iForest - Biogeosciences and Forestry


Heuristic forest planning model for optimizing timber production and carbon sequestration in teak plantations

María Alejandra Quintero-Méndez (1)   , Mauricio Jerez-Rico (2)

iForest - Biogeosciences and Forestry, Volume 10, Issue 2, Pages 430-439 (2017)
doi: https://doi.org/10.3832/ifor1733-009
Published: Mar 24, 2017 - Copyright © 2017 SISEF

Research Articles

We developed a forest planning model integrating two operational scales (single-stand and forest levels) for the optimization of timber production and carbon sequestration in forest teak (Tectona grandis L. f.) plantations. At the stand level, growth and yield simulations using a heuristic thinning optimizer provided a set of near-optimal thinning regimes for individual stands differing on initial spacing and site quality, given biological, silvicultural, and financial constraints. The set of near-optimal thinning regimes obtained were then used as input of the forest-level model, which generated optimal harvest plans for the whole plantation by simultaneously maximizing the net present value of merchantable wood and carbon sequestration. The net amount of carbon captured by the biomass and the emissions produced by decomposition of woody debris and timber products after harvest were estimated. The growth and yield model was based on a system of differential equations incorporating heuristics (genetic algorithms) to optimize age and intensity of thinnings. The full model can handle the optimization of harvest schedules for projects up to 10.000 ha and 200 stands and was tested on a validation dataset including teak plantations from Venezuela and other Latin American countries. Results indicated that regimes favoring carbon sequestration reduce the benefits of timber production, and equal profitability of carbon sequestration and timber production was obtained for carbon prices over 40 $US Gg-1. Sensitivity analysis showed that the proposed model is sensible to variation in growth rates, carbon and timber prices, and production quotas, and barely sensible to harvest and transport costs. The developed model has a modular structure that allows its calibration to incorporate data from a wide range of management regimes for teak and other forest species.


Forest Planning, Harvest Scheduling, Optimization, Heuristics, Carbon Sequestration, Tectona grandis

Authors’ address

María Alejandra Quintero-Méndez
Escuela de Ingeniería Forestal, Facultad de Ciencias Forestales y Ambientales. Universidad de Los Andes, Mérida 5101 (Venezuela)
Mauricio Jerez-Rico
Centro de Estudios Forestales y Ambientales de Postgrado, Facultad de Ciencias Forestales y Ambientales. Universidad de Los Andes, Mérida 5101 (Venezuela)

Corresponding author

María Alejandra Quintero-Méndez


Quintero-Méndez MA, Jerez-Rico M (2017). Heuristic forest planning model for optimizing timber production and carbon sequestration in teak plantations. iForest 10: 430-439. - doi: 10.3832/ifor1733-009

Academic Editor

Giorgio Matteucci

Paper history

Received: Jun 05, 2015
Accepted: Oct 30, 2016

First online: Mar 24, 2017
Publication Date: Apr 30, 2017
Publication Time: 4.83 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 44262
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 35250
Abstract Page Views: 2032
PDF Downloads: 5862
Citation/Reference Downloads: 42
XML Downloads: 1076

Web Metrics
Days since publication: 2674
Overall contacts: 44262
Avg. contacts per week: 115.87

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2017): 10
Average cites per year: 1.43


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Álvarez S (2009)
Optimización de la plantación forestal considerando la captura de carbono en bosque de pino-encino en la sierra Suárez, Oaxaca, México [Optimizing the plantation forest considering carbon capture in the pine-oak forest in Suárez range, Oaxaca, México]. Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingeniero de Montes, Madrid, Spain, pp. 174. [in Spanish]
Backéus S, Wikströn P, Lämås T (2005)
A model for regional analysis of carbon sequestration and timber production. Forest Ecology and Management 216: 28-40.
CrossRef | Gscholar
Baskent EK, Keles S, Yolasigmaz HA (2008)
Comparing multipurpose forest management with timber management, incorporating timber, carbon and oxygen values: a case study. Scandinavian Journal of Forest Research 23: 105-120.
CrossRef | Gscholar
Bateman IJ, Lovett AA (2000)
Estimating and valuing the carbon sequestered in softwood and hardwood trees, timber products and forest soils in Wales. Journal of Environmental Management 60: 301-323.
CrossRef | Gscholar
Bermejo I, Cañellas I, San Miguel A (2004)
Growth and yield models for teak plantations in Costa Rica. Forest Ecology and Management 189: 97-110.
CrossRef | Gscholar
Bettinger P, Chung W (2004)
The key literature of, and trends in, forest-level management planning in North America, 1950-2001. International Forest Review 6: 40-50.
CrossRef | Gscholar
Bettinger P, Sessions J, Boston K (2009)
A review of the status and use of validation procedures for heuristics used in forest planning. International Journal of Mathematical and Computational Forestry and Natural-Resource Sciences 1: 126-137.
Online | Gscholar
Bravo F, Bravo-Oviedo A, Diaz-Balteiro LD (2008)
Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modeling approach. European Journal of Forest Research 127: 225-234.
CrossRef | Gscholar
Cao T, Valsta L, Mäkelä A (2010)
A comparison of carbon assessment methods for optimizing timber production and carbon sequestration in Scots pine stands. Forest Ecology and Management 260: 1726-1734.
CrossRef | Gscholar
Chen BW, Gadow KV (2008)
Combining spatial and other objectives in forest design. Forestry Studies 48: 30-40.
CrossRef | Gscholar
Chiari R, Carrero O, Jerez M, Quintero MA, Stock J (2008)
Modelo preliminar para la planficación del aprovechamiento en plantaciones forestales industriales en Venezuela [Preliminary harvest planning model for industrial forest plantations in Venezuela]. Interciencia 33: 802-809. [in Spanish]
Cubero J, Rojas S (1999)
Fijación de carbono en plantaciones de melina (Gmelina arborea Roxb.), teca (Tectona grandis L. f.) y pochote (Bombacopsis quinata Jacq.) en los cantones de Hojancha y Nicoya, Guanacaste, Costa Rica [Carbon fixation in melina (Gmelina arborea Roxb.), teak (Tectona grandis L. f.) and pochote (Bombacopsis quinata Jacq.) plantations in the cantons of Hojancha and Nicoya, Guanacaste, Costa Rica]. Escuela de Ciencias Ambientales, Facultad de Ciencias de la Tierra y el Mar, Universidad Nacional, Heredia, Costa Rica, pp. 95. [in Spanish]
De Camino R, Morales JP (2013)
La Teca en América Latina [Teak in Latin America]. In: “Plantaciones de Teca, Mitos y Realidades” [Teak plantations, Myths and realities] (De Camino R, Morales JP eds). CATIE, Costa Rica, pp. 30-41. [in Spanish]
Díaz-Balteiro LD, Rodriguez L (2006)
Optimal rotations on Eucalyptus plantations including carbon sequestration - A comparison of results in Brazil and Spain. Forest Ecology and Management 229: 247-258.
CrossRef | Gscholar
Diaz-Balteiro L, Romero C (2003)
Carbon captured as a new instrument in forest management: some implications. Scientia Forestalis 63: 103-114.
Online | Gscholar
Dréo J, Pétrowski A, Siarry P, Taillard E (2006)
Metaheuristics for hard optimization. Springer-Verlag, Berlin, Germany, pp. 369.
Online | Gscholar
Fonseca W (2004)
Manual de productores de teca (Tectona grandis L. f) en Costa Rica [Manual for teak producers in Costa Rica]. Web site. [in Spanish]
Online | Gscholar
Gera N, Gera H, Bisht NS (2011)
Carbon sequestration potential of selected plantation interventions in Terai region of Uttarakhand. Indian Forester 137: 273-289.
Online | Gscholar
Hoen HF, Solberg B (1994)
Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. Forest Science 40: 429-351.
Online | Gscholar
IPCC (2005)
Orientación de buenas prácticas para uso de la tierra, cambio de uso de la tierra y silvicultura. Programa del IPCC sobre inventarios nacionales de gases de efecto invernadero [Best practices orientation for land use, land use change and silviculture. IPCC Program on greenhouse gas national inventories]. World Meteorological Organization, Geneva, Switzerland, pp. 628. [in Spanish]
Jayaraman K, Rugmini P (2008)
Optimizing management of even-aged teak stands using growth simulation model: a case study in Kerala. Journal of Tropical Forest Science 20: 19-28.
Online | Gscholar
Jerez M, Carrero O, Moret Y, Quevedo A, Macchiavelli R (2011)
Curvas de índice de sitio basadas en modelos mixtos para plantaciones de teca (Tectona grandis L. F.) en los llanos de Venezuela [Site index curves based on mixed models for teak (Tectona grandis L. F.) plantations in the Venezuelan plains]. Agrociencia 45: 135-145. [in Spanish]
Jerez M, Quintero M, Quevedo A, Moret A (2015)
Simulador de crecimiento y secuestro de carbono para plantaciones de teca en Venezuela: una aplicación en SIMILE [Growth and carbon sequestration simulator for teak plantations in Venezuela: an application in SIMILE]. Bosque 36: 519-530. [in Spanish]
CrossRef | Gscholar
Kaipanen T, Liski J, Pussinen A, Karjalainen T (2004)
Managing carbon sinks by changing rotation length in European forests. Environmental. Science and Policy 7: 205-219.
CrossRef | Gscholar
Keles S, Baskent EZ (2007)
Modeling and analyzing timber production and carbon sequestration values of forest ecosystems: a case study. Polish Journal of Environmental Studies 16: 473-479.
Keogh RM (2013)
La teca y su importancia económica a nivel mundial [Teak and its economic importance at the world level]. In: “Plantaciones de Teca, Mitos y Realidades” (De Camino R, Morales JP eds). CATIE, Costa Rica, pp. 8-28. [in Spanish]
Kraenzel M, Castillo A, Moore T, Potvin C (2003)
Carbon storage of harvest-age teak (Tectona grandis) plantations, Panamá. Forest Ecology and Management 173: 213-225.
CrossRef | Gscholar
Liski J, Pussinen A, Pingoud K, Mäkipää T, Karjalainen T (2001)
Which rotation is favorable for carbon sequestration? Canadian Journal of Forest Research 31: 2004-2013.
CrossRef | Gscholar
Liu G, Han S, Zhao X, Nelson JD, Wang H, Wang W (2006)
Optimisation algorithms for spatially constrained forest planning. Ecological Modelling 194: 421-428.
CrossRef | Gscholar
Moret AY, Jerez M, Mora A (1998)
Determinación de ecuaciones de volumen para plantaciones de teca (Tectona grandis L.) en la unidad experimental de la Reserva Forestal Caparo, Estado Barinas - Venezuela [Determining volume equations for teak plantations (Tectona grandis L.) in the experimental unit of the Caparo Forest Reserve, Barinas State - Venezuela] Revista Forestal Venezolana 42: 41-50. [in Spanish]
Nepal P, Grala RK, Grebner DL (2012)
Financial feasibility of increasing carbon sequestration in harvested wood products in Mississippi. Forest Policy and Economics 20: 16-24.
CrossRef | Gscholar
Osorio O (1997)
Regímenes de espesura y sus efectos en la rentabilidad de teca (Tectona grandis L.f) en Caparo, Venezuela [Stocking regimes and their effects in teak (Tectona grandis L. f) profitability in Caparo, Venezuela]. Universidad de Los Andes, Facultad de Ciencias Forestales y Ambientales, Centro de Estudios Forestales y Ambientales de Postgrado, Mérida, Venezuela, pp. 98. [in Spanish]
Pérez LD (2005)
Stand growth scenarios for Tectona grandis plantations in Costa Rica. Academic Dissertation, University of Helsinki, Finland, pp. 77.
Pérez LD, Kanninen M (2005)
Stand growth scenarios for Tectona grandis plantations in Costa Rica. Forest Ecology and Management 158: 103-115.
CrossRef | Gscholar
Pérez S, Jand R, Rubio A (2007)
Modelización del secuestro de carbono en sistemas forestales: efecto de la elección de especie [Modeling of carbon sequestration in forest systems: effect of species selection]. Ecología 21: 341-352. [in Spanish]
Pohjola J, Valsta L (2007)
Carbon credits and management of Scots pine and Norway spruce stands in Finland. Forest Policy and Economics 9: 789-798.
CrossRef | Gscholar
Pukkala T, Kurttila M (2005)
Examining the performance of six heuristic search techniques in different forest planning problems. Silva Fennica 39: 67-80.
Online | Gscholar
Pussinen A, Karjalainen T, Mäkipää T, Valsta L, Kellomäki S (2002)
Forest carbon sequestration and harvests in relation to applied rotation lengths under different climate and nitrogen deposition scenarios. Forest Ecology and Management 158: 103-115.
CrossRef | Gscholar
Quintero MA, Jerez M, Ablan M (2010)
Métodos heurísticos en la planificación del manejo forestal: un ejemplo de aplicación [Heuristics methods for forest management planning]. Revista Forestal Venezolana 54: 183-194. [in Spanish]
Quintero MA, Jerez M, Ablan M (2011)
Evaluación de tres técnicas heurísticas para resolver un modelo de planificación del aprovechamiento en plantaciones forestales industriales [Evaluating three heuristic techniques for solving a harvest planning model for industrial forest plantations]. Interciencia 36: 348-355. [in Spanish]
Quintero MA, Jerez M, Flores J (2012)
Modelo de crecimiento y rendimiento para plantaciones de teca (Tectona grandis L.) usando el enfoque de espacio de estados [Growth and yield model for teak plantations (Tectona grandis L.) based on the space-state approach]. Revista Ciencia e Ingeniería 33: 33-42. [in Spanish]
Raymer AK, Gobakken T, Solberg B, Hoen HF, Bergseng E (2009)
A forest optimisation model including carbon flows: application to a forest in Norway. Forest Ecology and Management 258: 579-589.
CrossRef | Gscholar
Zeng HC, Pukkala T, Peltola H, Kellomaki S (2007)
Application of ant colony optimization for the risk management of wind damage in forest planning. Silva Fennica 41 (2): 315-332.
CrossRef | Gscholar
Zhu J, Bettinger P (2008)
Assessment of three heuristics for developing large-scale spatial forest harvest scheduling plans. Journal of Applied Sciences 8: 4113-4120.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info