for estimating biomass was fitted as a function of environmental variables to apply regression kriging, and then applied to the maps of the selected components. Elevation, temperature, and precipitation explained 46% of the biomass variations in the Caatinga. The model residuals showed strong spatial dependence and were mapped based on geostatistical criteria, selecting the spherical semivariogram model for interpolation by ordinary kriging. Biomass was also mapped by the Inverse Square of Distance approach. The quality of the regression model suggests that there is good potential for estimating biomass here from environmental variables. The regression kriging showed greater detail in the spatial distribution and revealed a spatial trend of increasing biomass from the north to south of the domain. Additional studies with greater sampling intensity and the use of other explanatory variables are suggested to improve the model, as well as to maximize the technique’s ability to capture the actual biomass behavior in this newly studied seasonally dry ecosystem.

  Keywords


Geostatistics, Regression Kriging, Spatial Analysis, Forest Inventory

Authors’ address

(1)
Héveli Kalini Viana Santos 0000-0003-1623-906X
Thaine Teixeira Silva 0000-0001-6082-371X
Alessandro De Paula 0000-0003-3676-3846
Patrícia Anjos Bittencourt Barreto-Garcia 0000-0002-8559-2927
Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Florestais, 45031-900 Vitória da Conquista, BA (Brazil)
(2)
Robson Borges De Lima 0000-0001-5915-4045
Cinthia Pereira De Oliveira
Francisco Tarcísio Alves Júnior
Universidade do Estado do Amapá, Departamento de Engenharia Florestal, 68900-070 Macapá, AP (Brazil)
(3)
Rafael Lucas Figueiredo De Souza 0000-0002-1328-057X
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, 13418-900, Piracicaba, SP (Brazil)
(4)
Domingos Cardoso 0000-0001-7072-2656
Instituto de Biologia, Universidade Federal da Bahia, 40.026-010, Salvador, BA (Brazil)
(5)
Peter W Moonlight 0000-0003-4342-2089
Tropical Diversity Section, Royal Botanic Garden Edinburgh, EH3 5NZ, Edinburgh (United Kingdom)
(6)
Elmar Veenendaal 0000-0001-8230-2501
Wageningen University, Plant Ecology and Nature Conservation Group, 6700 AK, Wageningen (Netherlands)
(7)
Luciano Paganucci De Queiroz 0000-0001-7436-0939
Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, 440369-00, Feira de Santana, BA (Brazil)
(8)
Priscyla MS Rodrigues 0000-0003-4508-0131
Colegiado de Ecologia, Universidade Federal do Vale do São Francisco, 563049-17, Senhor do Bonfim, BA (Brazil)
(9)
Rubens Manoel Dos Santos 0000-0002-4075-462X
Universidade Federal de Lavras, 37200-900, Lavras, MG (Brazil)
(10)
Tiina Sarkinen
Tropical Diversity Section, Royal Botanic Garden Edinburgh, EH3 5NZ, Edinburgh (United Kingdom)
(11)
Toby Pennington 0000-0002-8196-288X
University of Exeter, EX4 4QG, Exter (United Kingdom)
(12)
Oliver L Phillips 0000-0002-8993-6168
School of Geography, University of Leeds, LS2 9JT, Leeds (United Kingdom)

Corresponding author

 
Robson Borges De Lima
robson.lima@ueap.edu.br

Citation

Viana Santos HK, Borges De Lima R, Figueiredo De Souza RL, Cardoso D, Moonlight PW, Teixeira Silva T, Pereira De Oliveira C, Alves Júnior FT, Veenendaal E, Paganucci De Queiroz L, Rodrigues PMS, Dos Santos RM, Sarkinen T, De Paula A, Barreto-Garcia PAB, Pennington T, Phillips OL (2023). Spatial distribution of aboveground biomass stock in tropical dry forest in Brazil. iForest 16: 116-126. - doi: 10.3832/ifor4104-016

Academic Editor

Emanuele Lingua

Paper history

Received: Mar 24, 2022
Accepted: Feb 14, 2023

First online: Apr 17, 2023
Publication Date: Apr 30, 2023
Publication Time: 2.07 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 20041
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 16279
Abstract Page Views: 2154
PDF Downloads: 1435
Citation/Reference Downloads: 6
XML Downloads: 167

Web Metrics
Days since publication: 602
Overall contacts: 20041
Avg. contacts per week: 233.03

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Althoff TF, Menezes RSC, Pinto AS, Pareyn FGC, Carvalho AL, Martins JCR, Carvalho EX, Silva ASA, Dutra ED, Sampaio EVSB (2018)
Adaptation of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agriculture, Ecosystems and Environment 254: 26-34.
CrossRef | Gscholar
(2)
Alvarenga LHV, Mello JM, Guedes ICL, Scolforo JRS (2012)
Desempenho da estratificação em um fragmento de cerrado stricto sensu utilizando interpolador geoestatístico [Stratification performance in a cerrado stricto sensu fragment using geostatistical interpolator]. Cerne 18 (4): 675-681.
CrossRef | Gscholar
(3)
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013)
Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22 (6): 711-728.
CrossRef | Gscholar
(4)
Barni PE, Manzi AO, Condé TM, Barbosa RI, Fearnside PM (2016)
Spatial distribution of forest biomass in Brazil’s state of Roraima, northern Amazonia. Forest Ecology and Management 377: 170-181.
CrossRef | Gscholar
(5)
Benites VM, Caiafa AN, Mendonça ES, Schaefer CE, Ker JC (2003)
Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço [Soils and vegetation in the high altitude rock complexes of Mantiqueira and Espinhaço]. Floresta e Ambiente 10 (1): 76-85.
Online | Gscholar
(6)
Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994)
Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal 58 (5): 1501-1511.
CrossRef | Gscholar
(7)
Castanho ADA, Coe M, Andrade EM, Walker W, Baccini A, Campos DA, Farina M (2020)
A close look at above ground biomass of a large and heterogeneous Seasonally Dry Tropical Forest - Caatinga in North East of Brazil. Anais da Academia Brasileira de Ciências 92 (1): 1-18.
CrossRef | Gscholar
(8)
Crouzeilles R, Curran M, Ferreira MS, Lindenmayer DB, Grelle CEV, Rey Benayas JM (2016)
A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications 7: 11666.
CrossRef | Gscholar
(9)
Crowther TW, Glick HB, Covey KR, Bettigole C, Maynard DS, Thomas SM, Smith JR, Hintler G, Duguid MC, Amatulli G, Tuanmu M-N, Jetz W, Salas C, Stam C, Piotto D, Tavani R, Green S, Bruce G, Williams SJ, Wiser SK, Huber MO, Hengeveld GM, Nabuurs G-J, Tikhonova E, Borchardt P, Li C-F, Powrie LW, Fischer M, Hemp A, Homeier J, Cho P, Vibrans AC, Umunay PM, Piao SL, Rowe CW, Ashton MS, Crane PR, Bradford MA (2015)
Mapping tree density at a global scale. Nature 525: 201-205.
CrossRef | Gscholar
(10)
Da Silva JM, Leal I, Tabarelli M (2017)
Caatinga: the largest tropical dry forest region in South America. Springer International Publishing, Cham, Switzerland, pp. 482.
CrossRef | Gscholar
(11)
De Meira Junior MS, Pinto JRR, Ramos NO, Miguel EP, Gaspar RO, Phillips OL (2020)
The impact of long dry periods on the aboveground biomass in a tropical forest: 20 years of monitoring. Carbon Balance and Management. 15: 12.
CrossRef | Gscholar
(12)
De Queiroz LP, Cardoso D, Fernandes MF, Moro MF (2017)
Diversity and evolution of flowering plants of the Caatinga domain. In: “Caatinga: The Largest Tropical Dry Forest Region in South America” (JMC da Silva, IR Leal, M Tabarelli eds). Springer International Publishing, Cham, Switzerland, pp. 23-63.
CrossRef | Gscholar
(13)
DRYFLOR, Banda-R K, Delgado-Salinas A, Dexter KG, Linares-Palomino R, Oliveira-Filho A, Prado D, Pullan M, Quintana C, Riina R, Rodríguez MGM, Weintritt J, Acevedo-Rodríguez P, Adarve J, Alvarez E, Aranguren BA, Arteaga JC, Aymard G, Castaño A, Ceballos-Mago N, Cogollo A, Cuadros H, Delgado F, Devia W, Dueñas H, Fajardo L, Fernández A, Fernández MA, Franklin J, Freid EH, Galetti LA, Gonto R, González-MR, Graveson R, Helmer EH, Idárraga A, López R, Marcano-Vega H, Martínez OG, Maturo HM, McDonald M, McLaren K, Melo O, Mijares F, Mogni V, Molina D, Moreno Del N P, Nassar JM, Neves DM, Oakley LJ, Oatham M, Olvera-Luna AR, Pezzini FF, Dominguez OJR, Ríos ME, Rivera O, Rodríguez N, Rojas A, Särkinen T, Sánchez R, Smith M, Vargas C, Villanueva B, Pennington RT (2016)
Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353: 1383-1387.
CrossRef | Gscholar
(14)
Elith J, Kearney M, Phillips S (2010)
The art of modeling range-shifted species. Methods in Ecology and Evolution 1: 330-342.
CrossRef | Gscholar
(15)
ESRI (2019)
ArcGIS Desktop, version 10.8. Environmental Systems Research Institute, Redlands, CA, USA.
Gscholar
(16)
Fagua JC, Jantz P, Burns P, Massey R, Buitrago JY, Saatchi S, Hakkenberg C, Goetz SJ (2021)
Mapping tree diversity in the tropical forest region of Chocó-Colombia. Environmental Research Letters. 16: 054024.
CrossRef | Gscholar
(17)
Fernandes MF, Cardoso D, De Queiroz LP (2020)
An updated plant checklist of the Brazilian Caatinga seasonally dry forests and woodlands reveals high species richness and endemism. Journal of Arid Environments. 174: 104079.
CrossRef | Gscholar
(18)
Fick SE, Hijmans RJ (2017)
WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
CrossRef | Gscholar
(19)
ForestPlot.net (2021)
Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biological Conservation 260: 108849.
CrossRef | Gscholar
(20)
Ganem RS (2017)
Caatinga: estratégias de conservação [Caatinga: conservation strategies]. Estudo Técnico, Consultoria legislativa, Brazil, pp. 105.
Gscholar
(21)
Gerstner K, Moreno-Mateos D, Gurevitch J, Beckmann M, Kambach S, Jones HP, Seppelt R (2017)
Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods in Ecology and Evolution 8: 777-784.
CrossRef | Gscholar
(22)
Guedes LPC, Uribe-Opazo MA, Junior PJR (2013)
Influence of incorporating geometric anisotropy on the construction of thematic maps of simulated data and chemical attributes of soil. Chilean Journal of Agricultural Research 73: 1-10.
CrossRef | Gscholar
(23)
Hengl T, Mendes De Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017)
SoilGrids250m: Global gridded soil information based on machine learning. PLoS One. 12: e0169748.
CrossRef | Gscholar
(24)
Hijmans RJ, Elith J (2017)
Species distribution modeling with R. R Cran Project, web site.
Online | Gscholar
(25)
Hijmans RJ (2021)
raster: geographic data analysis and modeling. R package version 3:4-13.
Online | Gscholar
(26)
IBGE (2021)
Mapeamento de recurso naturais do Brasil Escala 1:250.000. Pedologia Versão 2021 [Mapping of natural resources in Brazil Scale 1:250.000. Pedology Version 2021]. Brazilian Institute for Geography and Statistics, Coordenação de Recursos Naturais e Estudos ambientais, Rio de Janeiro, RJ, Brazil.
Online | Gscholar
(27)
IPCC (2006)
Guidelines for national greenhouse gas inventories: agriculture, forestry and other land use. Institute for Global Environmental Strategies 2: 2-59.
Online | Gscholar
(28)
Journel AG, Huijbregts CJ (1978)
Mining geostatistics. Academic Press, London, USA, pp. 600.
Gscholar
(29)
Lima Júnior C, Accioly LJO, Giongo V, Lima RLFA, Sampaio EVSB, Menezes RSC (2014)
Estimativa de biomassa lenhosa da caatinga com uso de equações alométricas e índices de vegetação [Estimation of woody biomass of the caatinga using allometric equations and vegetation indices]. Scientia Forestalis 42 (102): 289-298.
Online | Gscholar
(30)
Lopez-Gonzalez G, Lewis SL, Burkitt M, Phillips OL (2011)
ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22 (4): 610-613.
CrossRef | Gscholar
(31)
Marques FA, Nascimento AF, Araújo Filho JC, Silva AB (2014)
Solos do Nordeste [Northeast soils]. Embrapa Solos, Recife, PE, Brazil, pp. 8.
Gscholar
(32)
Matheron G (1963)
Principles of geostatistics. Economic Geology 58: 1246-1266.
CrossRef | Gscholar
(33)
Mello CR, Viola MR, Beskow S, Norton LD (2013)
Multivariate models for anual rainfall erosivity in Brazil. Geoderma 202- 203: 88-102.
CrossRef | Gscholar
(34)
Mello YR, Oliveira TMN (2016)
Análise estatística e geoestatística da precipitação média para o município de Joinville (SC) [Statistical and geostatistical analysis of average precipitation for the municipality of Joinville (SC)]. Revista Brasileira de Meteorologia 31 (2): 229-239.
CrossRef | Gscholar
(35)
Moonlight PW, Banda-RK, Phillips OL, Dexter KG, Pennington RT, Baker TR, De Lima CH, Fajardo L, González-MR, Linares-Palomino R, Lloyd J, Nascimento M, Prado D, Quintana C, Riina R, Rodríguez MGM, Villela MD, Aquino ACMM, Arroyo L, Bezerra C, Tadeu Brunello A, Brienen RJW, Cardoso D, Chao K-J, Cotta Coutinho IA, Cunha J, Domingues T, Do Espírito Santo MM, Feldpausch TR, Ferreira Fernandes M, Goodwin ZA, Jiménez EM, Levesley A, Lopez-Toledo L, Marimon B, Miatto RC, Mizushima M, Monteagudo A, Soelma Beserra De Moura M, Murakami A, Neves D, Nicora Chequín R, César De Sousa Oliveira T, Almeida De Oliveira E, De Queiroz L, Pilon A, Marques Ramos D, Reynel C, Rodrigues PMS, Santos R, Särkinen T, Fernando Da Silva V, Souza RMS, Vasquez R, Veenendaal E (2021)
Expanding tropical forest monitoring into dry forests: the DRYFLOR protocol for permanent plots. Plants, People, Planet 3: 295-300.
CrossRef | Gscholar
(36)
Morais VA, Mello JM, Mello CR, Silva CA, Scolforo JRS (2017)
Spatial distribution of the litter carbono stock in the Cerrado biome in Minas Gerais state, Brazil. Ciência e Agrotecnologia 41 (5): 580-589.
CrossRef | Gscholar
(37)
Oliveira EVS (2016)
Dinâmica temporal e aspectos da vegetação em uma comunidade de Caatinga [Temporal dynamics and vegetation aspects in a Caatinga community]. MSc Thesis, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil, pp. 98.
Gscholar
(38)
Oliveira CP, Ferreira RLC, Silva JAA, Lima RB, Silva EA, Da Silva AF, Lucena J, Santos NAT, Lopes IJC, Pessoa MML, Melo CLSMS (2021)
Modeling and spatialization of biomass and carbon stock using LiDAR metrics in tropical dry forest, Brazil. Forests 12 (4): 1-17.
CrossRef | Gscholar
(39)
Poorter L, Bongers F, Aide TM, Zambrano AMA, Balvanera P, Becknell JM, Boukili V, Brancalion PHS, Broadbent EN, Chazdon RL, Craven D, Almeida-Cortez JS, Cabral GAL, Jong BHJ, Denslow JS, Dent DH, Dewalt SJ, Dupuy JM, Duran SM, Espírito-Santo MM, Frandino MC, César RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Licona J, Lohbeck M, Marin-Spiotta E, Martinez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Muñoz R, Muscarella R, Nunes YRF, Ochoa-Ganoa S, Oliveira AA, Orihuela-Belmonte E, Peña-Carlos M, Pérez-Garcia EA, Piotto D, Powers JS, Rodriguez-Velázquez J, Romero-Pérez E, Ruiz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Toledo M, Uriarte M, Breugel M, Wal H, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Bentos TV, Williamson GB, Rozendaal DMA (2016)
Biomass resilience of neotropical secondary forests. Nature 530: 211-214.
CrossRef | Gscholar
(40)
R Core Team (2021)
R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Online | Gscholar
(41)
Reis AA, Diniz JMFS, Arcebi Júnior FW, Mello JM, Batista APB, Ferraz Filho AC (2020)
Modeling the spatial distribution of wood volume a Cerrado Stricto Sensu remnant in Minas Gerais state, Brazil. Scientia Forestalis 48 (125): 1-13.
CrossRef | Gscholar
(42)
Ribeiro Junior PJ, Diggle PJ, Schlather M, Bivand R, Ripley B (2020)
geoR: analysis of geostatistical data. R package version 1:8-1.
Online | Gscholar
(43)
Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011)
Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences USA 108: 9899-9904.
CrossRef | Gscholar
(44)
Sampaio EVSB, Silva GC (2005)
Biomass equations for Brazilian semiarid Caatinga plants. Acta Botanica Brasilica 19 (4): 935-943.
CrossRef | Gscholar
(45)
Santos RC, Castro RVO, Carneiro ACO, Castro AFNM, Pimenta AS, Pinto EM, Marinho IV (2016)
Estoques de volume, biomassa e carbono na madeira de espécies da Caatinga em Caicó, RN [Volume, biomass and carbon stocks in wood from Caatinga species in Caicó, RN]. Pesquisa Florestal Brasileira 36 (85): 1-7.
CrossRef | Gscholar
(46)
Scolforo HF, Scolforo JRS, Mello JM, Mello CR, Morais VA (2016)
Spatial interpolators for improving the mapping of carbon stock of the arboreal vegetation in Brazilian biomes of Atlantic forest and Savanna. Forest Ecology and Management 376: 24-35.
CrossRef | Gscholar
(47)
Silveira EMO, Santo FDE, Wulder MA, Arcebi Júnior FW, Carvalho MC, Mello CR, Mello JM, Shimabukuro YE, Terra MCNS, Carvalho LMT, Scolforo JRS (2019)
Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. Forest Ecology and Management 445: 96-109.
CrossRef | Gscholar
(48)
Slik JWF, Raes N, Aiba S-I, Brearley FQ, Cannon CH, Meijaard E, Nagamasu H, Nilus R, Paoli G, Poulsen AD, Sheil D, Suzuki E, Van Valkenburg JLCH, Webb CO, Wilkie P, Wulffraat S (2009)
Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Diversity and Distributions 15: 523-532.
CrossRef | Gscholar
(49)
Souza DG, Sfair JC, Paula AS, Barros MF, Rito KF, Tabarelli M (2019)
Multiple drivers of aboveground biomass in a human-modified landscape of the Caatinga dry forest. Forest Ecology and Management 435: 57-65.
CrossRef | Gscholar
(50)
Vieira RMSP, Tomasella J, Barbosa AA, Martins MA, Rodriguez DA, Rezende FSD, Carriello F, Santana MDO (2020)
Desertification risk assessment in Northeast Brazil: current trends and future scenarios. Land Degradation and Development 32 (1): 224-240.
CrossRef | Gscholar
(51)
Virgens AP, Barreto-Garcia PAB, Paula A, Carvalho FF, Aragão MA, Monroe PHM (2016)
Biomassa de espécies florestais em área de Caatinga arbórea. [Biomass of forest species in an arboreal Caatinga area]. Pesquisa Florestal Brasileira 37 (92): 555-561.
CrossRef | Gscholar
(52)
Xue J, Ge Y, Ren H (2017)
Spatial upscaling of green aboveground biomass derived from MODIS-based NDVI in arid and semiarid grasslands. Advances in Space Research 60 (9): 2001-2008.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info