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Climate change impacts on spatial distribution, tree-ring growth, and 
water use of stone pine (Pinus pinea L.) forests in the Mediterranean 
region and silvicultural practices to limit those impacts
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Stone pine  (Pinus pinea  L.) has been cultivated since centuries in Mediter-
ranean areas for  its  products  and economic benefits,  including edible pine
nuts, timber, mushrooms, firewood, and grazing.  However, current manage-
ment objectives of stone pine stands also include recreational use, biodiver-
sity conservation, protection from soil erosion, and CO2 fixation.  Stone pine
stands are considered to be among the ecosystems most vulnerable to climate
change, and the current increase in drought frequency in the Mediterranean
Basin has been shown to negatively impact their long-term establishment. Un-
derstanding the effects of climate change on the distribution, tree-ring growth
and water use of stone pine forests can help assessing the adaptive capacity of
the species, and developing management programs aimed at its conservation.
This  paper  reviews  the  impacts  of  climate  change  on  stone  pine  in  the
Mediterranean region. The high sensitivity of stone pine to climate change has
been widely demonstrated in that: (i) climatic models predict the loss of suit-
able habitats and the shift of its geographical distribution in the next future;
(ii) tree-ring analysis showed that winter and spring rainfalls have positive ef-
fects on growth, whereas high spring temperature  has a negative effect; (iii)
the strategy of stone pine to cope with water deficit affects the processes reg-
ulating  its  growth,  including  wood formation,  leading  to  peculiar  tree-ring
anatomical features such as intra-annual density fluctuations. The silvicultural
interventions and the most  effective  management strategies for stone pine
forests are reviewed and discussed in the context of current climate change in
the Mediterranean Basin.

Keywords: Stone Pine, Climate Change, Spatial Distribution, Tree-ring, Silvicul-
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Introduction
Climatic models  predict  an  increase  in

aridity in many parts  of  the world during
the twenty-first century, which is likely to
be  more  intense  in  the  Mediterranean
Basin than in other regions (Lopez-Tirado &
Hidalgo  2016).  Climate  forecasts  for  the
Mediterranean region anticipate increasing
temperatures,  decreasing rainfall,  longer
dry spells, more frequent heat waves, and
heavier  precipitation  events,  all  of  which
will  exacerbate  the  existing  problems  of
soil  loss and desertification (Kovats  et  al.
2014). The strong irregularity of rainfall  in
the Mediterranean area, which can trigger
severe/extreme  droughts  and  floods,  re-
sults in a high plant vulnerability to interan-
nual  rainfall  variability and extreme event
occurrence  (Freire  et  al.  2019).  Mediter-
ranean forests provide a variety of goods
(timber,  firewood,  and  mainly  non-wood
forest  products  such  as  pine  nuts,  cork,
aromatic  plants,  game,  and  mushrooms)
and high-value services (recreation, protec-
tion from erosion, livestock grazing, biodi-
versity  conservation,  CO2 sequestration,
and water  balance regulation),  which are
important for ensuring the maintenance of
human society. Multifunctionality is there-

fore  an  important  characteristic  of  Medi-
terranean  forest  management  (Pardos  et
al. 2015). 

Sensitivity to climate change and anthro-
pogenic  disturbances  are common  fea-
tures  of  Mediterranean  forests,  which
grow under dynamic and manipulated envi-
ronmental  conditions  (Cutini  et  al.  2014).
Many of the projected changes in climate,
as  well  as  the  indirect  effects  of  these
changes, are likely to have a negative im-
pact on forest systems (Keenan et al. 2015).
The current increase in drought frequency
has been shown to detrimentally affect the
long-term establishment of  Mediterranean
forests.  Among other effects,  an increase
in drought events might have an adverse
impact  on  plant  regeneration  (Doblas-Mi-
randa et al. 2016). Freire et al. (2019) attest
that the ongoing climate change is causing
a decrease in rainfall  over  all seasons, and
especially  in the  spring  during  cone
growth, and it is more severe in the most
critical regions for stone pine. Correspond-
ingly,  the increase in temperature,  mainly
in  summer,  leads  to  the  death  of  cones
with one or two years of maturation. Den-
droecological studies in the Mediterranean
basin  have  demonstrated  that  tree-ring
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data can be used as climate proxies in this
region (Gea-Izquierdo et al.  2011,  Vieira et
al.  2015).  Tree-ring  widths  usually  show
variation over the life of a tree; therefore,
such age/size trends need to be estimated
and removed from time series in order to
detect the  evidence  of  climatically-driven
tree  growth.  Regarding the  interdepen-
dence of increasing temperatures and de-
creasing water availability, Sánchez-Salgue-
ro et al. (2015) showed that growth is more
sensitive to drought than to temperature
in  several Mediterranean species, which is
in accordance with the findings by Calama
et al. (2019).  Understanding the effects of
climate  change  on  the  ecology  of  Pinus
pinea forests can help to assess the adap-
tive  capacity  of  the species,  and  develop
management  programs  aimed  to ensure
the conservation of its populations (Natal-
ini et al. 2016). 

The study of current and future potential
distribution of  suitable habitats for  stone
pine under climate change is critical (Akyol
& Orucu 2019). It is well known that climate
plays a determining role in the large-scale
distribution  of  species  (Guisan  &  Thuiller
2005). Species distribution models (SDMs)
are used to determine the ecological niche
of species, and estimate their potential dis-
tribution ranges in terms of regional ecol-
ogy and biogeography (Franklin 2013). Pro-
jections of future climate conditions in the
Mediterranean  Basin  predict substantial
changes,  such  as  increased  average  tem-
perature, reduced precipitation, and alter-
ations in annual patterns (Zank et al. 2014).

In this context, it is important to under-
stand the impact of these changes on the
distribution of  stone pine in  the Mediter-
ranean forests by spatial modeling, as well
as growth responses to changes in precipi-
tation  and  temperature  through tree-ring
analyses, and the strategies of the species
to cope with water  deficit, in order to in-
troduce silvicultural practices to limit these

impacts. The objective is  to use the avail-
able  results  of  research  to  provide  guid-
ance  for  the  management  of  stone  pine
stands established in the Mediterranean re-
gion  in  the  context  of  ongoing  climate
changes.

Importance of stone pine stands in
Mediterranean forests

This  review focuses  on  an  emblematic
Mediterranean species,  stone or umbrella
pine  (Pinus  pinea  L.),  a  native/naturalized
species to Southern Europe (Quézel & Mé-
dail 2003) spread from the Portuguese At-
lantic coast to the shores of the Black Sea
and the slopes of Mount Lebanon (Fig. 1),
from sea level to 1000 m, and occasionally
up to 1600 m a.s.l. (Quézel & Médail 2003).
Stone  pine  is  widely  present  in coastal
habitats, where it has extensive ecological,
landscape,  recreation,  and  soil  conserva-
tion uses. According to Mutke et al. (2012),
stone pine forests  are estimated  to cover
0.7 million ha across the Mediterranean re-
gion (Fig. 2). The most important distribu-
tion areas are in Spain (470,000 ha), Portu-
gal  (80,000  ha),  Turkey  (50,000  ha),  and
Italy  (40,000  ha).  More  than  half  of  this
area  is  the  result  of  protective  afforesta-
tion (Martinez et al. 2004). 

Stone pine plantation dates back to the
Roman period, and it was traditionally culti-
vated for timber and pine nuts.  However,
its recreational and landscape value has in-
creased  in  recent  decades  (Mazza  et  al.
2011), and is currently used for the consoli-
dation of sand dunes and protect soil from
erosion  (Cutini  et  al.  2014).  Indeed,  its
multi-layered  root  system  allows  mature
trees to  extract water  at  different  depths
and  from  various  sources  (Cutini  et  al.
2013).  Along  the  Italian  coastline,  Pinus
pinea forests  have  an  important  environ-
mental and historical value; the species has
been systematically planted here since an-
cient times, mostly for cone and wood pro-

duction, as well as for coastline protection
(Arduini & Ercoli 2012).

Pinus pinea forests are usually  managed
as multifunctional forests that provide tim-
ber,  biomass,  non-wood  forest  products
(such as pine nuts and truffles – Bravo et al.
2011),  soil  protection,  sand dune stabiliza-
tion,  biodiversity  refuge,  space for  public
and recreational  activities, and carbon se-
questration (Martinez et al. 2004). Yet, the
most profitable activity for forest owners is
cone  production,  more  than timber  and
other products (Ovando et al. 2010). Given
the high nutritional  value and the unique
flavor of  stone  pine nuts, their demand is
globally increasing, with the consequent in-
crease in market price (Fady et al.  2004).
According to  Loewe & Delard  (2019),  the
prices  of  Pinus pinea  edible  nuts  has  in-
creased from €25 kg-1 in 2010 to €45 kg-1 in
2013. Stone pine kernel production in  Italy
ranges between 40 and 120 kg ha-1, which is
equivalent to 10 to 30 kg of pine nuts ha -1

(Mutke et al. 2007).  Moreover,  Ovando et
al. (2010) showed that stone pine afforesta-
tion  offers  positive  net  benefits  to  land-
owners, taking into account carbon prices
of  up  to  45  €  tC-1 (12.3  €  tCO2

-1).  Further-
more, stone pine has proven to be a suit-
able species in combined agroforestry sys-
tems for both nuts and timber production,
intercropped  with  agricultural  crops,  and
animal  grazing  (Loewe  &  Delard  2019).
Those  authors  found  that  the  annual  in-
come derived from crops and animals is rel-
evant  for  the  household  economy,  espe-
cially during the first years. 

Recently,  Calama et al. (2020) reported a
generalized decline in the kernel-per-cone
yield in Pinus pinea forests located in differ-
ent  Spanish  regions,  revealing  reductions
of  up  to  50%  in  the  final  kernel-per-cone
yield in the most drought affected regions.
Such reduction  over  different  years  and
provenances with contrasting climates sug-
gests the implication of a biotic factor that
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Fig. 1 - Main distribution of 
Mediterranean stone pine 
forests (Caudullo et al. 
2017).
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can  be  aggravated  in  extreme  drought
years.  Further,  Natalini  et  al.  (2016) sug-
gested that the  Pinus pinea species has a
plastic  response  to  warmer  and  drier  cli-
mates  that  can  vary  among  populations,
and  some  measure  of  such  variability
should  be  considered  in  long-term  fore-
casts of vegetation dynamics.

Spatial modelling of stone pine 
distribution under climate change

Akyol & Orucu (2019) found that the most
important  bioclimatic  variables  affecting
the potential distribution of P. pinea are the
minimum  temperature  of  the  coldest
month (Bio6), annual precipitation (Bio12),
and  precipitation  of  the  wettest  quarter
(Bio16); whereas, Serra Varela (2018) found
that annual mean temperature (Bio1), tem-
perature  seasonality  (Bio4),  precipitation
seasonality  (Bio15),  precipitation  of  the
warmest quarter (Bio 18), and precipitation
of the coldest quarter (Bio 19) are the main
drivers  of  stone pine distribution.  Simula-
tion models under two different future cli-
mate  change  scenarios  predicted that  P.
Pinea  will  lose  suitable  habitats  and  will
shift toward northern and higher elevation
sites.  For  example,  Akyol  &  Orucu  (2019)
showed that P. pinea in Turkey will shift its
geographical distribution in the future and
experience losses of habitat, particularly in
the western and southern parts of Turkey.
According to Akyol & Orucu (2019), the po-
tential distribution of  P. pinea  in the years
2050 and 2070 will decrease under the rep-
resentative  concentration  pathway  (RCP)
4.5  and  RCP  8.5  scenarios.  Pecchi  et  al.
(2020) reported that  by  2050  under  RCP
4.5 scenario, the spatial distribution of suit-
able  habitats  for  stone  pine  pure  stands
will significantly decrease in Italy compared
to other hardwood species. 

Freire et al. (2019) reported that the im-
pacts  of  medium-term climate  change on
Mediterranean  forests  are  the  displace-
ment and migration of species from south
to north, and from inland to the coast (Gar-
cía-Güemes & Calama 2015).  According to
Lopez-Tirado & Hidalgo (2016), stone pine
could expand its potential area in southern
Spain by approximately 17%. Overall, stone
pine  would  be  the  most  suitable  pine
species  in  the  western  and  northeastern
zones  of  the  study  area.  Similar  results
were  obtained  by Bede-Fazekas  et  al.
(2014), who stated that most of the distri-
bution of stone pine in Spain will remain vi-
able by the middle twenty-first century. 

Calama et  al.  (2011) analyzed the spatial
and temporal patterns of variability in cone
production in stone pine forests located in
the Spanish Northern  Plateau.  Those  au-
thors found that the annual production of
stone pine cones at the tree level showed a
skewed  and  zero-inflated  distribution,  to-
gether with a large interannual variability,
with a regional average ranging from 0.2 to
6.3 kg tree-1. This variation was largely syn-
chronized  among  the  trees  and  stands
throughout the study area, confirming the

masting habit  of  the species.  Apparently,
climatic factors are the main determinants
of the masting behavior, explaining about
60%-80% of the temporal variation in cone
production at the regional scale  over a se-
ries of 13 years, correctly discriminating be-
tween good and bad crop years.

Temperature and precipitation 
effects on tree-ring growth

In a study on the variation of stone pine
productivity in relation to climate in Spain,
Natalini et al. (2013) found that winter and
spring  rainfall  has  a positive  effect  on
growth, whereas high spring temperature
negatively  affects  stone  pine  growth.
These authors found that  growing perfor-
mances are positively correlated with the
Palmer Drought Severity Index (PDSI) and
annual  rainfall,  and  negatively  correlated
with the maximum average annual temper-
ature,  which  agrees  with  the  findings  of
Loewe  et  al.  (2017) for  height  growth  in
Chile.

Precipitation effects
Dendroclimatological  analyses  indicate

that  the  positive  moisture  balance in  the
spring is the main factor favoring the radial
growth of Pinus spp. in the Mediterranean
regions (Piraino et al. 2013). Winter precipi-
tation  is  largely  responsible  for  growth
rates  of  stone pine (Thuiller  et  al.  2003a,
2003b), and the high sensitivity of growth
to  precipitation  has  been  confirmed  by
Raventos et al. (2001).  Loewe et al. (2016)
identified  climatic  variables  (e.g.,  annual
water  deficit)  that  significantly  influence
seed number per cone  in stone pine, and
also  the  biometeorological  variables  that
account for the physiophenological phases
involved in this  trait  determination.  Akke-
mik (2000) found that precipitation in the
current year has a significantly positive in-
fluence  on  the  tree-ring  growth,  and  ob-
served  a  significant  positive  relationship

between tree-ring width and monthly pre-
cipitation.  Cherubini (1993) concluded that
precipitation plays the most important role
in tree-ring growth in Pinus pinea L. Calama
et  al.  (2019) detected  a  positive  relation-
ship between rainfall and growth, extend-
ing  back  to  the  precipitation  of previous
autumn  and  winter  seasons.  Similar  find-
ings have been reported in previous stud-
ies on dendroecological growth-climate re-
lationships  for  the  species  (Mazza  et  al.
2014,  Natalini  et al.  2015,  2016,  Jaouadi et
al. 2018). Total rainfall occurring during the
period from October of the previous year
to September of the current growth year
as well  as  mean temperature in  May and
June, are the main climatic factors driving
secondary growth in Pinus pinea (Calama et
al. 2019).  Novak et al. (2011) reported that
dry conditions during January to May and
high temperatures  during late winter  and
spring were the main climatic factors pro-
moting  missing  rings  in  Pinus  pinea.  This
has suggested that the  observed increase
in missing rings could be related to stress
conditions caused by reduced precipitation
(De  Luis  et  al.  2009).  El-Khorchani  et  al.
(2007) also noted the impact of hydric bal-
ance on diameter growth, and water stress
can be intensified in sandy soils, where wa-
ter availability  decreases drastically  in dry
years  (Thabeet  et  al.  2007).  Accordingly,
Mazza & Manetti (2013) reported that low
precipitation is  the  main  factor  causing a
decrease  in  radial  growth,  an  effect  that
lasts over long periods. Mazza et al. (2014)
showed  a clear  grouping of  P.  pinea tree
ring growth related to regional variation in
climatic  features,  which likely  reflects the
existence  of  different  responses  strongly
dependent  on  geographical  variability  in
rainfall inputs during the periods that most
influence tree ring formation. The decrease
in winter-early  spring rainfall  appeared to
be the principal climate-driven growth pat-
tern distinguishing the chronologies.
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Fig. 2 - Stone pine forest in Cap Bon (Tunisia).
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Temperature effects 
The most  important  environmental  vari-

able  affecting survival  and distribution  of
Pinus pinea in the Mediterranean is the av-
erage  temperature  of  the  coldest  month
(Thuiller et al. 2003a,  2003b).  Loewe et al.
(2016) showed  that  temperature  has the
highest  impact  on  stone  pine  growth;  in
particular,  vertical growth was more than
twice in sites with low annual average tem-
perature  and  high  winter  thermal  oscilla-
tions.  Tree ring development in P. pinea is
negatively  influenced  by  drought  in  the
late  spring  and  summer  (from  March  to
September)  and  enhanced  by  a  positive
moisture  balance  in  the  previous  winter
season,  as  reflected  by the  positive  rela-
tionship between radial growth and Palmer
Drought Severity Index (PDSI) values (Pal-
mer  1965,  Piraino  et  al.  2013).  Previous
studies  indicated  a  close  relationship  be-
tween  stone  pine  radial  growth  and  cli-
matic  factors,  highlighting that  tree  ring
formation  in  this  species  is  sensitive  to
drought (Raventos et al. 2001, De Luis et al.
2009, Novak et al. 2011, Mazza et al. 2014).
Thus, tree ring analysis in this species can
be  potentially  useful  in  climate  change
studies in the Mediterranean basin, which
is considered particularly vulnerable to cli-
mate alterations (Giorgi 2006). 

Akkemik (2000) found that the tempera-
ture at  the beginning of  the growing pe-
riod can have a significantly positive effect
on tree ring growth, and concluded that Pi-
nus pinea L. is a dendroclimatologically sen-
sitive species.  P. pinea has a drought-toler-
ant strategy, with a strongly reduced pho-
tosynthetic activity under water stress and
elevated vapor pressure deficits (Awada et
al.  2003),  as  commonly  observed  in  sum-
mer  and  early  autumn  (Teobaldelli  et  al.
2004). These events might be detrimental
for the radial growth of the species, induc-
ing a decline of natural and artificial popu-
lations across most of its current range (Pi-
raino  et  al.  2013).  Thuiller  et  al.  (2003a)
highlighted the  importance  of  extreme
temperature in the ability of this species to
survive  and  grow,  thus  affecting  its  geo-
graphical distribution.  A negative relation-
ship between temperature and growth has
previously  been  observed  in  this  species
(Natalini  et  al.  2016),  as  well  as  in  other
Mediterranean pines  (Martin-Benito et  al.
2013). Natalini et al. (2013) also stressed the
species vulnerability under increasing tem-
perature  due  to  climate  change.  Conse-

quently,  heat  tolerance should be consid-
ered  a  key  breeding  trait  for  enhancing
growth  performances  of  stone  pine.  In
Tunisia,  Thabeet  et  al.  (2007) reported  a
negative correlation between average tem-
perature and growth,  but with a superior
threshold (16 °C).  Novak et al. (2011) found
that dry conditions from January  to May,
and high temperatures  during late winter
and spring were the main climatic factors
promoting  missing  rings  in  Pinus  pinea.
Despite  similarities,  Pinus  halepensis has
proven to  be  more  sensitive  to  drought
than  P. pinea  early along the growing sea-
son, whereas the latter seems to be more
sensitive to temperature variations during
winter.  Additionally,  in  both  species,  we
found  that  the  determining  temperature
has increased in recent periods. Late win-
ter and spring maximum daily temperature
values, associated with high evapotranspi-
ration, were shown to negatively affect cell
enlargement. However, minimum tempera-
ture was positively related to tracheid lu-
men size just  before the period of  active
xylem formation. Moreover,  Pinus pinea is
sensitive  to  freezing  temperatures  (Abad
Viñas et al. 2016).

Water use by stone pine forests
Pinus pinea is is a drought-avoiding isohy-

dric  species  with  a  shallow  root  system
which is able to  reduce water flow during
aridity  and  to  recover  when  water  be-
comes available again (Mayoral et al. 2015,
Zalloni et al. 2016). The contrasting physio-
logical  strategies  of  Pinus  pinea to  cope
with water deficit influence the regulation
of growth processes, such as wood forma-
tion, leading to peculiar tree-ring anatomi-
cal  features  such  as  intra-annual  density
fluctuations (Zalloni et al. 2018). In a study
focused on anatomical traits and composi-
tion of carbon and oxygen stable isotopes
in  the  intra-annual  density  fluctuations
(IADFs) occurring in tree rings, Zalloni et al.
(2018) showed  that  the  period  of  forma-
tion of IADF is autumn and the influence of
climate on IADF occurrence  is species-spe-
cific.  Natalini  et  al.  (2016) found that  the
growth-climate correlations  varied  by site
and period. Intra-annual density fluctuation
in stone pine has been related to the alter-
nation of drought and rainy periods either
in summer or autumn (Campelo et al. 2007,
Nabais et al. 2014,  Zalloni et al. 2016). The
tree-ring  growth  response  of  Pinus  pinea
during  winter,  previously  reported  for

Spain and Italy (De Luis et al. 2009, Mazza
et al. 2014, Natalini et al. 2016), may reflect
the  physiological  activity  of  this  species
during winter (Pardos et al. 2010).  Balzano
et al.  (2019) found that  in Mediterranean
trees,  cambium  often  produces  several
bands  of  alternating  early-  and  latewood
during a calendar year, resulting in the for-
mation of IADFs. Tree-ring analysis in Pinus
pinea showed a IADF region enriched in δ
13C with an increasing trend in δ 18O, which
suggests  stomatal  closure,  and  the  de-
crease in stomatal conductance likely con-
tributed to the increase in δ13C at the IADF
level (De Micco et al.  2007). The high val-
ues of δ13C and δ18O, along with the larger
tracheids in the IADF region of Pinus pinea,
suggest  an  enhancement  of  conductive
efficiency leading to strict stomatal control
with the aim of avoiding dehydration (Bat-
tipaglia et al.  2013).  According to  Balzano
et al. (2019), stone pine trees on the Vesu-
vius Mountain (near Naples, Italy) showed
uninterrupted wood production from Janu-
ary 2015 until the end of January 2016. The
authors showed differences in cambium ac-
tivity in late autumn among different years;
in November 2015 and 2018, the cambium
was  still  active  and  no  longer  active,  re-
spectively.  Since  radial  growth  generally
starts at the treetop, the decreased avail-
ability of carbohydrates may cause reduced
wood formation in the lowermost part of
the tree. This was particularly noticeable in
the  Pinus  halepensis,  but  not  in  P.  pinea
(Novak et al. 2011). 

Pinus  pinea earlywood  anatomical  fea-
tures  are the result  of  the typical  double
constraint  of  Mediterranean  climate  on
tree  growth:  water  shortage  and,  to  a
lesser  extent,  low  winter  temperature
(Cherubini  1993).  Based on records of an-
nual  growth  rate,  the  response  of  stone
pine to climate over the last 50 years also
suggests the influence of precipitation and
temperature regimes on growth (Cutini et
al. 2014). These variables affect the soil wa-
ter balance and are taken as the main fac-
tor driving tree growth decline, with a cu-
mulative  effect  over  consecutive  years
(Mazza et al. 2011). Mazza & Manetti (2013)
demonstrated the dependence of the spe-
cies on long periods of water supply and its
capacity of using the water content stored
in  previous rainy  years.  High air  tempera-
tures stimulate evapotranspiration and wa-
ter loss (Battipaglia et al. 2009), thus lead-
ing to the drought-avoidant response and
reduced stomatal  conductance (Zalloni  et
al.  2018),  as reflected by the presence of
IADFs and high values of δ13C and δ18O  in
the wood of  P.  pinea. Intra-annual density
fluctuations in  Pinus pinea tree rings were
also  suggested  to  be  formed  during  au-
tumn months, as shown by  the  significant
correlation found between IADF δ18O val-
ues and mean temperature (Campelo et al.
2007, Nabais et al. 2014, Zalloni et al. 2016). 

According  to  Castagneri  et  al.  (2018),
xylem  anatomy  of Pinus  pinea is  strongly
related to the environmental conditions oc-
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Tab. 1 - Model of plantation management for timber production. Source: Pereira et al.
(2015) in Sbay & Hajib (2016).

Age (years) Operations and density ha-1

0 850 trees ha-1

10 Thinning (41 % cut : remains 500 trees ha-1)

20 Pruning mainly low branches

40 Thinning (45 % cut : remains 225 trees ha-1)

80 to 150 Final cut (rotation) leaving 10 trees ha-1 (seed trees)
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curring in the previous season, particularly
regarding  tree-ring  carbon  composition,
but it is not affected by summer drought.
Indeed,  earlywood  is  likely  formed  using
both recently and formerly assimilated car-
bon,  while latewood mostly relies on car-
bon accumulated many months prior to its
formation. The direct relationship between
xylem formation and intra-seasonal precipi-
tation distribution  is reflected in the intra-
ring pattern of lumen size;  earlywood  tra-
cheids  are influenced by  precipitation  oc-
curring before and during xylogenesis (Ca-
marero et al. 2010,  Vieira et al. 2015);  late-
wood  is  mostly  formed  after  the  harsh
summer  period,  when  sandy  soil  is  dry,
photosynthesis  is  reduced  (Calama  et  al.
2013,  Flexas  et  al.  2014),  and  the  limited
amount  of  photosynthates  available is
used for metabolic functions (Dietze et al.
2014).  Under  these  conditions,  xylem for-
mation  may  mostly  depend  on  reserves.
Furthermore,  latewood δ13C was minimally
associated with climatic conditions immedi-
ately  before  or  during  its  formation,  but
was  highly  associated  with  the  previous
year δ13C and with temperature occurring
several months before. Therefore, we sup-
pose that  the  carbon used used for  late-
wood formation came from  mixing pools
of  different  ages,  in  part  older  than  one
year (Timofeeva et al. 2017).

Managing stone pine forests 
under climate change

Rainfall  reduction  and  temperature  in-
crease are challenging to stone pine man-
agement for cone production in the Medi-
terranean  climate  region.  Therefore,  it  is
necessary to adapt traditional  silvicultural
guidelines for stands facing climate change
consequences,  by  reducing  stand  density
over their lifetimes in order to ensure tree
production in  healthy  mixed  even-aged
stands. In a study of the impact of climate
and management variables  in  stone pine,

Pereira et al. (2015) proposed a plantation
management model for timber production
(Tab. 1). Loewe et al. (2016, 2017) reported
that stone pine fertilization applied during
two consecutive  years  is  a  useful  tool  to
enhance DBH and height, and one year-old
conelet  production.  These results  confirm
the benefits of establishing fertilized plan-
tations for increasing growth and fruit pro-
duction. Irrigation had an important effect
on fruiting, but the effects on radial growth
were not significant. Contrastingly, the irri-
gation effect was positive  on both height
and DBH growth when combined to fertil-
ization (fertirrigation) in a 75 year-old plan-
tation of  limited growth and no manage-
ment  established in  a  clay-sand soil  (Pes-
tana 2000), with increases from 2 to 15 mm
in diameter. Loewe et al. (2016) observed a
positive effect on vertical growth, in agree-
ment with the findings reported by Loewe
& Delard  (2012).  Freire  et  al.  (2019) high-
lighted the  importance  of  maintaining  a
small ratio between tree height and diame-
ter,  as  it makes  trees  less  susceptible to
cavitation  due  to  the  reduced  effort  to
transport water from the soil to leaves,  as
well as capable of maintaining their stom-
ata  open  for  longer  periods,  thereby  in-

creasing carbon  assimilation  for  growth
and cone production. 

Forestry aimed to promote adaptation to
climate change is based on the implemen-
tation of practices aimed to reduce vulner-
ability,  and increase the adaptive capacity
of  forest  species  in  relation  to  the  most
limiting factor in the Mediterranean  area,
i.e., water deficit (García-Güemes & Calama
2015). To achieve this objective, each indi-
vidual tree must keep the highest possible
vigor  in  order  to  be  less  susceptible  to
pathogen  attacks  and  more  resistant  to
drought events (Kohler et al. 2010). Tradi-
tionally, Pinus pinea stands have been man-
aged following a uniform shelterwood sys-
tem, with a three stage regeneration cut,
and two or three thinnings during rotation
(Moreno-Fernández et  al.  2013,  Pereira et
al. 2015). Freire et al. (2016) described silvi-
cultural  interventions  appropriate  for  a
stand of pine nuts (Tab. 2). Thinning regu-
lates intra-specific and interspecific compe-
tition (Calama et al. 2019), thus increasing
the availability  of  water  and nutrients for
each tree. Also, thinning favors soil param-
eters (Mazza et al. 2011) and tree character-
istics (Molina & Del Campo 2012), and miti-
gates the negative effects of drought (Gar-
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Tab. 2 - Silvicultural systems for stone pine (source: Freire et al. 2016).

Operation Correia & Oliveira (2002) Louro et al. (2002) INRB (2008)

Initial density 625 trees ha-1 500 to 600 trees ha-1 208 to 400 trees ha-1

Pruning Removal of branches without 
female flowers (without 
indication of periodicity)

1/3 branches removal: 1/3 till 2/3 branches removal:

Between 8 and 12 years Between 5 and 6 years

Between 20 and 25 years Between 10 and 12 years

Removal of branches without female flowers: Between 20 and 25 years

Between 35 and 40 years -

Between 50 and 60 years -

Thinning At 10 years till 500 trees ha-1 400 trees ha-1 Between 10 and 12 years

At 15 years till 300 trees ha-1 Between 20 and 25 years till 352 trees ha-1 Between 20 and 25 years

At 31 years till 100 trees ha-1 Between 25 and 30 years till 281 trees ha-1 -

- Between 35 and 40 years till 225 trees ha-1 No information on density after 
thinning

Final density 100 trees ha-1 225 trees ha-1 Between 100 and 120 trees ha-1

Mean Distance 10 m 6.7 m Between 10 and 9.2 m

Regeneration cut 
(rotation)

At 80 years Between 80 and 100 years No information about the 
regeneration cut

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

Tab. 3 - Proposals for final stand density (N), maximum crown diameter (Mcw), cone
number (Mnc),  weight  (Mwc)  per  tree and average cone production per ha (Wc)
(Freire et al. 2019).

N 
(trees ha-1)

References Mcw
(m)

Mnc
(m)

Mwc
(kg)

Wc
(kg ha-1)

28 Freire et al. (2016) 18.9 2136 500.4 1124.3

75 Kuçuker & Baskent (2017) 11.6 1871 322.4 604.5

78 Pique-Nicolau et al. (2011) 11.3 400 117.8 582.7

100 Pereira et al. (2015) 10.0 349 90.4 422.7

120 INRB (2008) 9.1 349 90.4 277.2

150 Manso et al. (2014) 8.2 349 90.4 243.6

225 Louro et al. (2002) 6.7 92 22.4 196.8
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cía-Güemes & Calama 2015, Guillemot et al.
2015). According to McDowell et al. (2006),
thinning promotes physiological responses
such as photosynthetic rate,  carbon assim-
ilation, and stomatal conductance, and re-
duces  the  effect  of  pests  and  diseases
(Chowanski  2016),  promoting the stability
of stands by reducing the height/diameter
ratio  of  trees  (García-Güemes  &  Calama
2015,  Bošela  et  al.  2015),  which is  consid-
ered  a  mitigation  measure  against  the
detrimental  effects  of  climatic changes
(Mazza et al. 2011).  Freire et al. (2019) pro-
posed an optimal stand density, maximum
crown diameter, cone number, weight per
tree, and average cone production per ha
(Tab.  3).  In Tunisia,  systematic  thinning is
applied in certain stands (Fig. 3) and some-
times the final cut, in silvicultural interven-
tions (Fig. 4).

Conclusions
Stone pine (Pinus pinea L.) is naturally dis-

tributed in the Mediterranean forest  eco-
system, and is frequently  employed in af-

forestation practices because of its ecolog-
ical,  economic,  and  aesthetic  characteris-
tics. It is among the main species that pro-
vide an important contribution to the na-
tional economy, especially in terms of non-
wood products. Climate change has nega-
tive effects on stone pine forests that have
limited  suitable  habitats  currently  threat-
ened  by  climatic  change.  Climatic  models
using  different  future  scenarios  predict
that P. pinea will undergo habitat loss, thus
shifting its geographical distribution. Tree-
ring  analysis  showed  that  winter  and
spring  rainfall  has positive  effects  on
growth, whereas high spring temperature
has the opposite effect. Stone pine growth
is  positively  correlated  with  the  Palmer
Drought Severity Index (PDSI) and with an-
nual rainfall, and negatively correlated with
the  maximum  average  annual  tempera-
ture. 

Forest  management could  play a funda-
mental  role  in  reducing  the  potential  im-
pact  of  climate  change on  forest  ecosys-
tems.  Good  management  of  stone  pine

forests  and plantations  should  ensure  ef-
fective adaptation to climate change. Silvi-
cultural  practices  should  be  aimed  at  in-
creasing  species  richness,  favoring  hard-
woods  currently  growing  under  conifer
canopy,  as  well  as  stimulating natural  re-
generation  and  gene  flow.  Special  atten-
tion should be given to support migration
processes, given the predicted shift of suit-
able habitats for the species.
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