Patterns of fine-scale spatial distribution of multilocus genotypes can provide valuable insights into the biology of forest tree species. Here we tested for the existence of spatial genetic structure (SGS) in a four-oak-species forest with contrasting species abundances and hybridization rates. A total of 483 adult trees were mapped over 8.6 ha and genotyped using 10 highly polymorphic genomic regions. A weak but significant SGS was observed in each of the four oak species, with Quercus frainetto, the species with the lowest density in the sampling plot, exhibiting the strongest SGS. The values of the Sp statistic were 0.0033, 0.0035, 0.0042, and 0.0098 for Q. petraea, Q. robur, Q. pubescens, and Q. frainetto, respectively. The spatial correlogram of the total population was significantly different when hybrids were removed from the analysis, which suggests that hybridization influenced the SGS. Interspecific SGSs were significantly correlated with the rates of hybridization. Implications of the obtained results for the conservation and management of forest genetic resources are discussed.
Keywords
, , , ,
Citation
Curtu AL, Craciunesc I, Enescu CM, Vidalis A, Sofletea N (2015). Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest. iForest 8: 324-332. - doi: 10.3832/ifor1150-007
Academic Editor
Andrea Piotti
Paper history
Received: Oct 14, 2013
Accepted: Aug 23, 2014
First online: Sep 05, 2014
Publication Date: Jun 01, 2015
Publication Time: 0.43 months
© SISEF - The Italian Society of Silviculture and Forest Ecology 2015
Open Access
This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Breakdown by View Type
(Waiting for server response...)
Article Usage
Total Article Views: 56175
(from publication date up to now)
Breakdown by View Type
HTML Page Views: 47154
Abstract Page Views: 3169
PDF Downloads: 4414
Citation/Reference Downloads: 36
XML Downloads: 1402
Web Metrics
Days since publication: 3730
Overall contacts: 56175
Avg. contacts per week: 105.42
Article Citations
Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)
Total number of cites (since 2015): 25
Average cites per year: 2.78
Publication Metrics
by Dimensions ©
Articles citing this article
List of the papers citing this article based on CrossRef Cited-by.
(1)
Bacilieri R, Labbe T, Kremer A (1994)Intraspecific genetic structure in a mixed population of
Quercus petraea (Matt.) Liebl. and
Q. robur L. Heredity 73 (2): 130-141.
CrossRef |
Gscholar
(2)
Berg EE, Hamrick JL (1995)Fine-scale genetic-structure of a Turkey oak forest. Evolution 49 (1): 110-120.
CrossRef |
Gscholar
(3)
Born C, Hardy OJ, Chevallier M-H, Ossari S, Atteke C, Wickings EJ, Hossaert-Mckey M (2008)Small-scale spatial genetic structure in the Central African rainforest tree species
Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Molecular Ecology 17 (8): 2041-2050.
CrossRef |
Gscholar
(4)
Burger WC (1975)The species concept in
Quercus. Taxon 24: 45-50.
CrossRef |
Gscholar
(5)
Carlsson J (2008)Effects of microsatellite null alleles on assignment testing. Journal of Heredity 99 (6): 616-623.
CrossRef |
Gscholar
(6)
Cavers S, Degen B, Caron H, Lemes MR, Margis R, Salgueiro F, Lowe AJ (2005)Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95(4): 281-289.
CrossRef |
Gscholar
(7)
Chung MY, Epperson BK, Gi Chung M (2003)Genetic structure of age classes in
Camellia japonica (Theaceae). Evolution 57(1): 62-73.
CrossRef |
Gscholar
(8)
Cottrell JE, Munro RC, Tabbener HE, Milner AD, Forrest GI, Lowe AJ (2003)Comparison of fine-scale genetic structure using nuclear microsatellites within two British oakwoods differing in population history. Forest Ecology and Management 176 (1-3): 287-303.
CrossRef |
Gscholar
(9)
Curtu AL, Gailing O, Finkeldey R (2007a)Evidence for hybridization and introgression within a species-rich oak (
Quercus spp.) community. BMC Evolutionary Biology 7 (1): 218.
CrossRef |
Gscholar
(10)
Curtu AL, Gailing O, Leinemann L, Finkeldey R (2007b)Genetic variation and differentiation within a natural community of five oak species (
Quercus spp.). Plant Biology 9(01): 116-126.
CrossRef |
Gscholar
(11)
Curtu AL, Gailing O, Finkeldey R (2009)Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evolutionary Biology 9 (1): 284.
CrossRef |
Gscholar
(12)
Dounavi A, Koutsias N, Ziehe M, Hattemer H (2010)Spatial patterns and genetic structures within beech populations (
Fagus sylvatica L.) of forked and non-forked individuals. European Journal of Forest Research 129 (6): 1191-1202.
CrossRef |
Gscholar
(13)
Durand J, Bodenes C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea P, Herran A, Ikaran Z, Cabane C, Ueno S, Alberto F, Dumoulin P-Y, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010)A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11 (1): 570.
CrossRef |
Gscholar
(14)
Earl DA (2011)Structure harvester v0.6. Web site.
Online |
Gscholar
(15)
Epperson BK (1992)Spatial structure of genetic variation within populations of forest trees. New Forests 6: 257-278.
CrossRef |
Gscholar
(16)
Evanno G, Regnaut S, Goudet J (2005)Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14 (8): 2611-2620.
CrossRef |
Gscholar
(17)
Guichoux E, Lagache L, Wagner S, Leger P, Petit RJ (2011)Two highly validated multiplexes (12-plex and 8-plex) for species delimitation and parentage analysis in oaks (
Quercus spp.). Molecular Ecology Resources 11(3): 578-585.
CrossRef |
Gscholar
(18)
Hampe A, El Masri L, Petit RJ (2010)Origin of spatial genetic structure in an expanding oak population. Molecular Ecology 19(3): 459-471.
CrossRef |
Gscholar
(19)
Hardy OJ, Vekemans X (2002)SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2 (4): 618-620.
CrossRef |
Gscholar
(20)
Hardy OJ (2009)How fat is the tail? Heredity 103 (6): 437-438.
CrossRef |
Gscholar
(21)
Hoebee SE, Menn C, Rotach P, Finkeldey R, Holderegger R (2006)Spatial genetic structure of
Sorbus torminalis: the extent of clonal reproduction in natural stands of a rare tree species with a scattered distribution. Forest Ecology and Management 226 (1-3): 1-8.
CrossRef |
Gscholar
(22)
Jensen JS, Olrik DC, Siegismund HR, Lowe AJ (2003)Population genetics and spatial autocorrelation in an unmanaged stand of
Quercus petraea in Denmark. Scandinavian Journal of Forest Research 18 (4): 295-304.
CrossRef |
Gscholar
(23)
Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ (2001)Spatial population genetic structure in
Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55 (8): 1560-1568.
CrossRef |
Gscholar
(24)
Kampfer S, Lexer C, Glössl J, Steinkellner H (1998)Characterization of (GA)n microsatellite loci from
Quercus robur. Hereditas 129: 183-186.
CrossRef |
Gscholar
(25)
Lagache L, Klein EK, Guichoux E, Petit RJ (2013)Fine-scale environmental control of hybridization in oaks. Molecular Ecology 22 (2): 423-436.
CrossRef |
Gscholar
(26)
Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009)Species relative abundance and direction of introgression in oaks. Molecular Ecology 18 (10): 2228-2242.
CrossRef |
Gscholar
(27)
Loiselle BA, Sork VL, Nason J, Graham C (1995)Spatial genetic structure of a tropical understory shrub,
Psychotria officinalis (Rubiaceae). American Journal of Botany 82 (11): 1420-1425.
CrossRef |
Gscholar
(28)
Luna R, Epperson BK, Oyama K (2005)Spatial genetic structure of two sympatric neotropical palms with contrasting life histories. Heredity 95 (4): 298-305.
CrossRef |
Gscholar
(29)
Marquardt PE, Epperson BK (2004)Spatial and population genetic structure of microsatellites in white pine. Molecular Ecology 13 (11): 3305-3315.
CrossRef |
Gscholar
(30)
Marquardt PE, Echt CS, Epperson BK, Pubanz DM (2007)Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Canadian Journal of Forest Research 37 (12): 2652-2662.
CrossRef |
Gscholar
(31)
Neophytou C, Aravanopoulos F, Fink S, Dounavi A (2011)Interfertile oaks in an island environment. II. Limited hybridization between
Quercus alnifolia Poech and
Q. coccifera L. in a mixed stand. European Journal of Forest Research 130 (4): 623-635.
CrossRef |
Gscholar
(32)
Paffetti D, Travaglini D, Buonamici A, Nocentini S, Vendramin GG, Giannini R, Vettori C (2012)The influence of forest management on beech (
Fagus sylvatica L.) stand structure and genetic diversity. Forest Ecology and Management 284(0): 34-44.
CrossRef |
Gscholar
(33)
Peakall R, Smouse PE (2006)GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6 (1): 288-295.
CrossRef |
Gscholar
(34)
Petit R, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl U, van Dam B, Deans D, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002)Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156: 49-74.
CrossRef |
Gscholar
(35)
Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2004)Hybridization as a mechanism of invasion in oaks. New Phytologist 161 (1): 151-164.
CrossRef |
Gscholar
(36)
Piotti A, Leonardi S, Heuertz M, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2013)Within-population genetic structure in beech (
Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure? PLoS ONE 8 (9): e73391.
CrossRef |
Gscholar
(37)
Pritchard JK, Stephens M, Donnelly P (2000)Inference of population structure using multilocus genotype data. Genetics 155 (2): 945-959.
Online |
Gscholar
(38)
Rajendra K (2011)Spatial dynamics of intraspecific genetic variation in European beech (
Fagus sylvatica L.), Georg-August University of Göttingen, Göttingen, Germany, pp. 125.
Gscholar
(39)
Rushton BS (1993)Natural hybridization within the genus
Quercus. Annales des Sciences Forestieres 50 (Suppl. 1): 73-90.
CrossRef |
Gscholar
(40)
Seehausen O, Takimoto G, Roy D, Jokela J (2008)Speciation reversal and biodiversity dynamics with hybridization in changing environments. Molecular Ecology 17 (1): 30-44.
CrossRef |
Gscholar
(41)
Smouse PE, Peakall R (1999)Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82 (5): 561-573.
CrossRef |
Gscholar
(42)
Smouse PE, Peakall ROD, Gonzales EVA (2008)A heterogeneity test for fine-scale genetic structure. Molecular Ecology 17 (14): 3389-3400.
CrossRef |
Gscholar
(43)
Sork VL, Davis FW, Smouse PE, Apsit VJ, Dyer RJ, Fernandez-M JF, Kuhn B (2002)Pollen movement in declining populations of California Valley oak,
Quercus lobata: where have all the fathers gone? Molecular Ecology 11(9): 1657-1668.
CrossRef |
Gscholar
(44)
Stanciu A (1995)Cercetari taxonomice, morfologice si ecologice privind hibrizii genului Quercus din Rezervatia Stiintifica Bejan-Deva, judetul Hunedoara [Research on the taxonomy, morphology and ecology of hybrids from genus Quercus in the Scientific Reserve Bejan-Deva, Hunedoara]. Facultatea de Silvicultura, Universitatea Transilvania Brasov, Brasov, Romania, pp. 140. [in Romanian]
Gscholar
(45)
Stanescu V, Sofletea N, Popescu O (1997)Flora forestiera lemnoasa a Romaniei [Woody forest flora of Romania]. Editura Ceres, Bucuresti, Romania, pp. 451. [in Romanian]
Gscholar
(46)
StatSoft (2008)STATISTICA for Windows. Software-System For Data Analysis, Tulsa, OK, USA.
Gscholar
(47)
Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997)Identification and characterization of (GA/CT)n- microsatellite loci from
Quercus petraea. Plant Molecular Biology 33: 1093-1096.
CrossRef |
Gscholar
(48)
Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glössl J, Kremer A (1998)Within-population genetic structure in
Quercus robur L. and
Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7: 317-328.
CrossRef |
Gscholar
(49)
Valbuena-Carabana M, Gonzalez-Martinez SC, Hardy OJ, Gil L (2007)Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Molecular Ecology 16 (6): 1207-1219.
CrossRef |
Gscholar
(50)
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004)Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4 (3): 535-538.
CrossRef |
Gscholar
(51)
Vekemans X, Hardy OJ (2004)New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13 (4): 921-935.
CrossRef |
Gscholar