iForest - Biogeosciences and Forestry


Climate change impacts on spatial distribution, tree-ring growth, and water use of stone pine (Pinus pinea L.) forests in the Mediterranean region and silvicultural practices to limit those impacts

Kaouther Mechergui (1-2), Amal Saleh Altamimi (3), Wahbi Jaouadi (1-2)   , Souheila Naghmouchi (2)

iForest - Biogeosciences and Forestry, Volume 14, Issue 2, Pages 104-112 (2021)
doi: https://doi.org/10.3832/ifor3385-013
Published: Mar 01, 2021 - Copyright © 2021 SISEF

Review Papers

Stone pine (Pinus pinea L.) has been cultivated since centuries in Mediterranean areas for its products and economic benefits, including edible pine nuts, timber, mushrooms, firewood, and grazing. However, current management objectives of stone pine stands also include recreational use, biodiversity conservation, protection from soil erosion, and CO2 fixation. Stone pine stands are considered to be among the ecosystems most vulnerable to climate change, and the current increase in drought frequency in the Mediterranean Basin has been shown to negatively impact their long-term establishment. Understanding the effects of climate change on the distribution, tree-ring growth and water use of stone pine forests can help assessing the adaptive capacity of the species, and developing management programs aimed at its conservation. This paper reviews the impacts of climate change on stone pine in the Mediterranean region. The high sensitivity of stone pine to climate change has been widely demonstrated in that: (i) climatic models predict the loss of suitable habitats and the shift of its geographical distribution in the next future; (ii) tree-ring analysis showed that winter and spring rainfalls have positive effects on growth, whereas high spring temperature has a negative effect; (iii) the strategy of stone pine to cope with water deficit affects the processes regulating its growth, including wood formation, leading to peculiar tree-ring anatomical features such as intra-annual density fluctuations. The silvicultural interventions and the most effective management strategies for stone pine forests are reviewed and discussed in the context of current climate change in the Mediterranean Basin.


Stone Pine, Climate Change, Spatial Distribution, Tree-ring, Silvicultural Practices, Mediterranean Area

Authors’ address

Kaouther Mechergui 0000-0001-6189-7585
Wahbi Jaouadi
Silvo-Pastoral Institute of Tabarka, B.P 328, 8110 Tabarka, University of Jendouba (Tunisia)
Kaouther Mechergui 0000-0001-6189-7585
Wahbi Jaouadi
Souheila Naghmouchi 0000-0001-5093-810X
National Institute of Research in Rural Engineering, Waters and Forests, BP 10, Hédi Karray Street, Menzeh IV, Ariana 2080, University of Carthage (Tunisia)
Amal Saleh Altamimi
Biology Department, College of Science Princess Norah Bint Abdulrahman University, Riyadh (Saudi Arabia)

Corresponding author

Wahbi Jaouadi


Mechergui K, Saleh Altamimi A, Jaouadi W, Naghmouchi S (2021). Climate change impacts on spatial distribution, tree-ring growth, and water use of stone pine (Pinus pinea L.) forests in the Mediterranean region and silvicultural practices to limit those impacts. iForest 14: 104-112. - doi: 10.3832/ifor3385-013

Academic Editor

Silvano Fares

Paper history

Received: Feb 25, 2020
Accepted: Dec 28, 2020

First online: Mar 01, 2021
Publication Date: Apr 30, 2021
Publication Time: 2.10 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 29115
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 24277
Abstract Page Views: 1869
PDF Downloads: 2541
Citation/Reference Downloads: 6
XML Downloads: 422

Web Metrics
Days since publication: 1202
Overall contacts: 29115
Avg. contacts per week: 169.55

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2021): 4
Average cites per year: 1.33


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Abad Viñas R, Caudullo G, Oliveira S, De Rigo D (2016)
Pinus pinea in Europe: distribution, habitat, usage and threats. In: “European atlas of forest tree species” (San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A eds). Publication Office of the European Union, Luxembourg, pp. 130-131.
Online | Gscholar
Akkemik U (2000)
Dendroclimatology of umbrella pine (Pinus pinea L.) in Istanbul, Turkey. Tree-Ring Bulletin 56: 17-20.
Online | Gscholar
Akyol A, Orucu OK (2019)
Investigation and evaluation of stone pine (Pinus pinea L.) current and future potential distribution under climate change in Turkey. Cerne 25 (4): 415-432.
CrossRef | Gscholar
Arduini I, Ercoli L (2012)
Recovery of understory vegetation in clear-cut stone pine (Pinus pinea L.) plantations. Plant Biosystems 146 (S1): 244-258.
CrossRef | Gscholar
Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003)
Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology 23: 33-41.
CrossRef | Gscholar
Balzano A, De Micco V, Merela M, Cufar K (2019)
Tree-rings in mediterranean pines - Can we ascribe them to calendar years? Les/Wood 68 (1): 5-14.
CrossRef | Gscholar
Battipaglia G, Saurer M, Cherubini P, Siegwolf RTW, Cotrufo MF (2009)
Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Forest Ecology and Management 257: 820-828.
CrossRef | Gscholar
Battipaglia G, Saurer M, Cherubini P, Calfapietra C, Mc Carthy HR, Norby RJ, Cotrufo MF (2013)
Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytologist 197: 544-554.
CrossRef | Gscholar
Bede-Fazekas A, Horvath L, Kocsis M (2014)
Impact of climate change on the potential distribution of Mediterranean pines. Idojaras 118: 41-52.
Online | Gscholar
Bošela M, Konopka B, Seben V, Vladovic J, Tobin B (2015)
Modelling height to diameter ratio: an opportunity to increase Norway spruce stand stability in the Western Carpathians. Annals of Forest Science 72: 651-663.
CrossRef | Gscholar
Bravo F, Lucà M, Mercurio R, Sidari M, Muscolo A (2011)
Soil and forest productivity: a case study from Stone pine (Pinus pinea L.) stands in Calabria (southern Italy). iForest 4: 25-30.
CrossRef | Gscholar
Calama R, Mutke S, Tomé J, Gordo J, Montero G, Tomé M (2011)
Modelling spatial and temporal variability in a zero-inflated variable: the case of stone pine (Pinus pinea L.) cone production. Ecological Modelling 222 (3): 606-618.
CrossRef | Gscholar
Calama R, Puértolas J, Madrigal G, Pardos M (2013)
Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecological Modeling 251: 9-21.
CrossRef | Gscholar
Calama R, Conde M, De-Dios-García J, Madrigal G, Vázquez-Piqué J, Gordo FJ, Pardos M (2019)
Linking climate, annual growth and competition in a Mediterranean forest: Pinus pinea in the Spanish Northern Plateau. Agricultural and Forest Meteorology 264: 309-332.
CrossRef | Gscholar
Calama R, Gordo J, Mutke S, Conde M, Madrigal G, Garriga E, Arias MJ, Piqué M, Gandía R, Montero G, Pardos M (2020)
Decline in commercial pine nut and kernel yield in Mediterranean stone pine (Pinus pinea L.) in Spain. iForest 13: 251-260.
CrossRef | Gscholar
Camarero JJ, Olano JM, Parras A (2010)
Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist 185: 471-480.
CrossRef | Gscholar
Campelo F, Nabais C, Freitas H, Gutiérrez E (2007)
Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Annals of Forest Science 64: 229-238.
CrossRef | Gscholar
Castagneri D, Battipaglia G, Arx GV, Pacheco A, Marco Carrer M (2018)
Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiology 38: 1098-1109.
CrossRef | Gscholar
Caudullo G, Welk E, San-Miguel-Ayanz J (2017)
Chorological maps for the main European woody species. Data in Brief 12: 662-666. . org.
CrossRef | Gscholar
Cherubini P (1993)
Studio dendroecologico su Pinus pinea L. in due differenti stazioni sulla costa mediterranea in Toscana (Italia) [Dendroecological study on Pinus pinea L. in two different stations on the Mediterranean coast in Tuscany (Italy)]. Dendrochronologia 11: 87-100. [in Italian]
Chowanski KM (2016)
Developing management guidelines that balance cattle and timber production with ecological interests in the black hills of South Dakota. PhD Thesis, South Dakota State University, Brookings, SD, USA, pp. 235.
Online | Gscholar
Correia AV, Oliveira AC (2002)
Principais espécies florestais com interesse para Portugal -Zonas de influência Mediterrnea; Estudos e informação [Main forest species of interest to Portugal - Mediterranean influence zones; Studies and information]. Direcção Geral das Florestas, Lisboa, Portugal, pp. 77-84. [in Portuguese]
Cutini A, Chianucci F, Manetti MC (2013)
Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands. iForest 6 (6): 331-335.
CrossRef | Gscholar
Cutini A, Manetti MC, Mazza G, Moretti V, Salvati L (2014)
Climate variability, soil aridity, and growth rate of Pinus pinea L. in Castelporziano forest: an exploratory data analysis. Rendiconti Lincei 26: 413-420.
CrossRef | Gscholar
De Luis M, Novak K, Cufar K, Raventós J (2009)
Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees-Structure and Function 23: 1065-1073.
CrossRef | Gscholar
De Micco V, Saurer M, Aronne G, Tognetti R, Cherubini P (2007)
Variations of wood anatomy and δ13C within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA Journal 28: 61-74.
CrossRef | Gscholar
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014)
Nonstructural carbon in woody plants. Annual Review of Plant Biology 65: 667-687.
CrossRef | Gscholar
Doblas-Miranda E, Alonso R, Arnan X, Bermejo V, Brotons L, De Las Heras J, Estiarte M, Hodar JA, Llorens P, Lloret F, Lopez-Serrano FR, Martnez-Vilalta J, Moya D, Penuelas J, Pino J, Rodrigo A, Roura-Pascual N, Valladares F, Vila M, Zamora R, Retana J (2016)
A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: beyond drought effects. Global and Planetary Change 148 (6): 42-54.
CrossRef | Gscholar
El-Khorchani A, Gadbin-Henry C, Bouzid S, Khaldi A (2007)
Impact de la sécheresse sur la croissance de trois espèces forestières en Tunisie (Pinus halepensis Mill., Pinus pinea L. et Pinus pinaster Sol.) [Impact of drought on the growth of three forest species in Tunisia (Pinus halepensis Mill., Pinus pinea L. and Pinus pinaster Sol.)]. Sécheresse 18 (2): 113-121. [in French]
Online | Gscholar
Fady B, Fineschi S, Vendramin GG (2004)
EUFORGEN technical guidelines for genetic conservation and use for Italian stone pine (Pinus pinea). International Plant Genetic Resources Institute, FAO, Rome, Italy, pp. 6.
Online | Gscholar
Flexas J, Diaz-Espejo A, Gago J, Gallé A, Galmés J, Gulías J, Medrano H (2014)
Photosynthetic limitations in Mediterranean plants: a review. Environmental and Experimental Botany 103: 12-23.
CrossRef | Gscholar
Franklin J (2013)
Species distribution models in conservation biogeography: developments and challenges. Diversity and Distributions 19 (10): 1217-1223.
CrossRef | Gscholar
Freire JPA, Tomé M, Silva CS, Telles MR (2016)
Silvicultural guidelines for managing P. pinea stands in a southeastern Portuguese region for cone production. In: “Revised Silvicultural Guidelines for Selected MPT and NWFPs” (Sheppard J, Mangold L, Spiecker H eds). StarTree Deliverable 2.3, FP7 Project No 311919 KBBE 2012 (1): 2-06. European Commission, Brussels, Belgium, pp. 113.
Freire JA, Rodrigues GC, Tomé M (2019)
Climate change impacts on Pinus pinea L. silvicultural system for cone production and ways to contour those impacts: a review complemented with data from permanent plots. Forests 10: 152-169.
CrossRef | Gscholar
García-Güemes C, Calama R (2015)
La práctica de la selvicultura para la adaptación al cambio climático [The practice of forestry for adaptation to climate change]. In: “Los Bosques y La Biodiversidad Frente al Cambio Climático: Impactos, Vulnerabilidad y Adaptación en España” (Zavala MA ed). Chapter 46, Ministerio para la Transición Ecológica, Madrid, Spain, pp. 12. [in Spanish]
Gea-Izquierdo G, Cherubini P, Cañellas I (2011)
Tree-rings reflect the impact of climate change along a temperature gradient in Spain over the last 100 years. Forest Ecology and Management 262: 1807-1816.
CrossRef | Gscholar
Giorgi F (2006)
Climate change hot-spots. Geophysical Research Letters 33 (8): 89.
CrossRef | Gscholar
Guillemot E, Klein EK, Davi H, Coubert F (2015)
The effects of thinning intensity and tree size on the growth response to annual climate in Cedrus atlantica: a linear mixed modeling approach. Annals of Forest Science 72: 651-663.
CrossRef | Gscholar
Guisan A, Thuiller W (2005)
Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993-1009.
CrossRef | Gscholar
INRB (2008)
Condução de povoamentos de pinheiro manso e características nutricionais do pinhão [Driving of pine trees and nutritional characteristics of pine nuts]. Instituto Nacional dos Recursos Biológicos, IP, Oeiras, Portugal, pp. 50. [in Portuguese]
Jaouadi W, Mechergui K, Riahi MA, Khouja ML (2018)
Effect of thinning on Pinus pinea L. development and physico-chemical soil characteristics in northwestern Tunisia: modeling of radial growth under thinning intensity. Dendrobiology 80: 70-80.
CrossRef | Gscholar
Keenan RJ, Reams GA, Achard F, De Freitas JV, Grainger A, Lindquistf E (2015)
Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management 352: 9-20.
CrossRef | Gscholar
Kohler M, Nägele G, Sohn S, Bauhus J (2010)
The impact of different thinning regimes on the drought tolerance of Norway Spruce (Picea abies). European Journal of Forest Research 129: 1109-1118.
CrossRef | Gscholar
Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014)
Europe. In: “Climate change: Impacts, adaptation, and vulnerability. Part B: regional aspects” (Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL eds). Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp. 1267-1326.
Kuçuker DM, Baskent EZ (2017)
State of stone pine forests in Turkey and their economic importance for rural development. Options Méditerrannénnes 122: 110-117.
Loewe MV, Delard RC (2012)
Un nuevo cultivo para Chile, el pino pinonero (Pinus pinea L) [A new crop for Chile, the stone pine (Pinus pinea L.)]. Instituto Forestal, Chile, pp. 364. [in Spanish]
Loewe MV, Balzarini M, Delard Rodriguez C, Alvarez Contreras A, Navarro-Cerrillo RM (2016)
Growth of Stone pine (Pinus pinea L.) European provenances in central Chile. iForest 10 (1): 64-69.
CrossRef | Gscholar
Loewe MV, Alvarez A, Balzarini M, Delard C, Navarro-Cerri R (2017)
Mineral fertilization and irrigation effects on fruiting and growth in stone pine (Pinus pinea L.) crop. Fruits 72 (5): 281-287.
CrossRef | Gscholar
Loewe MV, Delard C (2019)
Stone pine (Pinus pinea L.): an interesting species for agroforestry in Chile. Agroforestry Systems 93 (2): 703-713.
CrossRef | Gscholar
Lopez-Tirado J, Hidalgo PJ (2016)
Ecological niche modelling of three Mediterranean pine species in the south of Spain: a tool for afforestation/reforestation programs in the twenty-first century. New Forests 47: 411-429.
CrossRef | Gscholar
Louro G, Marques H, Salinas HF (2002)
Elementos de apoio à elaboração de projectos florestais [Elements of support for the development of forestry projects] (2nd edn). Estudos e informação 321, Direcção Geral das Florestas, Lisboa, Portugal, pp. 126. [in Portuguese]
Manso R, Pukkala T, Pardos M, Miina J, Calama R (2014)
Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Canadian Journal of Forest Research 44: 250-262.
CrossRef | Gscholar
Martin-Benito D, Beeckman H, Canellas I (2013)
Inflence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. European Journal of Forest Research 132 (1): 33-45.
CrossRef | Gscholar
Martinez FG, Montero R, Ruiz-Peinado I, Canellas JA, Candela A (2004)
Geobotanica e historia de los pinares [Geobotany and history of the pine forests]. In: “El Pino pinonero (Pinus pinea L.) en Andalucia: Ecologia, distribucion y selvicultura” (Montero G, Candela JA, Fernandez A eds). Consejeria de Medio Ambiente, Junta de Andalucia, Sevilla, Spain, pp. 49-111. [in Spanish]
Mayoral C, Calama R, Sánchez-González M, Pardos M (2015)
Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New Forest 46: 485-506.
CrossRef | Gscholar
Mazza G, Amorini E, Cutini A, Manetti MC (2011)
The influence of thinning on rainfall interception by Pinus pinea L. in Mediterranean coastal stands (Castel Fusano - Rome). Annals of Forest Science 68: 1323-1332.
CrossRef | Gscholar
Mazza G, Cutini A, Manetti MC (2014)
Site-specific growth responses to climate drivers of Pinus pinea L. tree rings in Italian coastal stands. Annals of Forest Science 71 (8): 927-936.
CrossRef | Gscholar
Mazza G, Manetti M (2013)
Growth rate and climate responses of Pinus pinea L. in Italian coastal stands over the last century. Climatic Change 121 (4): 713-725.
CrossRef | Gscholar
McDowell NG, Adams HD, Bailey JD, Hess M, Kob TE (2006)
Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes. Ecological Applications 16: 1164-1182.
CrossRef | Gscholar
Molina AJ, Del Campo AD (2012)
The effects of experimental thinning on throughfall and stem flow: a contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management 269: 206-213.
CrossRef | Gscholar
Moreno-Fernández D, Cañellas I, Calama R, Gordo J, Sánchez-González M (2013)
Thinning increases cone production of Stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Annals of Forest Science 70 (8): 761-768.
CrossRef | Gscholar
Mutke S, Calama R, Gordo J, Gil L (2007)
El uso del pino piñonero como especie de frutal en sistemas agroforestales de secano [The use of stone pine as a fruit tree species in rainfed agroforestry systems]. Cuadernos de la Sociedad Española de Ciencias Forestales 22: 137-142. [in Spanish]
Mutke S, Calama R, Gonzalez-Martinez SC, Montero G, Javier Gordo F, Bono D, Gil L (2012)
Mediterranean stone pine: botany and horticulture. Horticultural Reviews 39 (1): 153-201.
CrossRef | Gscholar
Nabais C, Campelo F, Vieira J, Cherubini P (2014)
Climatic signals of tree-ring width and intra-annual density fluctuations in Pinus pinaster and Pinus pinea along a latitudinal gradient in Portugal. Forestry 87: 598-605.
CrossRef | Gscholar
Natalini F, Alejano MR, Vásquez-Piqué J, Canellas I, Gea-Izquierdo G (2013)
Dendroecología de Pinus pinea en el suroeste de Espana y su aplicación para elestudio de la vulnerabilidad de especies forestales ante el cambio global [Dendroecology of Pinus pinea L. in southwestern Spain and its application to study the vulnerability of forest species to global change]. In: “Actas 6° Congreso Forestal Español”, Chapter 068. Sociedad Española de Ciencias Forestales, Madrid, Spain, pp. 2-12. [in Spanish]
Natalini F, Correia AC, Vazquez-Piqué J, Alejano R (2015)
Tree rings reflect growth adjustments and enhanced synchrony among sites in Iberian stone pine (Pinus pinea L.) under climate change. Annals of Forest Science 72 (8): 1023-1033.
CrossRef | Gscholar
Natalini F, Alejano R, Vazquez-Piqué J, Pardos M, Calama R, Buetgen U (2016)
Spatiotemporal variability of stone pine (Pinus pinea L.) growth response to climate across the Iberian Peninsula. Dendrochronologia 40: 72-84.
CrossRef | Gscholar
Novak K, De Luis M, Cufar K, Raventós J (2011)
Frequency and variability of missing tree rings along the stems of Pinus halepensis and Pinus pinea from a semiarid site in SE Spain. Journal of Arid Environment 75: 494-498.
CrossRef | Gscholar
Ovando P, Campos P, Calama R, Montero G (2010)
Landowner net benefit from Stone pine (Pinus pinea L.) afforestation of dry-land cereal fields in Valladolid, Spain. Journal of Forest Economics 16 (2): 83-100.
CrossRef | Gscholar
Palmer JG (1965)
Meteorological drought. US Research Paper no. 45, US Weather Bureau, Washington, DC, USA, pp. 58.
Online | Gscholar
Pardos M, Puértolas J, Magrigal G, Garriga E, De Blas S, Calama R (2010)
Seasonal changes in the physiological activity of regeneration under a natural light gradient in a Pinus pinea regular stand. Forest Systems 19 (3): 367-380.
CrossRef | Gscholar
Pardos M, Calama R, Maroschek M, Rammer W, Lexer MJ (2015)
A model-based analysis of climate change vulnerability of Pinus pinea stands under multi-objective management in the Northern Plateau of Spain. Annals of Forest Science 72 (8): 1009-1021.
CrossRef | Gscholar
Pecchi M, Marchi M, Moriondo M, Forzierin G, Ammoniaci M, Bernetti M, Bindi I, Chirici M (2020)
Potential impact of climate change on the spatial distribution of key forest tree species in Italy under RCP4.5 for 2050s. Research Square. [preprint]
CrossRef | Gscholar
Pereira S, Prieto A, Calama R, Diaz-Balteiro L (2015)
Optimal management in Pinus pinea L. stands combining silvicultural schedules for timber and cone production. Silva Fennica 49 (3): art1226.
CrossRef | Gscholar
Pestana EV (2000)
El pino pinonero árbol frutal [Stone pine fruit tree]. In: Proceedings of the “1st Symposium on Stone pine”. Valladolid (Spain), vol. 2, pp. 279-284. [in Spanish]
Pique-Nicolau M, Del-Rio M, Calama R, Montero G (2011)
Modelling silviculture alternatives for managing Pinus pinea L. forest in North-East Spain. Forest Systems 20: 3-30.
CrossRef | Gscholar
Piraino S, Camiz S, Di Filippo A, Piovesan G, Spada F (2013)
A dendrochronological analysis of Pinus pinea L. on the Italian mid-Tyrrhenian coast. Geochronometria 40 (1): 77-89.
CrossRef | Gscholar
Quézel P, Médail F (2003)
Ecologie et biogéographie des forêts du bassin Méditerranéen [Ecology and biogeography of forests in the Mediterranean basin]. Elsevier Masson, Paris, France, pp. 573. [in French]
Raventos J, De Luis M, Gras MJ, Cufar K, Gonzalez-Hidalgo JC, Bonet A, Sanchez JR (2001)
Growth of Pinus pinea and Pinus halepensis as affected by dryness and marine spray in a semiarid sand dune ecosystem. Dendrochronologia 19: 211-220.
Sánchez-Salguero R, Linares JC, Camarero JJ, Madrigal-González J, Hevia A, Sánchez-Miranda A, Ballesteros-Cánovas J, Alfaro-Sánchez R, García-Cervigón AI, Bigler C, Rigling A (2015)
Disentangling the effects of competition and climate on individual tree growth: a retrospective and dynamic approach in Scots pine. Forest Ecology and Management 358: 12-25.
CrossRef | Gscholar
Sbay H, Hajib S (2016)
Le pin pignon: une espèce de choix dans le contexte des changements climatiques [Stone pine: a species of choice in the context of climate change]. Centre de Recherches Forestières, Maroc, pp. 76. [in French]
Serra Varela MJ (2018)
Integrating infra-specific variation of Mediterranean conifers in species distribution models. Applications for vulnerability assessment and conservation. PhD thesis, Universidad de Valladolid, Spain, pp. 284.
Teobaldelli M, Mencuccini M, Piussi P (2004)
Water table salinity, rainfall and water use by umbrella pine trees (Pinus pinea L.). Plant Ecology 171: 23-33.
CrossRef | Gscholar
Thabeet A, Denelle N, El Khorchani A, Thomas A, Gadbin-Henry C (2007)
Etude dendroclimatologique de quatre populations de pin pignon en Tunisie [Dendroclimatological study of four pine populations in Tunisia]. Forêt Méditerrannenne 28 (3): 219-228. [in French]
Thuiller W, Araujo MB, Lavorel S (2003a)
Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. Journal of Vegetation Science 14: 669-680.
CrossRef | Gscholar
Thuiller W, Vaireda J, Pino J, Sabate S, Lavorel S, Gracia C (2003b)
Large scale environmental correlates of the forest tree distributions in Catalogna (NE Spain). Global Ecology and Biogeography 12: 313-325.
CrossRef | Gscholar
Timofeeva G, Treydte K, Bugmann H, Rigling A, Schaub M, Siegwolf R, Saurer M (2017)
Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiology 8: 1028-1041.
CrossRef | Gscholar
Vieira J, Campelo F, Rossi S, Carvalho A, Freitas H, Nabais C (2015)
Adjustment capacity of maritime pine cambial activity in drought-prone environments. PLoS One 10: 1-15.
CrossRef | Gscholar
Zalloni E, Battipaglia G, Cherubini P, Saurer M, De Micco V (2018)
Contrasting physiological responses to Mediterranean climate variability are revealed by intra-annual density fluctuations in tree rings of Quercus ilex L. and Pinus pinea L. Tree Physiology 38: 1213-1224.
CrossRef | Gscholar
Zalloni E, de Luis M, Campelo F, Novak K, De Micco V, Di Filippo A, Vieira J, Nabais C, Rozas V, Battipaglia G (2016)
Climatic signals from intra-annual density fluctuation frequency in Mediterranean pines at a regional scale. Frontiers in Plant Science 7 (136305): 859.
CrossRef | Gscholar
Zank C, Becker FG, Abadie M, Baldo D, Maneyro R, Borges-Martins M (2014)
Climate change and the distribution of neotropical red-bellied toads (Melanophryniscus, Anura, Amphibia): how to prioritize species and populations? PLoS One 9 (4): e94625.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info