iForest - Biogeosciences and Forestry


Determining basic forest stand characteristics using airborne laser scanning in mixed forest stands of Central Europe

Róbert Smreček (1)   , Zuzana Michnová (2), Ivan Sačkov (3), Zuzana Danihelová (4), Martina Levická (1), Ján Tuček (1)

iForest - Biogeosciences and Forestry, Volume 11, Issue 1, Pages 181-188 (2018)
doi: https://doi.org/10.3832/ifor2520-010
Published: Feb 19, 2018 - Copyright © 2018 SISEF

Research Articles

This study focused on the derivation of basic stand characteristics from airborne laser scanning (ALS) data, aiming to elucidate which characteristics (mean height and diameter, dominant height and diameter) are best approximated by the variables obtained using ALS data. The height of trees of different species in four permanent plots located in the Slovak Republic was derived from the normalised digital surface model (nDSM) representing the canopy surface, using an automatic approach to identify local maxima (individual treetops). Tree identification was carried out using four different spatial resolutions of the nDSM (0.5 m, 1.0 m, 1.5 m, and 2.0 m) and the number of trees identified was compared with reference data obtained from field measurements. The highest percentage of tree detection (69-75%) was observed at the spatial resolutions of 1.0 and 1.5 m. Absolute differences of tree height between reference and ALS datasets ranged from 0 to 36% at all spatial resolutions. The smallest difference in mean height was obtained using the higher spatial resolution (0.5 m), while the smallest difference in the dominant height of the relative number of thickest trees (h10% and h20%) was observed using the lower spatial resolution (2 m). The same trends also apply to diameters. The average errors at resolution of 1.0 and 1.5 m was 8.7%, 5.9% and 9.7% for mean height, h20% and h10%, respectively. ALS-derived diameters (obtained using regression models from reference data and ALS-derived individual height as predictor) showed absolute errors in the range 0-48% at all spatial resolutions. The deviation in mean diameter at a resolution of 0.5 m ranged from -12.1% to 15.3%.


Forestry, Airborne Laser Scanning, Mixed Forest, Height of Forest Stand, Diameter of Forest Stand

Authors’ address

Róbert Smreček
Martina Levická
Ján Tuček
Department of Forest Management and Geodesy, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen (Slovakia)
Zuzana Michnová
Soil Science and Conservation Research Institute, Gagarinova 10, 827 13 Bratislava (Slovakia)
Ivan Sačkov
Department of Forest Policy, Economics and Forest Management, National Forest Centre
Zuzana Danihelová
The Institute of Foreign Languages, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen (Slovakia)

Corresponding author

Róbert Smreček


Smreček R, Michnová Z, Sačkov I, Danihelová Z, Levická M, Tuček J (2018). Determining basic forest stand characteristics using airborne laser scanning in mixed forest stands of Central Europe. iForest 11: 181-188. - doi: 10.3832/ifor2520-010

Academic Editor

Agostino Ferrara

Paper history

Received: Jun 13, 2017
Accepted: Dec 13, 2017

First online: Feb 19, 2018
Publication Date: Feb 28, 2018
Publication Time: 2.27 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 38733
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 33335
Abstract Page Views: 1635
PDF Downloads: 2877
Citation/Reference Downloads: 27
XML Downloads: 859

Web Metrics
Days since publication: 2308
Overall contacts: 38733
Avg. contacts per week: 117.47

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2018): 4
Average cites per year: 0.67


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Andersen HE, Reutebuch SE, McGaughey RJ (2006)
A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Canadian Journal of Remote Sensing 32 (5): 355-366.
CrossRef | Gscholar
Balenović I, Alberti G, Marjanović H (2013)
Airborne laser scanning - the status and perspectives for the application in the south-east European forestry. South-East European Forestry 4 (2): 59-79.
CrossRef | Gscholar
Brodrechtová Y, Navrátil R, Sedmák R, Tuček J (2016)
Using the politicized IAD framework to assess integrated forest management decision making in Slovakia. Land Use Policy. [In press]
Farid A, Goodrich DC, Sorooshian S (2006)
Using airborne lidar to discern age classes of cottonwood trees in a riparian area. Western Journal of Applied Forestry 21 (3): 149-158.
Online | Gscholar
Heurich M (2008)
Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park. Forest Ecology and Management 255 (7): 2416-2433.
CrossRef | Gscholar
Hyyppä J, Hyyppä H, Xiaowei Y, Kaartinen H, Kukko A, Holopainen M (2009)
Forest inventory using small-footprint airborne LiDAR. In: “Topographic Laser Ranging and Scanning: Principles and Processing” (Shan J, Toth CK eds). CRC Press, Boca Raton, FL, USA, pp. 335-370.
Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M, Viitala R (2012)
Forest variable estimation using a high-resolution digital surface model. ISPRS Journal of Photogrammetry and Remote Sensing 74: 78-84.
CrossRef | Gscholar
Jing L, Hu B, Li J, Noland T (2014)
Automated individual tree crown delineation from LiDAR data using morphological techniques. IOP Conference Series: Earth and Environmental Science 17: 1.
CrossRef | Gscholar
Kaartinen H, Hyyppä J (2008)
Tree extraction - Report of EuroSDR project. Official publication no. 53, Frankfurt, Germany, pp. 60.
Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Mosdorf F, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu JC (2012)
An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing 4: 950-974.
CrossRef | Gscholar
Khosravipour A, Skidmore AK, Wang T, Isenburg M, Khoshelham K (2015)
Effect of slope on treetop detection using a LiDAR canopy height model. ISPRS Journal of Photogrammetry and Remote Sensing 104: 44-52.
CrossRef | Gscholar
Latifi H, Fassnacht EF, Müller J, Tharani A, Dech S, Heurich M (2015)
Forest inventories by LiDAR data: a comparison of single tree segmentation and metric-based methods for inventories of a heterogeneous temperate forest. International Journal of Applied Earth Observation and Geoinformation 42: 162-174.
CrossRef | Gscholar
Maas HG (2013)
Forestry applications. In: “Airborne and Terrestrial Laser Scanning” (Vosselman G, Maas H-G eds). Whittles Publishing, Dunbeath, UK, pp. 213-235.
Mandlburger G, Otepka J, Karel W, Wagner W, Pfeifer N (2009)
Orientation and processing of airborne laser scanning data (OPALS) - Concept and first results of a comprehensive ALS software. In: Proceedings of the “Symposium of ISPRS - Laserscanning 2009” (Bretar F, Pierrot-Deseiligny M, Vosselman G eds). Paris (France) 1-2 Sept 2009. Paris, France, pp. 55-60.
Online | Gscholar
Michnová Z (2015)
Odvodenie vybraných stromových a porastových veličín metódami leteckého laserového skenovania [Determining selected tree and forest stand parameters using methods of airborne laser scanning]. PhD thesis, Department of Forest Management and Geodesy, Technical University in Zvolen, Zvolen, Slovakia, pp. 113. [in Slovak]
Mikita T, Klimánek M, Cibulka M (2013)
Evaluation of airborne laser scanning data for tree parameters and terrain modelling in forest environment. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61 (5): 1339-1347.
CrossRef | Gscholar
Nelson R, Swift R, Krabill W (1988)
Using airborne lasers to estimate forest canopy and stand characteristics. Journal of Forestry 86 (10): 31-38.
OPALS Manual (2016)
Orientation and processing of airborne laser scanning data: user documentation. Web site.
Online | Gscholar
Otepka J, Briese C, Nothegger C (2006)
First steps to a topographic information system of the next generation. In: Proceedings of the “Symposium of ISPRS Commission IV - Geo Spatial Databases for Sustainable Development”. Goa (India) 25-30 Sept 2006. Goa, India, pp. 419-425.
Online | Gscholar
Persson A, Holmgren J, Söderman U (2002)
Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing 68 (9): 925-932.
Online | Gscholar
Pitkänen J, Maltamo M, Hyyppä J, Yu X (2004)
Adaptive methods for individual tree detection on airborne laser based canopy height model. In: Proceedings of the “Symposium of ISPRS - Laser-Scanners for Forest and Landscape Assessment” (Thies M, Koch B, Spiecker H, Weinacker H eds). Freiburg, (Germany) 3-6 Oct 2004. Freiburg, Germany, pp. 178-183.
Online | Gscholar
Pouliot DA, King DJ, Bell FW, Pitt DG (2002)
Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sensing of Environment 82: 322-334.
CrossRef | Gscholar
Reitberger J, Heurich M, Krzystek P, Stilla U (2007)
Single tree detection in forest areas with high-density LiDAR data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science 36 (3/W49B): 139-144.
Online | Gscholar
Sedmák R, Fabrika M, Bahyl J, PôbiS I, Tuček J (2013)
Application of simulation and optimazation tools for developing forest management plans in the Slovak natural and management conditions. In: “Implementation of DSS tools into the forestry practice” (Tuček J, Smreček R, Majlingová A, Garzio-Gonzalo J eds). Technická univerzita vo Zvolene, Zvolen, Slovakia, pp. 139-158.
Smelko S (2000)
Dendrometria [Forest mensuration]. Technical University in Zvolen, Zvolen, Slovakia, pp. 399. [in Slovak]
Smreček R, Danihelová Z (2013)
Forest stand height determination from low point density airborne laser scanning data in Rožnava Forest enterprise zone (Slovakia). iForest 6: 48-54.
CrossRef | Gscholar
Sterenczak K (2013)
Factors influencing individual tree crowns detection based on airborne laser scanning data. Forest Research Papers 74 (4): 323-333.
CrossRef | Gscholar
Sterenczak K, Miscicki S (2012)
Crown delineation influence on standing volume calculations in protected area. In: Proceedings of the “Symposium of ISPRS Commission VIII - Remote Sensing and Spatial Information Sciences (Shortis M, Shimoda H, Cho K eds). Melbourne (Australia) 25 Aug - 01 Sept 2012. Melbourne, Australia, pp. 441-445.
Online | Gscholar
Strîmbu VF, Strîmbu BM (2015)
A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing 104: 30-43.
CrossRef | Gscholar
Takahashi T, Yamamoto K, Senda Y, Tsuzuku M (2005)
Estimating individual-tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. Journal of Forest Research 10 (4): 135-142.
CrossRef | Gscholar
Vastaranta M, Kankare V, Holopainen M, Yu X, Hyyppä J, Hyyppä H (2012)
Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS Journal of Photogrammetry and Remote Sensing 67: 73-79.
CrossRef | Gscholar
Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V, Packalén P, Gobakken T, Koch B, Naesset E, Tokola T, Maltamo M (2012)
Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85 (1): 27-40.
CrossRef | Gscholar
Wezyk P, Tompalski P, Szostak M, Glista M, Pierzchalski M (2008)
Describing the selected canopy layer parameters of the scots pine stands using ALS data. In: Proceedings of the “SilviLaser 2008 - 8th International Conference on LiDAR Applications in Forest Assessment and Inventory” (Hill R, Rosette J, Suárez J eds). Edinburgh (UK) 17-19 Sept 2008. Edinburg, UK, pp. 636-645.
Online | Gscholar
Yu X, Hyyppä J, Holopainen M, Vastaranta M (2010)
Comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sensing 2 (6): 1481-1495.
CrossRef | Gscholar
Zawawi AA, Shiba M, Jemali NJN (2015)
Accuracy of LiDAR-based height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan. Forest Systems 24 (1): 2276-2287.
Zíhlavník S, Scheer L (2000)
Dialkový prieskum Zeme v lesníctve [Remote sensing of Earth in forestry]. Technical University in Zvolen, Zvolen, Slovakia, pp. 289. [in Slovak]

This website uses cookies to ensure you get the best experience on our website. More info