iForest - Biogeosciences and Forestry


Impacts of climate change on the establishment, distribution, growth and mortality of Swiss stone pine (Pinus cembra L.)

S Boden (1), P Pyttel (1), CS Eastaugh (2)

iForest - Biogeosciences and Forestry, Volume 3, Issue 4, Pages 82-85 (2010)
doi: https://doi.org/10.3832/ifor0537-003
Published: Jul 15, 2010 - Copyright © 2010 SISEF

Review Papers

Collection/Special Issue: NFZ Summer School 2009 - Birmensdorf (Switzerland)
Long-term ecosystem research: understanding the present to shape the future
Guest Editors: Marcus Schaub (WSL, Switzerland)

Anticipated future climate changes are expected to significantly influence forest ecosystems, particularly in treeline ecotones. Climate change will have both direct and indirect effects on the future distribution of alpine tree species, some of which will be positive and others negative. Although increased temperatures are on the whole likely to have a positive impact on growth and distribution of Swiss stone pine (Pinus cembra L.), indirect effects that influence seed dispersal may threaten the population viability of species. The complexity of the interrelations between climatic and non-climatic factors demands further research, which should include long-term monitoring.


Swiss stone pine, Treeline, Climate change, Distribution shift, Tree growth, Mortality

Authors’ address

S Boden
P Pyttel
Institute for Forest Growth, Albert-Ludwigs University Freiburg, Tennenbacher Straße 4, D-79106 Freiburg (Germany)
CS Eastaugh
Institute of Silviculture, Albert-Ludwigs University Freiburg, Tennenbacher Straße 4, D-79106 Freiburg (Germany)
University of Natural Resources and Applied Life Sciences (BOKU), Department of Forest and Soil Sciences, Institute of Silviculture, Peter Jordan Straße 82, 1190 Vienna (Austria)

Corresponding author


Boden S, Pyttel P, Eastaugh CS (2010). Impacts of climate change on the establishment, distribution, growth and mortality of Swiss stone pine (Pinus cembra L.). iForest 3: 82-85. - doi: 10.3832/ifor0537-003

Academic Editor

Marcus Schaub

Paper history

Received: May 25, 2010
Accepted: May 31, 2010

First online: Jul 15, 2010
Publication Date: Jul 15, 2010
Publication Time: 1.50 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 51915
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 43996
Abstract Page Views: 2976
PDF Downloads: 3965
Citation/Reference Downloads: 39
XML Downloads: 939

Web Metrics
Days since publication: 5028
Overall contacts: 51915
Avg. contacts per week: 72.28

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2010): 22
Average cites per year: 1.57


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Anfodillo T, Rento S, Carraro V, Furlanetto L, Urbinati C, Carrer M (1998)
Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies (L.) Karst and Pinus cembra L.. Annals of Forest Science 55: 159-172.
CrossRef | Gscholar
Baig MN, Tanquillini W (1980)
The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in desiccation damage at the alpine tree line. Oecologia 47: 252-256.
CrossRef | Gscholar
Bensiton M, Diaz HF, Bradley RS (1997)
Climate change at high elevation sites: an overview. Climate Change 36: 233-251.
CrossRef | Gscholar
Burdon JJ, Wennstöm A, Ericson L, Müller WJ, Morton R (1992)
Density-dependent mortality in Pinus sylvestris caused by the snow blight pathogen Phacidium infestans. Oecologia 90: 74-79.
CrossRef | Gscholar
Cannell MGR, Smith RI (1986)
Climatic warming, spring budburst and frost damage on trees. Journal of Applied Ecology 23: 177-191.
CrossRef | Gscholar
Carrer M, Anfodillo T, Urbinati C, Carraro V (1998)
High-altitude forest sensitivity to global warming: results from long-term and short-term analyses in the Eastern Italian Alps. In: “The Impacts of Climate Variability on Forests”. Springer, Berlin, Heidelberg, pp. 318.
Carrer M, Nola P, Eduard J, Motta R, Urbinati C (2007)
Regional variability of climate-growth relationships in Pinus cembra high elevation forests in the Alps. Journal of Ecology 95: 1072-1083.
CrossRef | Gscholar
Daniels LD, Veblen TT (2003)
Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. Journal of Vegetation Science 14: 733-742.
CrossRef | Gscholar
Dalstein L, Torti X, LeThiec D, Dizengremel P (2002)
Physiological study of declining Pinus cembra (L.) trees in southern France. Trees 16: 299-305.
CrossRef | Gscholar
Dormont L, Roques A (1999)
A survey of insects attacking seed cones of Pinus cembra in the Alps, the Pyrénées and Massif Central. Journal of Applied Entomology 123: 65-72.
CrossRef | Gscholar
Eastaugh C (2008)
Adaptations of forests to climate change: A multidisciplinary review. IUFRO Occasional Paper 21, International Union of Forest Research Organisations, Vienna.
Ellenberg H (1996)
Vegetation Mitteleuropas und der Alpen in ökologischer, dynamischer und historischer Sicht. UTB, Stuttgart, pp. 1056.
Grace J, Berninger F, Nagy L (2002)
Impacts of Climate Change on the Tree Line. Annals of Botany 90: 537-544.
CrossRef | Gscholar
Gregory RD, Willis SG, Jiguet F, Vorisek P, Klavanova A, Van Strien A, Huntley B, Collingham YC, Couvet D, Green RE (2009)
An Indicator of the Impact of Climatic Change on European Bird Populations. PloS One 4 (3): e4678.
CrossRef | Gscholar
Gruber A, Baumgartner D, Zimmermann J, Oberhuber W (2009)
Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Trees 23: 623-635.
CrossRef | Gscholar
Hättenschwiler S, Körner C (1995)
Responses to recent climate warming of Pinus sylvestris and Pinus cembra within their montane transition zone in the Swiss Alps. Journal of Vegetation Science 6: 357-368.
CrossRef | Gscholar
Holtmeier FK (1966)
Die ökologische Funktion des Tannenhähers im Zirben-Lärchenwald und an der Waldgrenze des Oberengadins. Journal of Ornithology 107: 337-345.
CrossRef | Gscholar
Holtmeier FK, Broll G (2007)
Treeline advance - driving processes and adverse factors. Landscape Online 1: 1-33.
CrossRef | Gscholar
Innes JL (1991)
High-altitude and high-latitude tree growth in relation to past, present and future global climate change. The Holocene 1: 168-173.
CrossRef | Gscholar
Höhn M, Gugerli F, Abran P, Bisztray G, Buonamici A, Cseke K, Hufnagel L, Quintela-Sabaris C, Sebastiani F, Vendramin GG (2009)
Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L.) reflects contrasting post-glacial history of populations from the Carpathians and the Alps. Journal of Biogeography 36: 1798-1806.
CrossRef | Gscholar
Körner C (1998)
A re-assessment of the high elevation treeline positions and their explanation. Oecologia 115: 445-459.
CrossRef | Gscholar
Leonelli G, Pelfini M, Battipaglia G, Cherubini P (2009)
Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Climatic change 96: 185-201.
CrossRef | Gscholar
Mattes H (1982)
Die Lebensgemeinschaft von Tannenhäher, Nucifraga caryocatactes (L.), und Arve, Pinus cembra L., und ihre forstliche Bedeutung in der oberen Gebirgswaldstufe. Berichte Eidgenössische Forschungsanstalt Wald, Schnee und Landschaft WSL 241, pp. 74.
Monserud RA (1976)
Simulation of forest tree mortality. Forest Science 22 (3): 438-444.
Online | Gscholar
Motta R, Nola P (2001)
Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. Journal of Vegetation Science 12: 219-230.
CrossRef | Gscholar
Motta R, Morales M, Nola P (2006)
Human land-use, forest dynamics and tree growth at the treeline in the western Italian Alps. Annals of Forest Science 63: 739-747.
CrossRef | Gscholar
McKinney ST, Fiedler CE, Tomback DF (2009)
Invasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem. Ecological Applications 19(3): 597-607.
CrossRef | Gscholar
Nicolussi K, Bortenschlager S, Körner C (1995)
Increase in tree-ring width in subalpine Pinus cembra from the Central Alps that may be CO2 related. Trees 9: 181-189.
CrossRef | Gscholar
Oberhuber W (2004)
Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiology 24: 291-301.
CrossRef | Gscholar
Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008)
Long-term changes in tree-ring climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees 22: 31-40.
CrossRef | Gscholar
Pauli H, Gottfried M, Grabherr G (1996)
Effects of climate change on mountain ecosystems - upward shifting of alpine plants. World Resource Review 8 (3): 382-390.
Pauli H, Gottfried M, Grabherr G (2003)
Effects of Climate change on the alpine and nival vegetation of the Alps. Journal of Mountain Ecology 7: 9-12.
Pfeifer K, Kofler W, Oberhuber W (2005)
Climate related causes of distinct radial growth reductions in Pinus cembra during the last 200 yr. Vegetation History and Archaeobotany 14: 211-220.
CrossRef | Gscholar
Pietsch SA, Hasenauer H (2005)
Modeling cembran pine ecosystems in Austria. Austrian Journal of Forest Science 122 (1): 37-54.
Pigott CD (1992)
Are the distributions of species determined by failure to set seed? In: “Fruit and seed production” (Marshall J, Grace J eds). Cambridge University Press, Cambridge, UK, pp. 256.
Polunin O, Walters M (1986)
A guide to the vegetation of Britain and Europe. Oxford Univ. Press, Oxford, UK, pp. 238.
Risch AC, Nagel LM, Schütz M, Krüsi BO, Kienast F, Bugmann H (2003)
Structure and long-term development of subalpine Pinus montana Miller and Pinus cembra L. forests in the central European Alps. Forstwissenschaftliches Centralblatt 122: 219-230.
Senn J (1999)
Tree mortality caused by Gremmeniella abietina in a subalpine afforestation in the central Alps and its relationship with duration of snow cover. European Journal of Forest Pathology 29: 65-74.
CrossRef | Gscholar
Tranquillini W (1963)
Climate and water relations of plants in the sub-alpine region. In: “The water relations of plants” (Rutter AJ, Whitehead FH eds). Blackwell, Oxford, UK, pp. 153-166.
Tranquillini W (1979)
Physiological ecology of the alpine timberline. Springer-Verlag, New York, USA.
Turgeon JJ, Roques A, De Groot P (1994)
Insect fauna of coniferous seed cones. Diversity, host-plant interactions, and management. Annual Review of Entomology 39: 179-212.
CrossRef | Gscholar
Ulber M, Gugerli F, Bozic G (2004)
EUFORGEN Technical Guidelines for genetic conservation and use for Swiss stone pine (Pinus cembra L.). International Plant Genetic Resources Institute, Rome, Italy, pp. 6.
Vittoz P, Rulence B, Largey T, Freléchoux F (2008)
Effects of climate and land-use change on the establishment and growth of Cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the central Swiss Alps. Arctic, Antarctic and Alpine Research 40: 225-232.
CrossRef | Gscholar
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin O, Hoegh-Guldberg JM, Bairlein F (2002)
Ecological responses to recent climate change. Nature 416: 389-395.
CrossRef | Gscholar
Wieser G, Matyssek R, Luzian R, Zwerger P, Pindur P, Oberhuber W, Gruber A (2009)
Effects of atmospheric and climate change at the timberline of the Central European Alps. Annals of Forest Science 66: 402.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info