*
 

iForest - Biogeosciences and Forestry

*

Seedling emergence capacity and morphological traits are under strong genetic control in the resin tree Pinus oocarpa

Valerio Velasco-García Mario (1), Liliana Muñoz-Gutiérrez (1)   , Gabriel Martínez-Cantera (2)

iForest - Biogeosciences and Forestry, Volume 17, Issue 4, Pages 245-251 (2024)
doi: https://doi.org/10.3832/ifor4397-017
Published: Aug 16, 2024 - Copyright © 2024 SISEF

Research Articles


Pinus oocarpa is a widely distributed species essential for resin production in Mexico, where demand surpasses supply. This study aimed to identify differences and variation levels of seedling emergence capacity and morphological traits in resin-producing high-yield P. oocarpa trees and estimate their genetic control. Seeds from 72 open-pollinated families were planted using a randomized complete block experimental design. Differences between families were determined and pooled using cluster analysis. We recorded wide differences in seed emergence capacity and morphological traits (cotyledon number and length, and hypocotyl length), allowing to establish three family groups. We also calculated the contribution of the variation sources to the total variance and genetic parameters involved. Our data evidenced high genetic control for all tested variables. We found a moderate and positive genetic correlation between cotyledon length, cotyledon number, and hypocotyl length. We also found a high negative genetic correlation between emergence capacity and hypocotyl length. At the phenotypic level, we found a high and significant correlation between cotyledon length and number. Grouping P. oocarpa into families should aid decision-making for sexual propagation since a high propagation capacity of the high-yield trees is essential for genetic improvement programs. Moreover, we demonstrate that the heritability of the emergence capacity and other morphological traits is high; these traits can be useful for the early selection of high-yield families.

  Keywords


Egg-cone pine, Cotyledons, Genetic Control, Genetic Correlation, Genetic Variation, Heritability

Authors’ address

(1)
Valerio Velasco-García Mario 0000-0001-8347-0523
Liliana Muñoz-Gutiérrez 0000-0001-5207-7665
National Institute on Forestry, Agriculture and Livestock Research, Progreso 5, Barrio de Santa Catarina, Coyoacán, 04010 Mexico City (Mexico)
(2)
Gabriel Martínez-Cantera
Protector of Forests of the State of Mexico, Rancho Guadalupe Manzana 009, 52148 Llano Grande, State of Mexico (Mexico)

Corresponding author

 
Liliana Muñoz-Gutiérrez
gutierrez.liliana@inifap.gob.mx

Citation

Velasco-García Mario V, Muñoz-Gutiérrez L, Martínez-Cantera G (2024). Seedling emergence capacity and morphological traits are under strong genetic control in the resin tree Pinus oocarpa. iForest 17: 245-251. - doi: 10.3832/ifor4397-017

Academic Editor

Claudia Cocozza

Paper history

Received: Jun 01, 2023
Accepted: Mar 27, 2024

First online: Aug 16, 2024
Publication Date: Aug 31, 2024
Publication Time: 4.73 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 445
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 272
Abstract Page Views: 72
PDF Downloads: 94
Citation/Reference Downloads: 0
XML Downloads: 7

Web Metrics
Days since publication: 8
Overall contacts: 445
Avg. contacts per week: 389.38

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Abad-Fitz I, Vázquez-Lobo A, Blancas J, Casas A, Sierra-Huelsz JA, Martínez-Garza C, Alcalá RE, Beltrán-Rodríguez L (2022)
Can resin extraction have an effect on the reproductive biology in burseraceae species? A global analysis. Trees, Forests and People 10: 100353.
CrossRef | Gscholar
(2)
Aragón PRD, Rodríguez OG, Vargas HJJ, Enríquez del Valle JR, Hernández HA, Campos AGV (2020)
Selección fenotípica y características reproductivas de Pinus pseudostrobus var. oaxacana (Mirov) S. G. Harrison. [Phenotype selection and reproductive characteristics of Pinus pseudostrobus var. oaxacana (Mirov) S.G. Harrison]. Revista Mexicana de Ciencias Forestales 11 (59): 118-140. [in Spanish]
CrossRef | Gscholar
(3)
Capilla DE, López UJ, Jiménez CM, Rebolledo CV (2021)
Reproductive characteristics and seed quality in fragmented populations of Pinus chiapensis (Martínez) Andresen. Revista Fitotecnia Mexicana 44 (2): 211-219.
CrossRef | Gscholar
(4)
Castilleja SP, Delgado VP, Sáenz RC, Herrerías DY (2016)
Reproductive success and inbreeding differ in fragmented populations of Pinus rzedowskii and Pinus ayacahuite var. veitchii, two endemic Mexican pines under threat. Forests 7 (8): 178.
CrossRef | Gscholar
(5)
Chaisurisri K, Edwards DGW, El-Kasaby YA (1992)
Genetic control of seed size and germination in sitka spruce. Silvae Genetica 41: 348-55.
CrossRef | Gscholar
(6)
CONAFOR (2013)
La producción de resina de pino en México [Pine resin production in Mexico]. Comisión Nacional Forestal CONAFOR. Zapopan, Jalisco, México, pp. 15. [in Spanish]
Online | Gscholar
(7)
Conover WJ (2012)
The rank transformation - An easy and intuitive way to connect many nonparametric methods to their parametric counterparts for seamless teaching introductory statistics courses. WIREs Computational Statistics 4: 432-438.
CrossRef | Gscholar
(8)
Cornelius J (1994)
Heritabilites and additive genetic coefficients of variation in forest trees. Canadian Journal of Forest Research 24: 372-379.
CrossRef | Gscholar
(9)
Crookston N (2006)
Research on forest climate change: predicted effects of global warming on forests and plant climate relationships in western North America and Mexico. VirginiaTech, Blacksburg, VA, USA, web site.
Online | Gscholar
(10)
Dvorak WS, Gutiérrez EA, Osorio LF, Hoodge GR, Brawner JT (2000)
Pinus oocarpa. In: “Conservation and Testing of Tropical and Subtropical Forest by the CAMCORE Cooperative” (Dvorak WS, Hodge GR, Romero JL, Woodbridge WC eds). Raleigh, NC, USA, pp. 128-147.
Online | Gscholar
(11)
Escobar-Sandoval MC, Vargas-Hernandez JJ, López-Upton J, Espinosa-Zaragoza S, Borja-De la Rosa A (2018)
Genetic parameters for wood quality, growth and branching traits in Pinus patula. Madera y Bosques 24(2): e2421595.
CrossRef | Gscholar
(12)
Eshete A, Teketay D, Lemenih M, Bongers F (2012)
Effects of resin tapping and tree size on the purity, germination and storage behavior of Boswellia papyrifera (Del.) Hochst. seeds from Metema District, northwestern Ethiopia. Forest Ecology and Management 269: 31-36.
CrossRef | Gscholar
(13)
Fabián PI, Sáenz RC, Cruz De LJ, Martínez TM, Sánchez VNM (2020)
Growth trait genetic parameters in a progeny trial of Pinus oocarpa. Madera y Bosques 26 (3): e2632014.
CrossRef | Gscholar
(14)
Fabián PI, Sáenz RC, Cruz De LJ, Martínez TM, Sánchez VNM, Terrazas T (2021)
Heritability and characteristics of resin ducts in Pinus oocarpa stems in Michoacán, Mexico. IAWA Journal 42 (3): 258-278.
CrossRef | Gscholar
(15)
Falconer DS (2017)
Introduction to quantitative genetics. Forgotten Books, San Francisco, USA, pp. 192.
Gscholar
(16)
Falconer DS, Mackay TF (1996)
Introduction to quantitative genetics. ACRIBIA S.A., San Francisco, USA, pp. 166.
Gscholar
(17)
Gómez JDM, Ramírez HC, Jasso MJ, López UJ (2010)
Variación en características reproductivas y germinación de semillas de Pinus leiophylla Schiede ex Schltdl. and Cham. [Variation in reproductive traits and germination of Pinus leiophylla Schiede ex Schltdl. and Cham]. Revista Fitotecnia Mexicana 33 (4): 297-304. [in Spanish]
Online | Gscholar
(18)
Greaves A (1982)
Pinus oocarpa. Forestry Abstracts 43 (9): 503-532.
Online | Gscholar
(19)
Gutiérrez VBN, Flores MA (2019)
Pattern and magnitude of the variation of the wood density in seed production stands of Pinus oocarpa. Madera y Bosques 25 (3): e2531615.
CrossRef | Gscholar
(20)
INEGI (2007)
Carta edafológica 1:250.000 Serie II E14-4 [Soil chart 1:250.000 Series II E14-4]. Instituto Nacional de Estadística y Geografía - INEGI, Altamirano, México. [in Spanish]
Online | Gscholar
(21)
Juárez AA, López UJ, Vargas HJJ, Sáenz RC (2006)
Geographic variation in germination and initial seedling growth of Pseudotsuga menziesii of México. Agrociencia 40: 783-792.
Online | Gscholar
(22)
Kaur A, Monga R, Bhardwaj DR, Sharma J (2022)
Estimation of genetic parameters of Pinus wallichiana seedlings in the nursery. International Journal of Bio-resources and Stress Management 13 (6): 578-585.
CrossRef | Gscholar
(23)
López LB, Gálvez AP, Calleja PB, Méndez GJ, Ríos CJM (2018)
Organic substrates in germination and growth of Pinus ayacahuite var. veitchii (Roezl) Shaw at the nursery. Revista Mexicana de Ciencias Forestales 9 (49): 110-124.
CrossRef | Gscholar
(24)
López UJ, Mendoza HAJ, Jaso MJ, Vargas HJJ, Gómez GA (2000)
Variación morfológica de plántulas e influencia del pH del agua de riego en doce poblaciones de Pinus greggii Engelm. [Morphological variation of seedlings and influence of the pH irrigation water in twelve populations of Pinus greggii Engelm]. Madera y Bosques 6 (2): 81-94.
CrossRef | Gscholar
(25)
Núñez CK, Escobedo LD (2011)
Uso correcto del análisis clúster en la caracterización de germoplasma vegetal [Proper use of the cluster analysis in plant germplasm characterization]. Agronomía Mesoamericana 22 (2): 415-427.
CrossRef | Gscholar
(26)
Muñoz-Flores HJ, Sáenz Reyes JT, Gómez Cárdenas M, Hernández-Ramos J, Barrera R (2023)
Variación morfológica en semillas de Pinus pseudostrobus Lindl. altamente productores de resina. [Morphological variation in highly resin-producing seeds of Pinus pseudostrobus Lindl.]. Acta Universitaria 33: e3549.
CrossRef | Gscholar
(27)
OFI-CATIE (2003)
Pinus oocarpa Shiede ex Schltdl. In: “Árboles de Centroamérica: Un Manual para Extensionistas” [Trees of Central America: a manual for extensionists] (Cordero J, Boshier D eds). Oxford Forestry Institute -Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica, pp. 767-770. [in Spanish]
Gscholar
(28)
Rawat K, Bakshi M (2011)
Provenance variation in cone, seed and seedling characteristics in natural populations of Pinus wallichiana A.B. Jacks (Blue Pine) in India. Annals of Forest Research 54 (1): 39-55.
Online | Gscholar
(29)
Reyes EGI, López UJ, Velasco GMV, Jiménez CM (2022)
Genetic parameters of a progeny trial of Pinus greggii Engelmann ex Parlatore var. australis Donahue and Lopez in the Mixteca Alta of Oaxaca, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 28 (1): 75-88.
CrossRef | Gscholar
(30)
Rivera VJC (2012)
Germinación de las semillas de Pinus oocarpa Schiede utilizando riego con agua residual sedimentada [Germination of Pinus oocarpa Schiede seeds using irrigation with settled residual water]. Revista Científica 7 (1): 36-40. [in Spanish]
Gscholar
(31)
Romero SME, Velasco GMV, Perez MR, Velasco BE, Gonzalez HA (2022)
Different modelling approaches to determine suitable areas for conserving egg-cone pine (Pinus oocarpa Schiede) plus trees in the central part of Mexico. Forests 13: 2112.
CrossRef | Gscholar
(32)
Sáenz RC, Viveros VH, Guzmán RRR (2004)
Altitudinal genetic variation among P. oocarpa populations on Michoacan, Western Mexico. Preliminary results from a nursery test. Forest Genetics 11 (3-4): 343-349.
Online | Gscholar
(33)
SAS Institute (2016)
Statistical analysis software (SAS) user’s guide (version 9.4). SAS Institute, Inc., Cary, NC, USA.
Gscholar
(34)
SEMARNAT (2021)
Anuario estadístico de la producción forestal 2018 [Forest production statistical yearbook 2018]. Secretaría del Medio Ambiente y Recursos Naturales SEMARNAT, Ciudad de México, México, pp. 136. [in Spanish]
Online | Gscholar
(35)
Stanfield WD (1971)
Genetics. Theory and 400 solved problems. McGraw Hill, San Francisco Washington, DC, USA, pp. 215.
Gscholar
(36)
Ulusan MD, Bilir N (2008)
Broad-sense heritability for seedling characters and its importance for breeding in Scots pine. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi 3 (2): 133-138.
Gscholar
(37)
Viveros VH, Sáenz RC, Guzmán RRR (2005)
Control genético de características de crecimiento en vivero de plántulas de Pinus oocarpa [Genetic control of Pinus oocarpa seedlings growth traits in the nursery]. Revista Fitotecnia Mexicana 28 (4): 333-338. [in Spanish]
CrossRef | Gscholar
(38)
White TL, Hodge GR (1989)
Concepts of progeny test analysis. In: “Predicting Breeding Values with Applications in Forest Tree Improvement” (White TL, Hodge GR eds). Forestry Sciences, Springer, Dordrecht, Netherlands, pp. 48-61.
CrossRef | Gscholar
(39)
White TL, Adams WT, Neale DB (2007)
Forest genetics. CABI Publishing Series, California, USA, pp. 285.
Online | Gscholar
(40)
Zobel BJ, Talbert JT (1984)
Quantitive aspects of forest genetic improvement. In: “Applied Forest Tree Improvement” (Zobel BJ, Talbert JT eds). John Wiley and Sons, Inc., New York, USA, pp. 139-153.
Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info