*
 

iForest - Biogeosciences and Forestry

*

Terrestrial laser scanning as a tool for assessing tree growth

Jonathan Sheppard (1)   , Christopher Morhart (1), Jan Hackenberg (1-2-3), Heinrich Spiecker (1)

iForest - Biogeosciences and Forestry, Volume 10, Issue 1, Pages 172-179 (2016)
doi: https://doi.org/10.3832/ifor2138-009
Published: Nov 19, 2016 - Copyright © 2016 SISEF

Research Articles


Terrestrial laser scanning (TLS) technology is a powerful tool for assessing tree growth based on time series analysis, as it allows a level of scrutiny not achievable using established destructive techniques. We applied TLS technology to 21 wild cherry trees grown in a research plot near Breisach (southern Germany) in order to build quantitative structure models (QSMs) for each tree. Scans were carried out over three subsequent years (2012-2014), so that three QSMs per each tree were constructed. Using the above approach, we were able to assess the annual growth of the individual wild cherry trees in terms of diameter and height, stem and branch volume, and the merchantable timber fraction. In addition, the growth of single branches of sample trees was detected and quantified. The availability of QSMs based on TLS-derived data allowed the accurate determination of crown length and width, as well as the volume reduction as the result of the tree pruning applied after the first scan (2012). The aboveground biomass (AGB) was assessed for each tree based on the QSM-derived volume and published wood density values for wild cherry, and then compared with AGB values estimated with standard allometric methods, obtaining a very high correlation (r2adj = 0.941). We concluded that the proposed approach is an effective non-destructive technique to accurately assess the increase of tree biomass, and discuss its future application in the forestry sector.

  Keywords


TLS, Time Series Analysis, Prunus avium L., Wild Cherry, Simpletree, Quantitative Structure Models

Authors’ address

(1)
Jonathan Sheppard
Christopher Morhart
Jan Hackenberg
Heinrich Spiecker
Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg (Germany)
(2)
Jan Hackenberg
INRA, Centre de Nancy, Biogéochimie des Ecosystèmes Forestiers, Champenoux (France)
(3)
Jan Hackenberg
IGN, Laboratoire d’Inventaire Forestier, Nancy (France)

Corresponding author

Citation

Sheppard J, Morhart C, Hackenberg J, Spiecker H (2016). Terrestrial laser scanning as a tool for assessing tree growth. iForest 10: 172-179. - doi: 10.3832/ifor2138-009

Academic Editor

Chris Eastaugh

Paper history

Received: Jun 16, 2016
Accepted: Oct 06, 2016

First online: Nov 19, 2016
Publication Date: Feb 28, 2017
Publication Time: 1.47 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 42466
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 35337
Abstract Page Views: 2241
PDF Downloads: 3690
Citation/Reference Downloads: 65
XML Downloads: 1133

Web Metrics
Days since publication: 2686
Overall contacts: 42466
Avg. contacts per week: 110.67

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2017): 14
Average cites per year: 2.00

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Aiteanu F, Klein R (2014)
Hybrid tree reconstruction from inhomogeneous point clouds. The Visual Computer 30: 763-771.
CrossRef | Gscholar
(2)
Akerblom M, Raumonen P, Kaasalainen M, Casella E (2015)
Analysis of geometric primitives in quantitative structure models of tree stems. Remote Sensing 7: 4581-4603.
CrossRef | Gscholar
(3)
Aschoff T, Spiecker H (2004)
Algorithms for the automatic detection of trees in laser scanner data. In: “International Archives of Photogrammetry”. Remote Sensing and Spatial Information Sciences, XXXVI, 8/W2, pp. 71-75. -
Online | Gscholar
(4)
Assmann E (1970)
The principles of forest yield study. Pergamon Press, Oxford, UK, pp. 506.
Gscholar
(5)
Bayer D, Seifert S, Pretzsch H (2013)
Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27: 1035-1047.
CrossRef | Gscholar
(6)
Belton D, Moncrieff S, Chapman J (2013)
Processing tree point clouds using Gaussian Mixture Models. In: Proceedings of the “ISPRS Workshop Laser Scanning 2013” (Scaioni M, Lindenbergh S, Oude Elberink S, Schneider D, Pirotti F eds). Antalya (Turkey) 11-13 Nov 2013. ISPRS, pp. 43-48.
Online | Gscholar
(7)
Burkhart HE, Tomé M (2012)
Modeling forest trees and stands. Springer, Dordrecht, Heidelberg, New York, London, pp. 458.
Online | Gscholar
(8)
Calders K, Newnham G, Burt A, Murphy S, Raumonen P, Herold M, Culvenor DS, Avitabile V, Disney M, Armston J (2015)
Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution 6: 198-208.
CrossRef | Gscholar
(9)
Chave J, Coomes DA, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009)
Towards a worldwide wood economics spectrum. Ecology Letters 12 (4): 351-366.
CrossRef | Gscholar
(10)
Dassot M, Colin A, Santenoise P, Fournier M, Constant T (2012)
Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Computers and Electronics in Agriculture 89: 86-93.
CrossRef | Gscholar
(11)
Eysn L, Pfeifer N, Ressl C, Hollaus M, Grafl A, Morsdorf F (2013)
A practical approach for extracting tree models in forest environments based on equirectangular projections of terrestrial laser scans. Remote Sensing 5: 5424-5448.
CrossRef | Gscholar
(12)
Fernández-Sarría A, Velázquez-Martí B, Sajdak M, Martínez L, Estornell J (2013)
Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Computers and Electronics in Agriculture 93: 90-97.
CrossRef | Gscholar
(13)
Fischler MA, Bolles RC (1981)
Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24: 381-395.
CrossRef | Gscholar
(14)
Gorte B, Winterhalder D (2004)
Reconstruction of laser-scanned trees using filter operations in the 3D-raster domain. In: Proceedings of the ISPRS working group VIII/2 “Laser-Scanners for Forest and Landscape Assessment” (Thies M, Koch B, Spiecker H, Weinacker H eds). Freiburg (Germany) 3-6 Oct 2004. ISPRS International Archives, vol. XXXVI-8/W2, pp. 39-44. -
Online | Gscholar
(15)
Hackenberg J, Morhart CD, Sheppard JP, Spiecker H, Disney M (2014)
Highly accurate tree models derived from terrestrial laser scan data: a method description. Forests 5: 1069-1105.
CrossRef | Gscholar
(16)
Hackenberg J, Spiecker H, Calders K, Disney M, Raumonen P (2015a)
SimpleTree - an efficient open source tool to build tree models from TLS clouds. Forests 6: 4245-4294.
CrossRef | Gscholar
(17)
Hackenberg J, Wassenberg M, Spiecker H, Sun D (2015b)
Non destructive method for biomass prediction combining TLS derived tree volume and wood density. Forests 6: 1274-1300.
CrossRef | Gscholar
(18)
Jayaratna S (2009)
Baumrekonstruktion aus 3D-Punktwolken [Tree reconstruction from 3D point clouds]. Diploma Thesis, Institut für Informatik, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, pp. 73. [in German]
Gscholar
(19)
Joyce PM, Huss J, McCarthy R, Pfeifer A, Hendrick E (1998)
Growing broadleaves: silvicultural guidelines for ash, sycamore, wild cherry, beech and oak in Ireland. COFORD, Dublin, pp. 144.
Gscholar
(20)
Kaasalainen S, Krooks A, Liski J, Raumonen P, Kaartinen H, Kaasalainen M, Puttonen E, Anttila K, Mäkipää R (2014)
Change detection of tree biomass with terrestrial laser scanning and quantitative structure modelling. Remote Sensing 6: 3906-3922.
CrossRef | Gscholar
(21)
Kankare V, Joensuu M, Vauhkonen J, Holopainen M, Tanhuanpää T, Vastaranta M, Hyyppä J, Hyyppä H, Alho P, Rikala J, Sipi M (2014)
Estimation of the timber quality of Scots pine with terrestrial laser scanning. Forests 5: 1879.
CrossRef | Gscholar
(22)
Kretschmer U, Kirchner N, Morhart CD, Spiecker H (2013)
A new approach to assessing tree stem quality characteristics using terrestrial laser scans. Silva Fennica 47 (5): article id 1071.
CrossRef | Gscholar
(23)
Liang X, Hyyppä J, Kaartinen H, Holopainen M, Melkas T (2012)
Detecting changes in forest structure over time with bi-temporal terrestrial laser scanning data. ISPRS International Journal of Geo-Information 1: 242-255.
CrossRef | Gscholar
(24)
Liang X, Kankare V, Yu X, Hyyppä J, Holopainen M (2014)
Automated stem curve measurement using terrestrial laser scanning. IEEE Transactions on Geoscience and Remote Sensing 52: 1739-1748.
CrossRef | Gscholar
(25)
Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, Haggrén H, Yu X, Kaartinen H, Jaakkola A, Guan F, Holopainen M, Vastaranta M (2016)
Terrestrial laser scanning in forest inventories. Theme issue: “State-of-the-art in photogrammetry, remote sensing and spatial information science” 115: 63-77.
CrossRef | Gscholar
(26)
Lim K, Treitz P, Wulder MA, St-Onge B, Flood M (2003)
LiDAR remote sensing of forest structure. Progress in Physical Geography 27: 88-106.
CrossRef | Gscholar
(27)
Lodhiyal LS, Singh RP, Singh SP (1995)
Structure and function of an age series of poplar plantationsin central Himalaya: I. Dry matter dynamics. Annals of Botany 76 (2): 191-199.
CrossRef | Gscholar
(28)
Metz J, Seidel D, Schall P, Scheffer D, Schulze E, Ammer C (2013)
Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. Forest Ecology and Management 310: 275-288.
CrossRef | Gscholar
(29)
Moorthy I, Miller JR, Berni JAJ, Zarco-Tejada PJ, Hu B, Chen J (2011)
Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology 151: 204-214.
CrossRef | Gscholar
(30)
Morhart CD, Sheppard JP, Spiecker H (2013)
Above ground leafless woody biomass and nutrient content within different compartments of a P. maximowicii × P. trichocarpa poplar clone. Forests 4: 471-487.
CrossRef | Gscholar
(31)
Morhart CD, Sheppard JP, Schuler JK, Spiecker H (2016)
Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.) - a case study. Forest Ecosystems 3: 1-15.
CrossRef | Gscholar
(32)
Newnham GJ, Armston JD, Calders K, Disney MI, Lovell JL, Schaaf CB, Strahler AH, Danson FM (2015)
Terrestrial laser scanning for plot-scale forest measurement. Current Forestry Reports 1: 239-251.
CrossRef | Gscholar
(33)
Pfeifer N, Gorte B, Winterhalder D (2004)
Automatic reconstruction of single trees from terrestrial laser scan data. In: Proceedings of the 20th ISPRS Congress “Geo-Imagery Bridging Continents” (Altan MO ed). Istanbul (Turkey) 12-23 Jul 2004. IASPR, vol.XXXV, pp. 114-119.
Online | Gscholar
(34)
Pretzsch H (2002)
Grundlagen der Waldwachstumsforschung [Principles of forest growth research]. Parey, Berlin, Germany, pp. 23.
Gscholar
(35)
Pryor SN (1988)
The silviculture and yield of wild cherry. Forestry Commission bulletin, vol 75. Her Majesty’s Stationery Office, London, UK, pp. 23.
Gscholar
(36)
Raumonen P, Kaasalainen M, Akerblom M, Kaasalainen S, Kaartinen H, Vastaranta M, Holopainen M, Disney M, Lewis P (2013)
Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing 5: 491-520.
CrossRef | Gscholar
(37)
Roberts JW, Tesfamichael S, Gebreslasie M, Van Aardt J, Ahmed FB (2007)
Forest structural assessment using remote sensing technologies: an overview of the current state of the art. Southern Hemisphere Forestry Journal 69: 183-203.
CrossRef | Gscholar
(38)
Rusu RB, Cousins S (2011)
3D is here: Point Cloud Library (PCL). In: International Conference on Robotics and Automation (ICRA). Shanghai (China) 9-13 May 2011. IEEE Xplore Digital Library, pp. 1-4.
Online | Gscholar
(39)
Schuler J (2011)
Astenwicklung und Astreinigung in Abhängigkeit vom Dickenwachstum bei Buche (Fagus sylvatica L.) und Eiche (Quercus petraea (Matt.) Liebl.; Quercus robur L.) [Branch development and natural pruning processes related to diameter growth of beech (Fagus sylvatica L.) and oak (Quercus petraea (Matt.) Liebl.; Quercus robur L.)]. Doctoral Dissertation, Institut für Waldwachstum, Albert-Ludwigs-Universität Freiburg i. Br., Freiburg, Germany, pp. 285. [in German]
Online | Gscholar
(40)
Sheppard JP, Urmes M, Morhart CD, Spiecker H (2016)
Factors affecting branch wound occlusion and associated decay following pruning - a case study with wild cherry (Prunus avium L.). Annals of Silvicultural Research 40 (2): 16-22.
Gscholar
(41)
Spiecker M (1994)
Wachstum und Erziehung wertvoller Waldkirschen [Growth and tending of valuable wild cherries]. Mitteilungen der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg Band 181, pp. 92. [in German]
Gscholar
(42)
Springmann S, Rogers R, Spiecker H (2011)
Impact of artificial pruning on growth and secondary shoot development of wild cherry (Prunus avium L.). Forest Ecology and Management 261: 764-769.
CrossRef | Gscholar
(43)
Srinivasan S, Popescu SC, Eriksson M, Sheridan RD, Ku N (2014)
Multi-temporal terrestrial laser scanning for modeling tree biomass change. Forest Ecology and Management 318: 304-317.
CrossRef | Gscholar
(44)
Thies M, Pfeifer N, Winterhalder D, Gorte B (2004)
Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scandinavian Journal of Forest Research: 571-581.
CrossRef | Gscholar
(45)
Thies M, Hein S, Spiecker H (2009)
Results of a questionnaire on management of valuable broadleaved forests in Europe. In: “Valuable broadleaved forests in Europe” (Spiecker H, Hein S, Makkonen-Spiecker K, Thies M eds). Brill, Leiden, Netherlands and Boston, MS, USA, pp. 27-42.
Gscholar
(46)
Van Laar A, Akça A (1997)
Forest mensuration (1st edn). Cuvillier, Göttingen, Germany, pp. 418.
Gscholar
(47)
Van Leeuwen M, Nieuwenhuis M (2010)
Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research 129: 749-770.
CrossRef | Gscholar
(48)
Van Leeuwen M, Hilker T, Coops NC, Frazer G, Wulder MA, Newnham GJ, Culvenor DS (2011)
Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review. Forest Ecology and Management 261: 1467-1478.
CrossRef | Gscholar
(49)
Wassenberg M, Chiu H, Guo W, Spiecker H (2015)
Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees 29: 551-561.
CrossRef | Gscholar
(50)
Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009)
Data from: “Towards a worldwide wood economics spectrum”. Dryad Digital Repository, Website.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info