*
 

iForest - Biogeosciences and Forestry

*

Stability analysis and selection of optimal Eucalyptus urophylla × E. grandis families

Chrissy Garel Makouanzi Ekomono (1-2-3)   , Hugues-Yvan Gomat (4), Ursula Armeline Mondzeki Bomouta (1), Henok-Jubref Baniakissa-Ndelo (1)

iForest - Biogeosciences and Forestry, Volume 18, Issue 5, Pages 293-300 (2025)
doi: https://doi.org/10.3832/ifor4476-018
Published: Oct 20, 2025 - Copyright © 2025 SISEF

Research Articles


To analyze the stability of growth traits and the chemical properties of wood in 55 full-sib families of Eucalyptus urophylla × Eucalyptus grandis from the reciprocal recurrent selection scheme for Eucalyptus in the Congo, two trials were conducted to compare planting spacing (833 and 2500 stems ha-1). The effect of spacing at 55 months after planting was determined for height, circumference, lignin, cellulose, extractive contents, and the genetic variance component of the syringyl to guaiacyl ratio, using single and multisite linear mixed models. The families’ stability analysis was conducted by evaluating the Pi index of Lin. Results show that increased competition between trees raises the heritability of the chemical properties of wood, except for extractive content, and reduces the heritability of growth traits. Results also showed that the chemical properties of wood are relatively constant and that selection would involve a very slight drop in lignin, cellulose, and extractive content. In the case of a short rotation, plantation spacing alters the mean values of the chemical properties of wood in most families, although some remain stable in both plantation densities. For families with a low Pi index, planting spacing has very little influence on wood quality. This suggests that high-density plantations could be established with no negative impact on wood quality. The interaction between planting spacing and the effects of the main male and female primarily concerns growth traits. The interaction between planting spacing and the family effect tends to affect the chemical properties of wood.

  Keywords


Planting Density, Wood Chemical Properties, Genetic Gain, Genotype-by-environment Interaction, Genetic Variance Component

Authors’ address

(1)
Chrissy Garel Makouanzi Ekomono 0000-0003-0920-5216
Ursula Armeline Mondzeki Bomouta
Henok-Jubref Baniakissa-Ndelo
ENSAF, École Nationale Supérieure d’Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville (République du Congo)
(2)
Chrissy Garel Makouanzi Ekomono 0000-0003-0920-5216
CRDPI, Centre de Recherche sur la Durabilité et la Productivité des Plantations Industrielles, Pointe-Noire (République du Congo)
(3)
Chrissy Garel Makouanzi Ekomono 0000-0003-0920-5216
IRF, Institut national de recherche forestière, Cité Scientifique de Brazzaville, Brazzaville (République du Congo)
(4)
Hugues-Yvan Gomat
École Normale Supérieure, UMNG, BP 69 Brazzaville (République du Congo)

Corresponding author

 
Chrissy Garel Makouanzi Ekomono
garelmak@yahoo.fr

Citation

Makouanzi Ekomono CG, Gomat H-Y, Mondzeki Bomouta UA, Baniakissa-Ndelo H-J (2025). Stability analysis and selection of optimal Eucalyptus urophylla × E. grandis families. iForest 18: 293-300. - doi: 10.3832/ifor4476-018

Academic Editor

Angelo Rita

Paper history

Received: Sep 23, 2023
Accepted: May 13, 2025

First online: Oct 20, 2025
Publication Date: Oct 31, 2025
Publication Time: 5.33 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 21
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 5
Abstract Page Views: 7
PDF Downloads: 7
Citation/Reference Downloads: 0
XML Downloads: 2

Web Metrics
Days since publication: 1
Overall contacts: 21
Avg. contacts per week: 147.00

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Mar 2025)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Ades PK, Garnier-Géré PH (1996)
Stability analysis for Pinus radiata provenances and its implications for genetic resource conservation. In: Proceedings of the QFRI-IUFRO Conference “Tree improvement for sustainable tropical forestry”. Caloundra (Australia) 27 Oct - 08 Nov 1996. Queensland Forestry Research Institute, Brisbane, Australia, pp. 118-122.
Gscholar
(2)
Alcorn PJ, Pyttel P, Bauhus J, Smith RGB, Thomas D, James R, Nicotra A (2007)
Effects of initial planting density on branch development in 4-year-old plantation grown Eucalyptus pilularis and Eucalyptus cloeziana trees. Forest Ecology and Management 252: 41-51.
CrossRef | Gscholar
(3)
Apiolaza LA (2014)
Linking changes to breeding objectives and genetic evaluation to genetic gain in New Zealand. New Forests 45 (3): 439-448.
CrossRef | Gscholar
(4)
Assis T, Warburton P, Harwood C (2005)
Artificially induced protogyny: an advance in the controlled pollination of Eucalyptus. Australian Forestry 68: 27-33.
CrossRef | Gscholar
(5)
Benmahammed A, Nouar H, Haddad L, Laala Z, Abdelmalek O, Bouzerzour H (2010)
Analyse de la stabilité des performances de rendement du blé dur (Triticum durum Desf.) sous conditions semi-arides. [Analysis of the stability of the yield performance of durum wheat (Triticum durum Desf.) under semi-arid conditions]. Biotechnology, Agronomy, Society and Environment 14 (1): 177-186. [in French]
Gscholar
(6)
Bertrand D (2002)
La spectroscopie proche infrarouge et ses applications dans les industries de l’alimentation animale [Near-infrared spectroscopy and its applications in the animal feed industry]. INRA Productions Animales 15 (3): 209-219. [In French].
Online | Gscholar
(7)
Bouvet JM, Saya A, Vigneron P (2009)
Trends in additive, dominance and environmental effects with age for growth traits in Eucalyptus hybrid populations. Euphytica 165: 35-54.
CrossRef | Gscholar
(8)
Bouvet JM, Vigneron P, Gouma R, Saya A (2003)
Trends in variances and heritabilities with age for growth traits in Eucalyptus spacing experiments. Silvae Genetica 52: 121-133.
Gscholar
(9)
Brito AS, Vidaurre GB, Oliveira JTS, Silva JGM, Rodrigues BP, Carneiro ACO (2019)
Effect of planting spacing in production and permeability of heartwood and sapwood of Eucalyptus wood. Floresta e Ambiente 26 (1): e20180378.
CrossRef | Gscholar
(10)
Brito AS, Vidaurre GB, Oliveira Td JS, Da Silva JGM, Oliveira RF, Júnior AFD, Arantes MDC, Moulin JC, Valin M, De Siqueira L, Zauza EAV (2021)
Interaction between planting spacing and wood properties of Eucalyptus clones grown in short rotation. iForest 14: 12-17.
CrossRef | Gscholar
(11)
Charlton RA, Naghizadeh Z, Ham C, Wessels CB (2020)
A value chain comparison of Pinus patula sawlog management regimes based on different initial planting densities and effect on wood quality. Forest Policy and Economics 111: 102067.
CrossRef | Gscholar
(12)
Chen S, Arnold RJ, Li Z, Li T, Zhou G, Zhou Q (2010)
Tree and stand growth for clonal E. urophylla x E. grandis across a range of initial stockings in southern China. New Forests 41: 95-112.
CrossRef | Gscholar
(13)
Crossa J, Cornelius PL, Yan W (2002)
Biplots of linear-bilinear models for studying crossover genotype × environment interaction. Crop Science 42: 619-633.
CrossRef | Gscholar
(14)
Da Silva PHM, Marco M, Alvares CA, Lee D, De Moraes MLT, De Paula RC (2019)
Selection of Eucalyptus grandis families across contrasting environmental conditions. Crop Breeding and Applied Biotechnology 19: 47-54.
CrossRef | Gscholar
(15)
Denis M, Favreau B, Ueno S, Camus-Kulandaivelu L, Chaix G, Gion JM, Nourrisier-Montou S, Polidori J, Bouvet JM (2013)
Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla. Tree Genetics and Genomes 9: 927-942.
CrossRef | Gscholar
(16)
Dhote JF (1997)
Effets des éclaircies sur le diamètre dominant dans des futaies régulières de hêtre ou de chêne sessile [Effects of thinning on the dominant diameter in regular beech and sessile oak stands]. Revue Forestière Française 49 (6): 557-579. [in French]
CrossRef | Gscholar
(17)
Eisenbies MH, Volk TA, Espinoza J, Gantz C, Himes A, Posselius J, Shuren R, Stanton B, Summers B (2017)
Biomass, spacing and planting design influence cut-and-chip harvesting in hybrid poplar. Biomass and Bioenergy 106: 182-190.
CrossRef | Gscholar
(18)
Elerati TL (2017)
Espaçamento, genótipo, idade e a produção de biomassa em povoamentos de eucalipto [Spacing, genotype, age and biomass production in eucalypt stands]. Dissertação, Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, MG, Brazil, pp. 90. [in Portuguese]
Gscholar
(19)
FAO (1981)
Eucalyptus for planting. FAO Forestry Series no. 11, Rome, Italy, pp. 745.
Gscholar
(20)
Favreau B (2012)
Impact du stress hydrique sur l’anatomie et la teneur en polyphénols des feuilles de 2 génotypes d’Eucalyptus au champ [Impact of water stress on the anatomy and polyphenol content of leaves of 2 Eucalyptus genotypes in the field]. Diplôme de Master en Biologie des Plantes, Université Montpellier 2 (Sciences et Techniques), Montpellier, France, pp. 44. [in French]
Gscholar
(21)
Gabira MM, Girona MM, DesRochers A, Kratz D, Da Silva RBG, Duarte MM, De Aguiar NS, Wendling I (2023)
The impact of planting density on forest monospecific plantations: an overview. Forest Ecology and Management 534: 120882.
CrossRef | Gscholar
(22)
Gallais A (1992)
Adaptation et adaptabilité en amélioration des plantes [Adaptation and adaptability in plant breeding]. Sélectionneur Français 42: 55-57. [in French]
Gscholar
(23)
Gominho J, Pereira H (2007)
The influence of tree spacing in heartwood content in Eucalyptus globulus. Wood and Fiber Science 37: 582-590.
Gscholar
(24)
Haussmann BIG, Geiger HH (1994)
Effects of heterozygosity and heterogeneity on the adaptation of sorghum (Sorghum bicolor (L.) Moench) to a semiarid area of Kenya. In: “Biometrics in Plant Breeding: Applications of Molecular Markers” (van Ooijen JW, Jansen J eds), Proceedings of the 9th meeting of the EUCARPIA Section “Biometrics in Plant Breeding”. Wageningen (Netherlands) 6-8 July 1994, pp. 107-115.
Gscholar
(25)
Isik F, Li B, Frampton J (2003)
Estimates of additive, dominance and epistatic genetic variances from a clonally replicated test of Loblolly pine. Forest Science 49 (1): 77-88.
CrossRef | Gscholar
(26)
Karlsson L, Mörling T, Bergsten U (2013)
Influence of silvicultural regimes on the volume and proportion of juvenile and mature wood in boreal Scots pine. Silva Fennica 47: 1-17.
CrossRef | Gscholar
(27)
Lasserre JP, Mason EG, Watt MS, Moore JR (2009)
Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. Forest Ecology and Management 258: 1924-1931.
CrossRef | Gscholar
(28)
Lin CS, Binns MR, Lefkovitch LP (1986)
Stability analysis: where do we stand? Crop Science 26: 894-900.
CrossRef | Gscholar
(29)
Liu J (2025)
Progress in research on the effects of environmental factors on natural forest regeneration. Frontiers in Forests and Global Change 8: 121713.
CrossRef | Gscholar
(30)
Lourenço A, Pereira H (2018)
Compositional variability of lignin in biomass. In: “Lignin - Trends and Applications” (Poletto M ed). IntechOpen, London, UK, pp. 65-98.
CrossRef | Gscholar
(31)
Makouanzi ECG, Chaix G, Nourissier S, Vigneron P (2018)
Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla x Eucalyptus grandis in the Congo. Southern Forests 2 (80): 151-158.
CrossRef | Gscholar
(32)
Makouanzi ECG, Mayinguidi UC (2019)
Estimation des valeurs génétiques de la croissance et de la surface spécifique foliaire de Eucalyptus urophylla (S. T. Blake) × Eucalyptus grandis (Hill ex Maid.) et leurs corrélations [Estimation of genetic values ​​of growth and specific leaf area of ​​Eucalyptus urophylla (S. T. Blake) × Eucalyptus grandis (Hill ex Maid.) and their correlations]. Journal of Animal and Plant Sciences 41 (3): 6965-6976. [in French]
CrossRef | Gscholar
(33)
Makouanzi ECG, Mayinguidi UC, Loubasou V (2019)
Expression différentielle de la valeur génétique de la croissance d’Eucalyptus urophylla × Eucalyptus grandis sous contrainte nutritionnelle [Differential expression of genetic value for growth of Eucalyptus urophylla × Eucalyptus grandis under nutritional stress]. Revue de l’Environnement et de la Biodiversité - PASRES 4 (1): 1-8. [in French]
Gscholar
(34)
Makouanzi ECG, Vigneron P (2022)
Estimating additive, dominance, and epistatic genetic variance in an eucalypt hybrid population. Silvae Genetica 71: 39-46.
CrossRef | Gscholar
(35)
Makouanzi ECG, Rambolarimanana T, Bouvet JM (2022)
Preponderance of additive and non-additive variances for growth, ecophysiological, and wood traits in Eucalyptus hybrid genotype-by-spacing interaction. Tree Genetics and Genomes 18: 32.
CrossRef | Gscholar
(36)
Mandrou E, Hein PRG, Villar E, Vigneron P, Plomion C, Gion JM (2012)
A candidate gene for lignin composition in Eucalyptus: cinnamoyl-CoA reductase (CCR). Tree Genetics and Genomes 8: 353-364.
CrossRef | Gscholar
(37)
Mareschal L, Nzila J, Turpault MP, Thongo-MB, Mazoumbou JC, Bouillet JP, Ranger J, Laclau JP (2011)
Mineralogical and physico-chemical properties of Ferralic Arenosols derived from unconsolidated Plio-Pleistocenic deposits in the coastal plains of Congo. Geoderma 162: 159-170.
CrossRef | Gscholar
(38)
McEwan A, Marchi E, Spinelli R, Brink M (2020)
Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. Journal of Forest Research 31 (2): 339-351.
CrossRef | Gscholar
(39)
Møller C, De Frenne P, March-Salas M, Vanneste T, Verheyen K, Scheepens J (2023)
Forest management drives evolution of understorey herbs. Forest Ecology and Management 548: 121390, . org.
CrossRef | Gscholar
(40)
Møller C, March-Salas M, De Frenne P, Scheepens J (2025)
Local adaptation and phenotypic plasticity in two forest understorey herbs in response to forest management intensity. AoB Plants 17: plae061.
CrossRef | Gscholar
(41)
Moulin JC, Arantes MDC, Vidaurre GB, Paes JB, Carneiro ACO (2015)
Efeito do espaçamento, da idade e da irrigação nos componentes químicos da madeira de eucalipto [Effect of spacing, age and irrigation on the chemical components of eucalyptus wood]. Revista Árvore 39 (1): 199-208. [in Portuguese]
CrossRef | Gscholar
(42)
Moulin JC, Rocha MFV, Arantes MDC, Boschetti WTN, Jesus MS, Trugilho PF (2017)
Influência do espaçamento de plantio e irrigação na densidade e na massa seca em espécies de Eucalyptus [Influence of planting spacing and irrigation on density and dry mass in Eucalyptus species] Nativa 5: 367-371. [in Portuguese]
CrossRef | Gscholar
(43)
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, Van Kleunen M (2010)
Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15 (12): 684-692.
CrossRef | Gscholar
(44)
Pachas ANA, Sakanphet S, Soukkhy O, Lao M, Savathvong S, Newby JC, Souliyasack B, Keoboualapha B, Dieters MJ (2019)
Initial spacing of teak (Tectona grandis) in northern Lao PDR: impacts on the growth of teak and companion crops. Forest Ecology and Management 435: 77-88.
CrossRef | Gscholar
(45)
Parde J, Bouchon J (2009)
Dendrométrie-Forêt. [Dendrometry-Forest] (2nd edn). AgroParisTech/ ENGREF, pp. 328 [in French].
Gscholar
(46)
Peng Y, Washusen R, Xiang D, Lan J, Chen S, Arnold R (2014)
Grade and value variations in Eucalyptus urophylla x E. grandis veneer due to variations in initial plantation spacings. Australian Forestry 77 (1): 39-50.
CrossRef | Gscholar
(47)
Pigliucci M (2001)
Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore, MD, USA, pp. 328.
Online | Gscholar
(48)
Potts BM, Dungey HS (2004)
Hybridization of eucalyptus: key issues for breeders and geneticists. New Forests 27 (2): 115-138.
CrossRef | Gscholar
(49)
Resende RT, Soares AAV, Forrester DI, Marcatti GE, Dos Santos AR, Takahashi EK, Silva FF, Grattapaglia D, Resende MDV, Leite HG (2018)
Environmental uniformity, site quality, and tree competition interact to determine stand productivity of clonal Eucalyptus. Forest Ecology and Management 410: 76-83.
CrossRef | Gscholar
(50)
Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Casnati CR (2019)
Influence of contrasting stocking densities on the dynamics of aboveground biomass and wood density of Eucalytus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. Forest Ecology and Management 438: 63-74.
CrossRef | Gscholar
(51)
Ricardo G, Igor B, Gleison A, Brígida M (2018)
Growth and wood quality traits in the genetic selection of potential Eucalyptus dunnii Maiden clones for pulp production. Industrial Crops and Products 123: 434-441.
CrossRef | Gscholar
(52)
Rocha MFV, Vital BR, Carneiro ACO, Carvalho AMML, Cardoso MT, Hein PRG (2016)
Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. Journal of Tropical Forest Science 28 (3): 243-248.
Online | Gscholar
(53)
Rose LW, Das MK, Taliaferro CM (2008)
A comparison of dry matter yield stability assessment methods for small numbers of genotypes of Bermuda grass. Euphytica 164: 19-25.
CrossRef | Gscholar
(54)
Ryckewaert P, Chaix G, Héran D, Zgouz A, Bendoula R (2022)
Evaluation of a combination of NIR micro-spectrometers to predict chemical properties of sugarcane forage using a multi-block approach. Biosystems Engineering 217 (1): 18-25.
CrossRef | Gscholar
(55)
Sang Y, Gao P, Kang X, Zhang P (2021)
Effect of initial planting density on growth traits and wood properties of triploid Chinese white poplar (Populus tomentosa) plantation. Forests 12: 1676.
CrossRef | Gscholar
(56)
Siljestam M, Ostman O (2017)
The combined effects of temporal autocorrelation and the costs of plasticity on the evolution of plasticity. Journal of Evolutionary Biology 30: 1361-1371.
CrossRef | Gscholar
(57)
Stelling D, Ebmeyer E, Link W (1994)
Yield stability in Faba bean, Vicia faba L. Effects of heterozygosity and heterogeneity. Plant Breeding 112: 30-39.
CrossRef | Gscholar
(58)
Souza CO, Silva JGM, Arantes MDC, Vidaurre GB, Dias Júnior AF, Oliveira MP (2020)
Pyrolysis of Anadenanthera peregrina wood grown in different spacings from a forest plantation in Brazil, aiming at energy production. Environment, Development and Sustainability 22: 5153-5168.
CrossRef | Gscholar
(59)
Tabery J (2008)
R. A. Fisher, Lancelot Hogben, and the origin(s) of genotype-environment interaction. Journal of the History of Biology 41 (4): 717-761.
CrossRef | Gscholar
(60)
Windig JJ, De Kovel CGF, De Jong G (2004)
Genetics and mechanics of plasticity. In: “Phenotypic Plasticity: Functional and Conceptual Approaches” (DeWitt TJ, Scheiner SM eds). Oxford University Press, Oxford, NY, USA, pp. 31-49.
CrossRef | Gscholar
(61)
Tomar S, Thakur S, Thapliyal N, Kanwal KS, Bhatt ID, Nautiyal S, Puri S (2024)
Understanding the influence of environmental factors on forest composition along the vertical gradient of Northwestern Himalaya. Trees, Forests and People 17: 100631.
CrossRef | Gscholar
(62)
Torun P, Altunel AO (2020)
Effects of environmental factors and forest management on landscape-scale forest storm damage in Turkey. Annals of Forest Science 77: 39.
CrossRef | Gscholar
(63)
Vančura K, Simková M, Vacek Z, Vacek S, Gallo J, Simunek V, Podrázsky V, Stefančík I, Hájek V, Prokupková A, Králíček I (2022)
Effects of environmental factors and management on dynamics of mixed calcareous forests under climate change in Central European lowlands. Dendrobiology 87: 79-100.
CrossRef | Gscholar
(64)
White TL, Adams WT, Neale DB (2007)
Forest Genetics. CABI Publishing, USA, pp. 682.
CrossRef | Gscholar
(65)
Zhang SY, Yu Q, Chauret G, Koubaa A (2003)
Selection for both growth and wood properties in hybrid poplar clones. Forest Science 49 (6): 1-8.
CrossRef | Gscholar
(66)
Zhang J, Cardoso FCG, Zhu H, Cheuk ML, Fischer GA, Gale SW (2025)
Temporal shifts in the importance of environmental factors and management interventions among species in the early stages of forest restoration. Journal of Forestry Research 36 (1): 543.
CrossRef | Gscholar
(67)
Zobel B (1964)
Amélioration des arbres forestiers pour les qualités du bois [Improvement of forest trees for wood qualities]. Unasylva 73-74: 89-103. [in French]
Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info