iForest - Biogeosciences and Forestry


Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest

Alexandru Lucian Curtu (1)   , Iacob Craciunesc (1), Cristian Mihai Enescu (1-2), Amaryllis Vidalis (3), Nicolae Sofletea (1)

iForest - Biogeosciences and Forestry, Volume 8, Issue 3, Pages 324-332 (2015)
doi: https://doi.org/10.3832/ifor1150-007
Published: Sep 05, 2014 - Copyright © 2015 SISEF

Research Articles

Patterns of fine-scale spatial distribution of multilocus genotypes can provide valuable insights into the biology of forest tree species. Here we tested for the existence of spatial genetic structure (SGS) in a four-oak-species forest with contrasting species abundances and hybridization rates. A total of 483 adult trees were mapped over 8.6 ha and genotyped using 10 highly polymorphic genomic regions. A weak but significant SGS was observed in each of the four oak species, with Quercus frainetto, the species with the lowest density in the sampling plot, exhibiting the strongest SGS. The values of the Sp statistic were 0.0033, 0.0035, 0.0042, and 0.0098 for Q. petraea, Q. robur, Q. pubescens, and Q. frainetto, respectively. The spatial correlogram of the total population was significantly different when hybrids were removed from the analysis, which suggests that hybridization influenced the SGS. Interspecific SGSs were significantly correlated with the rates of hybridization. Implications of the obtained results for the conservation and management of forest genetic resources are discussed.


Spatial Genetic Structure, Quercus, Oak Species, Population Density, Hybridization

Authors’ address

Alexandru Lucian Curtu
Iacob Craciunesc
Cristian Mihai Enescu
Nicolae Sofletea
Department of Forest Sciences, Transilvania University of Brasov, Sirul Beethoven-1, 500123 Brasov (Romania)
Cristian Mihai Enescu
Department of Soil Sciences, University of Agronomic Sciences and Veterinary Medicine of Bucharest (Romania)
Amaryllis Vidalis
Umeå Plant Science Centre, Department of Ecology and Environmental Science, SE-901 87 Umeå (Sweden)

Corresponding author

Alexandru Lucian Curtu


Curtu AL, Craciunesc I, Enescu CM, Vidalis A, Sofletea N (2015). Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest. iForest 8: 324-332. - doi: 10.3832/ifor1150-007

Academic Editor

Andrea Piotti

Paper history

Received: Oct 14, 2013
Accepted: Aug 23, 2014

First online: Sep 05, 2014
Publication Date: Jun 01, 2015
Publication Time: 0.43 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 51599
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 43066
Abstract Page Views: 2850
PDF Downloads: 4289
Citation/Reference Downloads: 36
XML Downloads: 1358

Web Metrics
Days since publication: 3571
Overall contacts: 51599
Avg. contacts per week: 101.15

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2015): 25
Average cites per year: 2.78


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Bacilieri R, Labbe T, Kremer A (1994)
Intraspecific genetic structure in a mixed population of Quercus petraea (Matt.) Liebl. and Q. robur L. Heredity 73 (2): 130-141.
CrossRef | Gscholar
Berg EE, Hamrick JL (1995)
Fine-scale genetic-structure of a Turkey oak forest. Evolution 49 (1): 110-120.
CrossRef | Gscholar
Born C, Hardy OJ, Chevallier M-H, Ossari S, Atteke C, Wickings EJ, Hossaert-Mckey M (2008)
Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Molecular Ecology 17 (8): 2041-2050.
CrossRef | Gscholar
Burger WC (1975)
The species concept in Quercus. Taxon 24: 45-50.
CrossRef | Gscholar
Carlsson J (2008)
Effects of microsatellite null alleles on assignment testing. Journal of Heredity 99 (6): 616-623.
CrossRef | Gscholar
Cavers S, Degen B, Caron H, Lemes MR, Margis R, Salgueiro F, Lowe AJ (2005)
Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95(4): 281-289.
CrossRef | Gscholar
Chung MY, Epperson BK, Gi Chung M (2003)
Genetic structure of age classes in Camellia japonica (Theaceae). Evolution 57(1): 62-73.
CrossRef | Gscholar
Cottrell JE, Munro RC, Tabbener HE, Milner AD, Forrest GI, Lowe AJ (2003)
Comparison of fine-scale genetic structure using nuclear microsatellites within two British oakwoods differing in population history. Forest Ecology and Management 176 (1-3): 287-303.
CrossRef | Gscholar
Curtu AL, Gailing O, Finkeldey R (2007a)
Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology 7 (1): 218.
CrossRef | Gscholar
Curtu AL, Gailing O, Leinemann L, Finkeldey R (2007b)
Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biology 9(01): 116-126.
CrossRef | Gscholar
Curtu AL, Gailing O, Finkeldey R (2009)
Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evolutionary Biology 9 (1): 284.
CrossRef | Gscholar
Dounavi A, Koutsias N, Ziehe M, Hattemer H (2010)
Spatial patterns and genetic structures within beech populations (Fagus sylvatica L.) of forked and non-forked individuals. European Journal of Forest Research 129 (6): 1191-1202.
CrossRef | Gscholar
Durand J, Bodenes C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea P, Herran A, Ikaran Z, Cabane C, Ueno S, Alberto F, Dumoulin P-Y, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010)
A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11 (1): 570.
CrossRef | Gscholar
Earl DA (2011)
Structure harvester v0.6. Web site.
Online | Gscholar
Epperson BK (1992)
Spatial structure of genetic variation within populations of forest trees. New Forests 6: 257-278.
CrossRef | Gscholar
Evanno G, Regnaut S, Goudet J (2005)
Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14 (8): 2611-2620.
CrossRef | Gscholar
Guichoux E, Lagache L, Wagner S, Leger P, Petit RJ (2011)
Two highly validated multiplexes (12-plex and 8-plex) for species delimitation and parentage analysis in oaks (Quercus spp.). Molecular Ecology Resources 11(3): 578-585.
CrossRef | Gscholar
Hampe A, El Masri L, Petit RJ (2010)
Origin of spatial genetic structure in an expanding oak population. Molecular Ecology 19(3): 459-471.
CrossRef | Gscholar
Hardy OJ, Vekemans X (2002)
SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2 (4): 618-620.
CrossRef | Gscholar
Hardy OJ (2009)
How fat is the tail? Heredity 103 (6): 437-438.
CrossRef | Gscholar
Hoebee SE, Menn C, Rotach P, Finkeldey R, Holderegger R (2006)
Spatial genetic structure of Sorbus torminalis: the extent of clonal reproduction in natural stands of a rare tree species with a scattered distribution. Forest Ecology and Management 226 (1-3): 1-8.
CrossRef | Gscholar
Jensen JS, Olrik DC, Siegismund HR, Lowe AJ (2003)
Population genetics and spatial autocorrelation in an unmanaged stand of Quercus petraea in Denmark. Scandinavian Journal of Forest Research 18 (4): 295-304.
CrossRef | Gscholar
Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ (2001)
Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55 (8): 1560-1568.
CrossRef | Gscholar
Kampfer S, Lexer C, Glössl J, Steinkellner H (1998)
Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129: 183-186.
CrossRef | Gscholar
Lagache L, Klein EK, Guichoux E, Petit RJ (2013)
Fine-scale environmental control of hybridization in oaks. Molecular Ecology 22 (2): 423-436.
CrossRef | Gscholar
Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009)
Species relative abundance and direction of introgression in oaks. Molecular Ecology 18 (10): 2228-2242.
CrossRef | Gscholar
Loiselle BA, Sork VL, Nason J, Graham C (1995)
Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82 (11): 1420-1425.
CrossRef | Gscholar
Luna R, Epperson BK, Oyama K (2005)
Spatial genetic structure of two sympatric neotropical palms with contrasting life histories. Heredity 95 (4): 298-305.
CrossRef | Gscholar
Marquardt PE, Epperson BK (2004)
Spatial and population genetic structure of microsatellites in white pine. Molecular Ecology 13 (11): 3305-3315.
CrossRef | Gscholar
Marquardt PE, Echt CS, Epperson BK, Pubanz DM (2007)
Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Canadian Journal of Forest Research 37 (12): 2652-2662.
CrossRef | Gscholar
Neophytou C, Aravanopoulos F, Fink S, Dounavi A (2011)
Interfertile oaks in an island environment. II. Limited hybridization between Quercus alnifolia Poech and Q. coccifera L. in a mixed stand. European Journal of Forest Research 130 (4): 623-635.
CrossRef | Gscholar
Paffetti D, Travaglini D, Buonamici A, Nocentini S, Vendramin GG, Giannini R, Vettori C (2012)
The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. Forest Ecology and Management 284(0): 34-44.
CrossRef | Gscholar
Peakall R, Smouse PE (2006)
GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6 (1): 288-295.
CrossRef | Gscholar
Petit R, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl U, van Dam B, Deans D, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002)
Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156: 49-74.
CrossRef | Gscholar
Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2004)
Hybridization as a mechanism of invasion in oaks. New Phytologist 161 (1): 151-164.
CrossRef | Gscholar
Piotti A, Leonardi S, Heuertz M, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2013)
Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure? PLoS ONE 8 (9): e73391.
CrossRef | Gscholar
Pritchard JK, Stephens M, Donnelly P (2000)
Inference of population structure using multilocus genotype data. Genetics 155 (2): 945-959.
Online | Gscholar
Rajendra K (2011)
Spatial dynamics of intraspecific genetic variation in European beech (Fagus sylvatica L.), Georg-August University of Göttingen, Göttingen, Germany, pp. 125.
Rushton BS (1993)
Natural hybridization within the genus Quercus. Annales des Sciences Forestieres 50 (Suppl. 1): 73-90.
CrossRef | Gscholar
Seehausen O, Takimoto G, Roy D, Jokela J (2008)
Speciation reversal and biodiversity dynamics with hybridization in changing environments. Molecular Ecology 17 (1): 30-44.
CrossRef | Gscholar
Smouse PE, Peakall R (1999)
Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82 (5): 561-573.
CrossRef | Gscholar
Smouse PE, Peakall ROD, Gonzales EVA (2008)
A heterogeneity test for fine-scale genetic structure. Molecular Ecology 17 (14): 3389-3400.
CrossRef | Gscholar
Sork VL, Davis FW, Smouse PE, Apsit VJ, Dyer RJ, Fernandez-M JF, Kuhn B (2002)
Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? Molecular Ecology 11(9): 1657-1668.
CrossRef | Gscholar
Stanciu A (1995)
Cercetari taxonomice, morfologice si ecologice privind hibrizii genului Quercus din Rezervatia Stiintifica Bejan-Deva, judetul Hunedoara [Research on the taxonomy, morphology and ecology of hybrids from genus Quercus in the Scientific Reserve Bejan-Deva, Hunedoara]. Facultatea de Silvicultura, Universitatea Transilvania Brasov, Brasov, Romania, pp. 140. [in Romanian]
Stanescu V, Sofletea N, Popescu O (1997)
Flora forestiera lemnoasa a Romaniei [Woody forest flora of Romania]. Editura Ceres, Bucuresti, Romania, pp. 451. [in Romanian]
StatSoft (2008)
STATISTICA for Windows. Software-System For Data Analysis, Tulsa, OK, USA.
Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997)
Identification and characterization of (GA/CT)n- microsatellite loci from Quercus petraea. Plant Molecular Biology 33: 1093-1096.
CrossRef | Gscholar
Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glössl J, Kremer A (1998)
Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7: 317-328.
CrossRef | Gscholar
Valbuena-Carabana M, Gonzalez-Martinez SC, Hardy OJ, Gil L (2007)
Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Molecular Ecology 16 (6): 1207-1219.
CrossRef | Gscholar
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004)
Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4 (3): 535-538.
CrossRef | Gscholar
Vekemans X, Hardy OJ (2004)
New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13 (4): 921-935.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info