*
 

iForest - Biogeosciences and Forestry

*

Allometric equations to estimate above-ground biomass of small-diameter mixed tree species in secondary tropical forests

Ramiro Puc-Kauil (1), Gregorio Ángeles-Pérez (1)   , José René Valdéz-Lazalde (1), Valentín José Reyes-Hernández (1), Juan Manuel Dupuy-Rada (2), Laura Schneider (3), Paulino Pérez-Rodríguez (1), Xavier García-Cuevas (4)

iForest - Biogeosciences and Forestry, Volume 13, Issue 3, Pages 165-174 (2020)
doi: https://doi.org/10.3832/ifor3167-013
Published: May 02, 2020 - Copyright © 2020 SISEF

Research Articles


Accounting for small-size tree biomass is critical to improve total stand biomass estimates of secondary tropical forests, and is essential to quantify their vital role in mitigating climate change. However, owing to the scarcity of equations available for small-size trees, their contribution to total biomass is unknown. The objective of this study was to generate allometric equations to estimate total biomass of 22 tree species ≤ 10 cm in diameter at breast height (DBH), in the Yucatan peninsula, Mexico, by using two methods. First, the additive approach involved the development of biomass equations by tree component (stem, branch and foliage) with simultaneous fit. In the tree-level approach, total tree biomass equations were fit for multi-species and wood density groups. Further, we compared the performance of total tree biomass equations that we generated with multi-species equations of previous studies. Data of total and by tree component biomass were fitted from eight non-linear models as a function of DBH, total height (H) and wood density (ρ). Results showed that two models, identified as model I and II, best fitted our data. Model I has the form AGB = β0 (ρ·DBH2·H)β1 + ε and model II: AGB = exp(-β0)(DBH2·H)β1 + ε, where AGB is biomass (kg). Both models explained between 53% and 95% of the total observed variance in biomass, by tree-structural component and total tree biomass. The variance of total tree biomass explained by fit models related to wood density group was 96%-97%. Compared foreign equations showed between 30% and 45% mean error in total biomass estimation compared to 0.05%-0.36% error showed by equations developed in this study. At the local level, the biomass contribution of small trees based on foreign models was between 24.38 and 29.51 Mg ha-1, and model I was 35.97 Mg ha-1. Thus, from 6.5 up to 11.59 Mg ha-1 could be excluded when using foreign equations, which account for about 21.8% of the total stand biomass. Local equations provided more accurate biomass estimates with the inclusion of ρ and H as predictors variables and proved to be better than foreign equations. Therefore, our equations are suitable to improve the accuracy estimates of carbon forest stocks in the secondary forests of the Yucatan peninsula.

  Keywords


Species Diversity, Biomass-carbon Stocks, Additive Equations, Simultaneous Fit, Wood Density Groups

Authors’ address

(2)
Juan Manuel Dupuy-Rada 0000-0001-7491-6837
Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán (México)
(3)
Laura Schneider 0000-0002-3544-4360
Department of Geography, Rutgers University, 54 Joyce Kilmer Avenue, Piscataway, NJ 08854 (USA)
(4)
Xavier García-Cuevas 0000-0002-2481-6704
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Chetumal, Km. 25, Carretera Chetumal-Bacalar, C.P. 77930, Xul-ha, Quintana Roo (México)

Corresponding author

 
Gregorio Ángeles-Pérez
gangeles@colpos.mx

Citation

Puc-Kauil R, Ángeles-Pérez G, Valdéz-Lazalde JR, Reyes-Hernández VJ, Dupuy-Rada JM, Schneider L, Pérez-Rodríguez P, García-Cuevas X (2020). Allometric equations to estimate above-ground biomass of small-diameter mixed tree species in secondary tropical forests. iForest 13: 165-174. - doi: 10.3832/ifor3167-013

Academic Editor

Rodolfo Picchio

Paper history

Received: Jun 12, 2019
Accepted: Feb 13, 2020

First online: May 02, 2020
Publication Date: Jun 30, 2020
Publication Time: 2.63 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 39411
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 34085
Abstract Page Views: 2305
PDF Downloads: 2543
Citation/Reference Downloads: 11
XML Downloads: 467

Web Metrics
Days since publication: 1664
Overall contacts: 39411
Avg. contacts per week: 165.79

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2020): 2
Average cites per year: 0.50

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Alvarez-González JG, Soalleiro RR, Alboreca AR (2007)
Resolución de problemas del ajuste simultáneo de sistemas de ecuaciones: heterocedasticidad y variables dependientes con distinto número de observaciones [Resolution simultaneous system fit of equation: heteroscedasticity and dependent variables with different number of observations]. Cuaderno de la Sociedad Española de Ciencias Forestales 23 (23): 35-42. [in Spanish]
Gscholar
(2)
Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Joseph Wright S, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL (2015)
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biology 21 (2): 528-549.
CrossRef | Gscholar
(3)
Baker TR, Philips OL, Malhi Y, Almeidas S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudos A, Neill DA, Patiño S, Pitman NCA, Silva JNM, Martínez RV (2004)
Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.
CrossRef | Gscholar
(4)
Bastin J-F, Fayolle A, Tarelkin Y, Van Den Bulcke J, De Haulleville T, Mortier F, Beeckman H, Van Acker J, Serckx A, Bogaert J (2015)
Wood specific gravity variations and biomass of Central African tree species: the simple choice of the outer wood. PloS One 10 (11): 1-16.
CrossRef | Gscholar
(5)
Brandeis TJ, Delaney M, Parresol BR, Royer L (2006)
Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecology and Management 233 (1): 133-142.
CrossRef | Gscholar
(6)
Brown S (1997)
Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 55.
Online | Gscholar
(7)
Cairns MA, Olmsted I, Granados J, Argaez J (2003)
Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatán peninsula. Forest Ecology and Management 186 (1-3): 125-132.
CrossRef | Gscholar
(8)
Chaturvedi R, Raghubanshi A, Singh J (2012)
Biomass estimation of dry tropical woody species at juvenile stage. The Scientific World Journal 2012: 1-5.
CrossRef | Gscholar
(9)
Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003)
Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology 91 (2): 240-252.
CrossRef | Gscholar
(10)
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005)
Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (1): 87-99.
CrossRef | Gscholar
(11)
Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege Ht Webb CO (2006)
Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16 (6): 2356-2367.
CrossRef | Gscholar
(12)
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009)
Towards a worldwide wood economics spectrum. Ecology letters 12 (4): 351-366.
CrossRef | Gscholar
(13)
Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC (2014)
Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20 (10): 3177-3190.
CrossRef | Gscholar
(14)
Curtis JT, McIntosh RP (1951)
An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32 (3): 476-496.
CrossRef | Gscholar
(15)
Djomo AN, Ibrahima A, Saborowski J, Gravenhorst G (2010)
Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management 260 (10): 1873-1885.
CrossRef | Gscholar
(16)
Douterlungne D, Herrera-Gorocica AM, Ferguson BG, Siddique I, Soto-Pinto L (2013)
Allometric equations used to estimate biomass and carbon in four Neotropical tree species with restoration potential. Agrociencia 47 (4): 385-397.
Online | Gscholar
(17)
Duncanson L, Rourke O, Dubayah R (2015)
Small sample sizes yield biased allometric equations in temperate forests. Scientific Reports 5: 1-13.
CrossRef | Gscholar
(18)
Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA, Tetetla-Rangel E, López-Martínez JO, Leyequién-Abarca E, Tun-Dzul FJ, May-Pat F (2012)
Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatán, México. Biotropica 44 (2): 151-162.
CrossRef | Gscholar
(19)
Ellis EA, Porter-Bolland L (2008)
Is community-based forest management more effective than protected areas? A comparison of land use/land cover change in two neighboring study areas of the Central Yucatán peninsula, México. Forest Ecology and Management 256 (11): 1971-1983.
CrossRef | Gscholar
(20)
Fayolle A, Doucet J-L, Gillet J-F, Bourland N, Lejeune P (2013)
Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management 305: 29-37.
CrossRef | Gscholar
(21)
Feldpausch TR, Lloyd J, Lewis SL, Brienen RJ, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K (2012)
Tree height integrated into pantropical forest biomass estimates. Biogeosciences: 3381-3403.
CrossRef | Gscholar
(22)
Flynn DF, Uriarte M, Crk T, Pascarella JB, Zimmerman JK, Aide TM, Caraballo OMA (2010)
Hurricane disturbance alters secondary forest recovery in Puerto Rico. Biotropica 42 (2): 149-157.
CrossRef | Gscholar
(23)
García ADME (2003)
Distribución de la precipitación en la República Mexicana [Rainfall distribution in the Mexican Republic]. Investigaciones Geograficas 1 (50): 67-76. [in Spanish]
Gscholar
(24)
Goussanou CA, Guendehou S, Assogbadjo AE, Kaire M, Sinsin B, Cuni-Sanchez A (2016)
Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica 50 (2): 1-22.
CrossRef | Gscholar
(25)
Gutiérrez-Báez C, Zamora-Crescencio P, Puc-Garrido EC (2013)
Estructura y composición florística de la selva mediana subperenifolia de Hampolol, Campeche, México [Structure and floristic composition of the mid-stature semi-evergreen forest of Hampolol, Campeche, Mexico]. Foresta Veracruzana 15 (1): 1-8. [in Spanish]
Gscholar
(26)
Hughes RF, Kauffman JB, Jaramillo VJ (1999)
Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of México. Ecology 80 (6): 1892-1907.
CrossRef | Gscholar
(27)
Hunter M, Keller M, Victoria D, Morton D (2013)
Tree height and tropical forest biomass estimation. Biogeosciences 10 (12): 8385-8399.
CrossRef | Gscholar
(28)
Johnson JB, Omland KS (2004)
Model selection in ecology and evolution. Trends in Ecology and Evolution 19 (2): 101-108.
CrossRef | Gscholar
(29)
Jung Y, Hu J (2015)
AK-fold averaging cross-validation procedure. Journal of Nonparametric Statistics 27 (2): 167-179.
CrossRef | Gscholar
(30)
Kenzo T, Furutani R, Hattori D, Kendawang JJ, Tanaka S, Sakurai K, Ninomiya I (2009)
Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. Journal of Forest Research 14: 365-372.
CrossRef | Gscholar
(31)
Ketterings QM, Coe R, Van Noordwijk M, Palm CA (2001)
Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146 (1-3): 199-209.
CrossRef | Gscholar
(32)
Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H (2012)
Allometric equations for estimating biomass in agricultural landscapes: II. Belowground biomass. Agriculture, Ecosystems and Environment 158 (2): 225-234.
CrossRef | Gscholar
(33)
Lawrence D (2005)
Regional-scale variation in litter production and seasonality in tropical dry forests of Southern Mexico. Biotropica 37: 561-570.
CrossRef | Gscholar
(34)
Lima AJN, Suwa R, De Mello Ribeiro GHP, Kajimoto T, Dos Santos J, Da Silva RP, De Souza CAS, De Barros PC, Noguchi H, Ishizuka M, Higuchi N (2012)
Allometric models for estimating above- and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil. Forest Ecology and Management 277: 163-172.
CrossRef | Gscholar
(35)
Mascaro J, Perfecto I, Barros O, Boucher DH, De La Cerda IG, Ruiz J, Vandermeer J (2005)
Aboveground biomass accumulation in a tropical wet forest in Nicaragua following a catastrophic hurricane disturbance. Biotropica: The Journal of Biology and Conservation 37 (4): 600-608.
CrossRef | Gscholar
(36)
Memiaghe HR, Lutz JA, Korte L, Alonso A, Kenfack D (2016)
Ecological importance of small-diameter trees to the structure, diversity and biomass of a tropical evergreen forest at Rabi, Gabon. PloS One 11 (5): 1-15.
CrossRef | Gscholar
(37)
Miller K, Chang E, Johnson N (2001)
En busca de un enfoque común para el Corredor Biológico Mesoamericano [In search of a common approach for the Measoamerican Biological Corridor]. World Resources Institute, Washington, DC, USA, pp. 49. [in Spanish]
Online | Gscholar
(38)
Mugasha WA, Mwakalukwa EE, Luoga E, Malimbwi RE, Zahabu E, Silayo DS, Sola G, Crete P, Henry M, Kashindye A (2016)
Allometric models for estimating tree volume and aboveground biomass in lowland forests of Tanzania. International Journal of Forestry Research 2016: 1-13.
CrossRef | Gscholar
(39)
Nam VT, Van Kuijk M, Anten NP (2016)
Allometric equations for aboveground and belowground biomass estimations in an evergreen forest in Vietnam. PloS One 11 (6): 1-19.
CrossRef | Gscholar
(40)
Ngomanda A, Obiang NLE, Lebamba J, Mavouroulou QM, Gomat H, Mankou GS, Loumeto J, Iponga DM, Ditsouga FK, Koumba RZ (2014)
Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest? Forest Ecology and Management 312: 1-9.
CrossRef | Gscholar
(41)
Parresol BR (2001)
Additivity of nonlinear biomass equations. Canadian Journal of Forest Research 31 (5): 865-878.
CrossRef | Gscholar
(42)
Pennington T, Sarukhán J (2005)
Arboles tropicales de México. Manual para la identificación de las principales especies [Tropical trees of Mexico. Identification manual of the main species] (3rd edn). Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México DF, México, pp. 523. [in Spanish]
Gscholar
(43)
Peña-Claros M (2003)
Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica 35 (4): 450-461.
CrossRef | Gscholar
(44)
Picard N, Saint-André L, Henry M (2012)
Manual de construcción de ecuaciones alométricas para estimar el volumen y la biomasa de los árboles: del trabajo de campo a la predicción [Manual for building tree volume and biomass allometric equations: from field measurement to prediction]. Food and Agriculture Organization of the United Nations (FAO) and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Rome, Italy, pp. 176-177. [in Spanish]
Gscholar
(45)
Pohlert T, Pohlert MT (2018)
Package “PMCMR”. Web site.
Online | Gscholar
(46)
Poorter L, Bongers F, Aide TM, Zambrano AMA, Balvanera P, Becknell JM, Boukili V, Brancalion PH, Broadbent EN, Chazdon RL (2016)
Biomass resilience of Neotropical secondary forests. Nature 530 (7589): 211-214.
CrossRef | Gscholar
(47)
R Core Team (2019)
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Online | Gscholar
(48)
Rojas-Garcia F, De Jong B, Martinez-Zurimendi P, Paz-Pellat F (2015)
Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science 72 (6): 835-864.
CrossRef | Gscholar
(49)
Sanquetta CR, Behling A, Corte APD, Péllico Netto S, Schikowski AB, Do Amaral MK (2015)
Simultaneous estimation as alternative to independent modeling of tree biomass. Annals of Forest Science 72 (8): 1099-1112.
CrossRef | Gscholar
(50)
SAS Institute Inc. (2011)
Statistic analysis system, SAS/ETS ver. 9.3. User’s Guide, Cary, NC, USA.
Gscholar
(51)
Sileshi GW (2014)
A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management 329: 237-254.
CrossRef | Gscholar
(52)
Van Breugel M, Ransijn J, Craven D, Bongers F, Hall JS (2011)
Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management 262 (8): 1648-1657.
CrossRef | Gscholar
(53)
Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderón CG, Alvarez-González JG (2017)
Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western México. Forests 8 (8): 1-20.
CrossRef | Gscholar
(54)
Vincent JB, Henning B, Saulei S, Sosanika G, Weiblen GD (2015)
Forest carbon in lowland Papua New Guinea: local variation and the importance of small trees. Austral Ecology 40 (2): 151-159.
CrossRef | Gscholar
(55)
Zamora CP, García Gil G, Flores Guido JS, Ortiz JJ (2008)
Estructura y composición florística de la selva mediana subcaducifolia en el sur del estado de Yucatán, México [Structure and floristic composition of the mid-stature semi-deciduous forest in the southern state of Yucatan, Mexico]. Polibotanica 26: 39-66. [in Spanish]
Gscholar
(56)
Zhang X, Cao QV, Xiang C, Duan A, Zhang J (2017)
Predicting total and component biomass of Chinese fir using a forecast combination method. iForest - Biogeosciences and Forestry 10: 687-691.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info