*
 

iForest - Biogeosciences and Forestry

*

Aboveground tree biomass of Araucaria araucana in southern Chile: measurements and multi-objective optimization of biomass models

Erico Kutchartt (1)   , Jorge Gayoso (2), Francesco Pirotti (1), Álvaro Bucarey (2), Javier Guerra (3), Jaime Hernández (4), Patricio Corvalán (4), Karel Drápela (5), Mark Olson (6), Martin Zwanzig (7)

iForest - Biogeosciences and Forestry, Volume 14, Issue 1, Pages 61-70 (2021)
doi: https://doi.org/10.3832/ifor3492-013
Published: Feb 09, 2021 - Copyright © 2021 SISEF

Research Articles


Estimating carbon stocks in wooded systems is crucial to quantify national greenhouse gas balance estimates. However, inaccurate estimates are likely due to the divergent architecture of many species. The monkey puzzle tree Araucaria araucana, with its umbrella-like architecture is a vivid example. This species, often found in monodominant stands at high elevations, is the greatest carbon reservoir in the landscape, hence estimating its carbon storage is crucial. To provide the necessary basis for these estimations, we documented the variation in basic density and moisture content along the stem profile, identified the most suitable biomass estimation models, and quantified biomass allocation for three age ranges. We measured, felled, weighed, and separated trees into three categories: stem wood, stem bark, and foliage (branches + scaly leaves). The log-linear form of the simple allometric equation Y = aXb, based on diameter at breast height as the explanatory variable, covered a large part of the variation and showed good cross-validation performance (>0.96). Models using more covariates achieved lower absolute errors, but the estimation of the additional model parameters was associated with greater uncertainty. A multi-objective model comparison revealed that the best additional covariate to further improve biomass estimation was total tree height. The mean absolute percentage error was 9.8% for the total aboveground biomass, 8% for stem wood, 12% for stem bark and 24% for foliage. Changes in biomass distribution among tree components were related to age. For older trees, there was a relative increase in stem wood, a decreased proportion of foliage, but no change in stem bark. The proportion of stem bark biomass is similar to that of Araucaria angustifolia, but higher than in other conifers and most trees in general. Our results provide key properties for A. araucana and general guidance for the selection of easily-measurable variables allowing for excellent predictive power for local biomass estimation.

  Keywords


Monkey Puzzle Tree, Carbon Stocks, Forest Modelling, Multicriteria Optimization, Allometry

Authors’ address

(1)
Erico Kutchartt 0000-0002-9134-4591
Francesco Pirotti 0000-0002-4796-6406
Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, v. dell’Università 16, I-35020 Legnaro, PD (Italy)
(2)
Jorge Gayoso 0000-0002-6057-6672
Álvaro Bucarey
Instituto de Bosques y Sociedad (IBOS), Universidad Austral de Chile, Campus Isla Teja, Valdivia (Chile)
(3)
Javier Guerra
Campo Digital GIS and Remote Sensing, Sarmiento 1767, Osorno (Chile)
(4)
Jaime Hernández 0000-0002-2653-2764
Patricio Corvalán 0000-0002-9642-0629
Departamento de Gestión Forestal y su Medio Ambiente, Universidad de Chile, Santa Rosa, 11315 La Pintana, Santiago (Chile)
(5)
Karel Drápela 0000-0001-7437-6252
Department of Forest Management and Applied Geoinformatics (FFWT), Mendel University in Brno, Zemedelská 3, 61300 Brno (Czech Republic)
(6)
Mark Olson 0000-0003-3715-4567
Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México 04510 (México)
(7)
Martin Zwanzig 0000-0003-1866-6743
Department of Forest Sciences, Institute of Forest Growth and Forest Computer Sciences, Technische Universität Dresden, Pienner Str. 8, D-01737 Tharandt (Germany)

Corresponding author

 

Citation

Kutchartt E, Gayoso J, Pirotti F, Bucarey Á, Guerra J, Hernández J, Corvalán P, Drápela K, Olson M, Zwanzig M (2021). Aboveground tree biomass of Araucaria araucana in southern Chile: measurements and multi-objective optimization of biomass models. iForest 14: 61-70. - doi: 10.3832/ifor3492-013

Academic Editor

Alessio Collalti

Paper history

Received: May 05, 2020
Accepted: Dec 10, 2020

First online: Feb 09, 2021
Publication Date: Feb 28, 2021
Publication Time: 2.03 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 25429
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 21049
Abstract Page Views: 1779
PDF Downloads: 2233
Citation/Reference Downloads: 5
XML Downloads: 363

Web Metrics
Days since publication: 1134
Overall contacts: 25429
Avg. contacts per week: 156.97

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2021): 2
Average cites per year: 0.67

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Aagesen D (1998)
Indigenous resource rights and conservation of the Monkey-Puzzle tree (Araucaria araucana, Araucariaceae): a case study from Southern Chile. Economic Botany 52 (2): 146-160.
CrossRef | Gscholar
(2)
Aagesen D (2004)
Burning monkey-puzzle: native fire ecology and forest management in northern Patagonia. Agriculture and Human Values 21: 233-242.
CrossRef | Gscholar
(3)
AGRIMED (2017)
Atlas agroclimático de Chile. Estado actual y tendencias del clima. Tomo IV: Regiones del Biobío y de La Araucanía [Agroclimatic atlas of Chile. Current status and climate trends. Volume VI: Regions of Biobio and Araucania]. Universidad de Chile y Centro de Agricultura y Medioambiente. Santiago, Chile, pp. 136. [in Spanish]
Gscholar
(4)
Antony F, Schimleck LR, Daniels RF (2012)
Identification of representative sampling heights for specific gravity and moisture content in plantation-grown loblolly pine (Pinus taeda). Canadian Journal of Forest Research 42: 574-584.
CrossRef | Gscholar
(5)
Basuki TM, Van Laake PE, Skidmore AK, Hussin YA (2009)
Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257: 1684-1694.
CrossRef | Gscholar
(6)
Beets PN, Kimberley MO, Oliver GR, Pearce SH, Graham JD, Brandon A (2012)
Allometric equations for estimating carbon stocks in natural forest in New Zealand. Forests 3: 818-839.
CrossRef | Gscholar
(7)
Beets PN, Garrett LG (2018)
Carbon fraction of Pinus radiata biomass components within New Zealand. New Zealand Journal of Forestry Science 48: 14.
CrossRef | Gscholar
(8)
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005)
Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99.
CrossRef | Gscholar
(9)
Curto RA, Povoa De Mattos P, Muñoz Braz E, Netto SP, Zachow R (2016)
Density of Araucaria angustifolia wood from overstocked stand. Brazilian Journal of Forestry Research 36 (85): 51-59.
CrossRef | Gscholar
(10)
Cutini A, Chianucci F, Manetti MC (2013)
Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands. iForest - Biogeosciences and Forestry 6: 331-337.
CrossRef | Gscholar
(11)
Deng X, Zhang L, Lei P, Xiang W, Yan W (2014)
Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southern China. Annals of Forest Science 71: 505-516.
CrossRef | Gscholar
(12)
Dibdiakova J, Vadla K (2012)
Basic density and moisture content of coniferous branches and wood in Northern Norway. EPJ Web of Conferences 33: 1-6.
CrossRef | Gscholar
(13)
Donoso C (2006)
Las especies arbóreas de los bosques templados de Chile y Argentina: autoecología [Tree species from the temperate forests of Chile and Argentina: autoecology]. Marisa Cuneo Ediciones, Valdivia, Chile, pp. 678. [in Spanish]
Gscholar
(14)
Donoso SR, Peña-Rojas K, Espinoza C, Galdames E, Pacheco C (2014)
Producción, permanencia y germinación de semillas de Araucaria araucana (Mol.) K. Koch en bosques naturales, aprovechados por comunidades indígenas del sur de Chile [Production, permanence and germination of seeds of Araucaria araucana (Mol.) K. Koch in natural forests, used by indigenous communities in southern Chile]. Interciencia 39 (5): 338-343. [in Spanish]
Online | Gscholar
(15)
Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P (2013)
Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management 305: 29-37.
CrossRef | Gscholar
(16)
Gayoso J, Guerra J, Alarcón D (2002)
Contenido de carbono y funciones de biomasa en especies nativas y exóticas. Medición de la capacidad de captura de carbono en bosques de Chile y promoción en el mercado mundial [Carbon content and biomass functions in native and exotic species. Measurement of carbon sequestration capacity in Chilean forests and promotion in the world market]. Technical report FONDEF D98I1076, Instituto Forestal y Universidad Austral de Chile, Valdivia, Chile, pp. 53. [in Spanish]
Gscholar
(17)
Gayoso J (2013)
Funciones alométricas para la determinación de existencias de carbono forestal para la especie Araucaria araucana (Molina) K. Koch (ARAUCARIA) [Allometric functions for the determination of forest carbon stocks for the species Araucaria araucana (Molina) K. Koch (ARAUCARIA)]. Ministerio de Agricultura, Corporación Nacional Forestal. Santiago, Chile, pp. 49. [in Spanish]
Gscholar
(18)
Goche-Télles JR, Fuentes-Salinas M, Borja-De la Rosa A, Ramírez-Maldonado H (2000)
Variación de las propiedades físicas de la madera en un árbol de Abies religiosa y de Pinus ayacahuite var. veitchii [Variation in physical properties of Abies religiosa and Pinus ayacahuite var. veitchii wood]. Revista Chapingo - Serie Ciencias Forestales y del Ambiente 6 (1): 83-92. [in Spanish]
Online | Gscholar
(19)
González-Benecke CA, Gezan SA, Albaugh TJ, Lee Allen H, Burkhart HE, Fox TR, Jokela EJ, Maier CA, Martin TA, Rubilar RA, Samuelson LJ (2014)
Local and general above-stump biomass functions for loblolly pine and slash pine trees. Forest Ecology and Management 334: 254-276.
CrossRef | Gscholar
(20)
Goulding CJ (1979)
Cubic spline curves and calculation of volume of sectionally measured trees. New Zealand Journal of Forestry Science 9 (1): 89-99. -
Online | Gscholar
(21)
Grosjean P (2018)
Pastecs: analysis of space-time ecological series. R package version 1:3.21.
Online | Gscholar
(22)
Hastie T, Tibshirani T, Friedman J (2017)
The elements of statistical learning: data mining, inference and prediction (2nd edn). Springer, New York, USA, pp. 763.
Gscholar
(23)
Helmisaari HS, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002)
Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecology and Management 165: 317-326.
CrossRef | Gscholar
(24)
Hothorn T (2020)
Multcomp: simultaneous inference in general parametric models. R package version 1:4-12.
Online | Gscholar
(25)
ISO-13061-1 (2014)
Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 1: Determination of moisture content for physical and mechanical tests. International Organization for Standardization, Geneva, Switzerland, pp. 4.
Gscholar
(26)
ISO-13061-2 (2014)
Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. International Organization for Standardization, Geneva, Switzerland, pp. 5.
Gscholar
(27)
Kimberley MO, Cown DJ, McKinley RB, Moore JR, Dowling LJ (2015)
Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine. New Zealand Journal of Forestry Science 45: 22.
CrossRef | Gscholar
(28)
Kizha AR, Han HS (2016)
Predicting aboveground biomass in second growth coast redwood: comparing localized with generic allometric models. Forests 7 (12): 96.
CrossRef | Gscholar
(29)
Kuhn M (2020)
Caret: classification and regression training. R package version 6:0-85.
Online | Gscholar
(30)
Longuetaud F, Mothe F, Santenoise P, Diop N, Dlouha J, Fournier M, Deleuze C (2017)
Patterns of within-stem variations in wood specific gravity and water content for five temperate tree species. Annals of Forest Science 74: 64.
CrossRef | Gscholar
(31)
Nihlgård B (1972)
Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. Oikos 23: 69-81.
CrossRef | Gscholar
(32)
Payandeh B (1981)
Choosing regression models for biomass prediction equations. The Forestry Chronicle 57 (5): 229-232.
CrossRef | Gscholar
(33)
Peichl M, Arain MA (2007)
Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management 253: 68-80.
CrossRef | Gscholar
(34)
Premoli A, Quiroga P, Gardner M (2013)
Araucaria araucana. The IUCN red list of threatened species, the World Conservation Union, Gland, Switzerland, pp. 10.
CrossRef | Gscholar
(35)
Porté A, Trichet P, Bert D, Loustau D (2002)
Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management 158: 71-83.
CrossRef | Gscholar
(36)
R Core Team (2020)
R: a language and environment for statistical computing, version 3.5.1. The R Project for Statistical Computing, Vienna, Austria.
Online | Gscholar
(37)
Samuelson LJ, Stokes TA, Butnor JR, Johnsen KH, González-Benecke CA, Anderson P, Jackson J, Ferrari L, Martin TA, Cropper Jr WP (2014)
Ecosystem carbon stocks in Pinus palustris forests. Canadian Journal of Forest Research 44: 476-486.
CrossRef | Gscholar
(38)
Sanguetta CR, Watzlawick LF, Schumacher MV, De Mello AA (2003)
Relações individuais de biomassa e conteúdo de carbono em plantações de Araucaria angustifolia e Pinus taeda no sul do estado do Paraná, Brasil [Individual biomass and carbon content in Araucaria angustifolia and Pinus taeda plantations in southern Parana state, Brazil]. Revista Acadêmica: Ciências Agrárias e Ambientais 1 (3): 33-40. [in Portuguese]
CrossRef | Gscholar
(39)
Schmidt H (1977)
Dinámica de un bosque virgen de Araucaria - Lenga (Chile) [Dynamics of a virgin forest in Araucaria-Lenga (Chile)]. Bosque 2 (1): 3-11. [in Spanish]
CrossRef | Gscholar
(40)
Schumacher MV, Witschoreck R, Calil FN, Lopes VG, Viera M (2011)
Produção de biomassa no corte raso em plantio de Araucaria angustifolia (Bertol.) Kuntze de 27 anos de idade em quedas do Iguaçu, PR [Biomass production after clear cutting in a 27-year-old stand of Araucaria angustifolia (Bertol.) Kuntze at Iguaçu waterfalls, PR]. Ciência Florestal 21 (1): 53-62. [in Portuguese]
CrossRef | Gscholar
(41)
Sileshi GW (2014)
A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management 329: 237-254.
CrossRef | Gscholar
(42)
Silva-Arredondo FM, Návar-Cháidez JJ (2012)
Estimación de la densidad de madera en árboles de comunidades forestales templadas del norte del estado de Durango, México [Estimating bole wood specific gravity in trees of temperate forest communities of northern Durango, Mexico]. Madera y Bosques 18 (1): 77-88. [in Spanish]
CrossRef | Gscholar
(43)
Wickham H (2016)
ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, USA, pp. 213.
Gscholar
(44)
Wirth C, Schumacher J, Schulze ED (2004)
Generic biomass functions for Norway spruce in Central Europe - a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24: 121-139.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info