*
 

iForest - Biogeosciences and Forestry

*

Wood modification technologies - a review

Dick Sandberg (1)   , Andreja Kutnar (2-3), George Mantanis (4)

iForest - Biogeosciences and Forestry, Volume 10, Issue 6, Pages 895-908 (2017)
doi: https://doi.org/10.3832/ifor2380-010
Published: Dec 01, 2017 - Copyright © 2017 SISEF

Review Papers

Collection/Special Issue: COST action FP1407
Understanding wood modification through an integrated scientific and environmental impact approach
Guest Editors: Giacomo Goli, Andreja Kutnar, Dennis Jones, Dick Sandberg


The market for new durable products of modified wood has increased substantially during the last few years, especially in Europe. This increased interest depends partly on the restricted use of toxic preservatives due to increased environmental concern, as well as the need for reduced maintenance for wood products that are mainly for exterior use. Furthermore, as sustainability becomes a greater concern, the environmental impact of construction and interior materials should be included in planning by considering the entire life cycle and embodied energy of the materials used. As a result, wood modification has been implemented to improve the intrinsic properties of wood, widen the range of sawn timber applications, and acquire the form and functionality desired by engineers, without bringing environmental friendliness into question. The different wood modification processes are at various stages of development, and the challenges that must be overcome to expand to industrial applications differ amongst them. In this paper, three groups of wood modification processes are discussed and exemplified with modified wood products that have been newly introduced to the market: (i) chemical processing (acetylation, furfurylation, resin impregnation etc.); (ii) thermo-hydro processing (thermal treatment); and (iii) thermo-hydro-mechanical processing (surface densification). Building on these examples, the paper will discuss the environmental impact assessment of modification processes and further development needs.

  Keywords


Chemical Treatments, Thermo-hydro-mechanical, LCA, Acetylation, Furfurylation, Resin Impregnation, Environmental Impacts, Densification

Authors’ address

(1)
Dick Sandberg
Luleå University of Technology, Wood Science and Engineering, SE-931 87 Skellefteå (Sweden)
(2)
Andreja Kutnar
University of Primorska, Andrej Marušič Institute, Muzejski trg 2, SI-6000 Koper (Slovenia)
(3)
Andreja Kutnar
InnoRenew CoE, Livade 6, SI-6310 Izola (Slovenia)
(4)
George Mantanis
TEI of Thessaly, Research Lab of Wood Science and Technology, Griva 11, GR-43100 Karditsa (Greece)

Corresponding author

 
Dick Sandberg
dick.sandberg@ltu.se

Citation

Sandberg D, Kutnar A, Mantanis G (2017). Wood modification technologies - a review. iForest 10: 895-908. - doi: 10.3832/ifor2380-010

Academic Editor

Giacomo Goli

Paper history

Received: Jan 30, 2017
Accepted: Aug 13, 2017

First online: Dec 01, 2017
Publication Date: Dec 31, 2017
Publication Time: 3.67 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 79224
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 53884
Abstract Page Views: 6832
PDF Downloads: 17231
Citation/Reference Downloads: 198
XML Downloads: 1079

Web Metrics
Days since publication: 2547
Overall contacts: 79224
Avg. contacts per week: 217.73

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2017): 223
Average cites per year: 31.86

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Adam KD (1951)
Der Waldelefant von Lehringen, eine Jagdheute des diluvialen Menschen. [The forest elephant of Lehringen, a hunt for the diluvial man. ] Quartär 5: 79-84. [in German]
Gscholar
(2)
Alexander J, Hague J, Bongers F, Imamura Y, Roberts M (2014)
The resistance of Accoya® and Tricoya® to attack by wood-destroying fungi and termites. In: Proceedings of the “45th Annual Meeting of the International Research Group (IRG) on Wood Protection”. St. George (Utah, USA) 11-15 May 2014. Document IRG/WP 14/40658, IRG, Stockholm, Sweden, pp. 10.
Gscholar
(3)
Alfredsen G, Ringman R, Pilgård A, Fossdal CG (2015)
New insight regarding mode of action of brown rot decay of modified wood based on DNA and gene expression studies: a review. International Wood Products Journal 6 (1): 5-7.
CrossRef | Gscholar
(4)
Allegretti O, Brunetti M, Cuccui I, Ferrari S, Nocetti M, Terziev N (2012)
Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. BioResources 7 (3): 3656-3669.
Online | Gscholar
(5)
Beckers EPJ, Militz H, Stevens M (1994)
Resistance of acetylated wood to basiomycetes, soft rot and blue stain. In: Proceedings of the “25th Annual Meeting of the International Research Group (IRG) on Wood Protection”. Bali (Indonesia) 29 May - 3 June 1994. Document IRG/WP 94/40021, IRG, Stockholm, Sweden, pp. 12.
Gscholar
(6)
Bolin CA, Smith ST (2011a)
Life cycle assessment of borate-treated lumber with comparison to galvanized steel framing. Journal of Cleaner Production 19: 630-639.
CrossRef | Gscholar
(7)
Bolin CA, Smith ST (2011b)
Life cycle assessment of ACQ-treated lumber with comparison to wood plastic composite decking. Journal of Cleaner Production 19: 620-629.
CrossRef | Gscholar
(8)
Borrega M, Karenlampi PP (2008)
Mechanical behaviour of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz als Roh- und Werkstoff 66: 63-69.
CrossRef | Gscholar
(9)
Burmester A (1973)
Effect of heat-pressure treatments of semi-dry wood on its dimensional stability. Holz als Roh- und Werkstoff 31 (6): 237-243.
CrossRef | Gscholar
(10)
Buro A (1954)
Die Wirkung von Hitzebehandlung auf die Pilzresistenz von Kiefern- und Buchenholz [The influence of heat treatment on decay resistance of pine and beech wood]. Holz als Roh- und Werkstoff 12 (8): 297-304. [in German]
CrossRef | Gscholar
(11)
Candelier K, Dumarçay S, Pétrissans A, Gerardin P, Pétrissans M (2014)
Advantage of vacuum versus nitrogen to achieve inert atmosphere during softwood thermal modification. ProLigno 10 (4): 10-17.
Online | Gscholar
(12)
Dieste A, Krause A, Mai C, Sébe G, Grelier S, Militz H (2009)
Modification of Fagus sylvatica L. with 1.3-dimethylol-4.5-dihydroxy ethylene urea (DMDHEU). Part 2: Pore size distribution determined by differential scanning calorimetry. Holzforschung 63: 89-93.
CrossRef | Gscholar
(13)
Fuchs W (1928)
Genuine lignin. I. Acetylation of pinewood. Berichte 61B: 948-51.
Gscholar
(14)
Gérardin P (2016)
New alternatives for wood preservation based on thermal and chemical modification of wood - a review. Annals of Forest Science 73: 559-570.
CrossRef | Gscholar
(15)
Giebler E (1983)
Dimensionsstabilisierung von Holz durch eine Feuchte/Wärme/Druck-Behandlung [Dimensional stability of wood by a moisture/heat/pressure treatment]. Holz als Roh- und Werkstoff 41 (3): 87-94. [in German]
CrossRef | Gscholar
(16)
Gindl W, Zargar-Yaghubi F, Wimmer R (2003)
Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource Technology 87: 325-330.
CrossRef | Gscholar
(17)
Goldstein I (1959)
Impregnating solutions and method of impregnation therewith. US Patent 2.909.450, United States Patent and Trademark Office, Alexandria, VA, USA, pp. 4.
Gscholar
(18)
Highley TL, Clausen CA, Croan SC, Green F, Illman BL, Micales JA (1994)
Research on biodeterioration of wood: I. Decay mechanisms and biocontrol. Research Report FPL-RP-529, Forest Products Laboratory, Madison, WI, USA, pp. 22.
Gscholar
(19)
Hill CAS (2006)
Wood modification - chemical, thermal and other processes. Wiley Series in Renewable Resources, Wiley and Sons, Chichester, UK, pp. 260.
Gscholar
(20)
Hill CAS (2009)
Why does acetylation protect wood from microbiological attack? Wood Material Science and Engineering 4 (1-2): 37-45.
CrossRef | Gscholar
(21)
Hill C, Norton A (2014)
The environmental impacts associated with wood modification balanced by the benefits of life extension. In: Proceedings of the “ECWM7 - European Wood Conference on Wood Modification” (Nunes L, Jones D, Hill C, Militz H eds). Lisboa (Portugal), 10-12 March 2014. LNEC - Laboratório Nacional de Engenhara Civil, Lisboa, Portugal, pp. 83.
Online | Gscholar
(22)
Hillis WE (1975)
The role of wood characteristics in high temperature drying. Journal of the Institute of Wood Science 7 (2): 60-67.
Gscholar
(23)
Homan WJ (2008)
Acetylation of wood in lumber thickness. In: “Development of Commercial Wood Preservatives” (Schultz TP, Militz H, Freeman MH, Nicholas DD eds). ACS Symposium Series 982: 324-336.
CrossRef | Gscholar
(24)
Huges M, Hill C, Pfriem A (2015)
The toughness of hygrothermally modified wood. Holzforschung 69 (7): 851-862.
Gscholar
(25)
Inoue M, Norimoto M, Otsuka Y, Yamada T (1990)
Surface compression of coniferous wood lumber. I. A new technique to compress the surface layer. Mokuzai Gakkaishi 36 (11): 969-975.
Online | Gscholar
(26)
Inoue M, Ogata S, Nishikawa M, Otsuka Y, Kawai S, Norimoto M (1993)
Dimensional stability, mechanical properties and color changes of a low molecular weight melamine formaldehyde resin impregnated wood. Mokuzai Gakkaishi 39: 181-189.
Gscholar
(27)
International ThermoWood Association (2016)
Production statistics 2016. International ThermoWood Association, Helsinki, Finland, pp. 7.
Online | Gscholar
(28)
ISO-14040 (2006a)
ISO 14040 Environmental management - Life cycle assessment - Principles and framework. International Organization for Standardization, Geneva, Switzerland, pp. 20.
Gscholar
(29)
ISO-14040 (2006b)
ISO 14044 Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization, Geneva, Switzerland, pp. 46.
Gscholar
(30)
Jones D, Hill CAS (2007)
Wood modification - a brief overview of the technology. In: Proceedings of the “5th COST E34 International Workshop” (Sernek M ed). Bled (Slovenia) 6-7 Sept 2007. University of Ljubljana, Slovenia, pp. 1-9.
Gscholar
(31)
Kielmann BC, Militz H, Adamopoulos S (2012)
Combined N-methylol melamine colouring agent modification of hardwoods to improve their performance under use-class 3. In: Proceeding of “ECWM6 - 6th European Conference on Wood Modification” (Jones D, Petrič M, Paclič M eds). Ljubljana (Slovenia) 17-18 Sept 2012. University of Ljubljana, Slovenia, pp. 437-446.
Online | Gscholar
(32)
Kielmann BC, Adamopoulos S, Militz H, Mai C (2014)
Decay resistance of ash, beech and maple wood modified with N-methylol melamine and a metal complex dye. International Biodeterioration and Biodegradation 89: 110-114.
CrossRef | Gscholar
(33)
Koehler A, Pillow MY (1925)
Effect of high temperatures on the mode of fracture of a softwood. Southern Lumberman 121 (1576): 219-221.
Gscholar
(34)
Kollmann F (1936)
Technologie des Holzes [Wood technology]. Verlag von Julius Springer, Berlin, pp. 788. [in German]
Gscholar
(35)
Krause A, Jones D, van der Zee M, Militz H (2003)
Interlace treatment - wood modification with N-methylol compounds. In: Proceedings of the “ECWM1 - First European Conference on Wood Modification” (van Acker J, Hill C eds). Ghent University, Belgium, 3-4 April 2003, pp. 317-328.
Gscholar
(36)
Krause A, Militz H (2009)
Process for improving the durability, dimensional stability and surface hardness of a wood body. US Patent 7.595.116 B2, United States Patent and Trademark Office, Alexandria, VA, USA, pp. 5.
Gscholar
(37)
Kutnar A, Hill C (2014)
Assessment of carbon footprinting in the wood industry. In: “Assessment of carbon footprint in different industrial sectors. Volume 2: EcoProduction” (Muthu SS ed). Springer, Singapore, pp. 135-172.
CrossRef | Gscholar
(38)
Kutnar A, Hill C (2016)
End of life scenarios and the carbon footprint of wood cladding. In: “The Carbon Footprint Handbook” (Muthu SS ed). CRC Press, Boca Raton, FL, USA, pp. 85-100.
Gscholar
(39)
Lamason C, Gong M (2007)
Optimization of pressing parameters for mechanically surface-densified aspen. Forest Products Journal 57 (10): 64.
Online | Gscholar
(40)
Lande S (2008)
Furfurylation of wood - Wood modification by the use of furfuryl alcohol. PhD thesis, Norwegian University of Life Science, Ås, Norway, pp. 194.
Gscholar
(41)
Lande S, Westin M, Schneider M (2004)
Properties of furfurylated wood. Scandinavian Journal of Forest Research 19 (5): 22-30.
CrossRef | Gscholar
(42)
Lande S, Eikenes M, Westin M, Schneider M (2008)
Furfurylation of wood: chemistry, properties and commercialization. In: “Development of Commercial Wood Preservatives” (Schultz TP, Militz H, Freeman MH, Nicholas DD eds). ACS Symposium Series 982: 337-355.
CrossRef | Gscholar
(43)
Larsson-Brelid P, Simonson R, Bergman O, Nilsson T (2000)
Resistance of acetylated wood to biological degradation. Holz als Roh- und Werkstoff 58 (5): 331-337.
CrossRef | Gscholar
(44)
Larsson-Brelid P (2013)
Benchmarking and state-of-the-art report for modified wood. SP Report no. 54, SP Technical Research Institute of Sweden, Stockholm, Sweden, pp. 1-31.
Online | Gscholar
(45)
Li W, Ren D, Zhang X, Wang H, Yu Y (2016)
The furfurylation of wood: a nanomechanical study of modified wood cells. BioResources 11 (2): 3614-3625.
Online | Gscholar
(46)
Lukowsky D (1999)
Holzschutz mit Melaminharzen [Wood protection with melamine resins]. PhD thesis, University of Hamburg, Germany, pp. 193. [in German]
Gscholar
(47)
Maejima H, Endo K, Obataya E (2015)
Effects of moistening treatment on the hygroscopicity and the vibrational properties of aged wood. In: Proceedings of the “International Association of Wood Products Societies (IAWPS) - International Symposium on Wood Science and Technology”. Tower Hall Funabori, Tokyo (Japan) 15-17 March 2015, pp. 247.
Gscholar
(48)
Mantanis G, Lykidis C (2015)
Evaluation of weathering of furfurylated wood decks after a 3-year outdoor exposure in Greece. Drvna Industrja 66 (2): 115-122.
CrossRef | Gscholar
(49)
Mantanis G (2017)
Chemical modification of wood by acetylation or furfurylation: a review of the present scaled-up technologies. BioResources 12 (3): 115-122.
CrossRef | Gscholar
(50)
Mayes D (2014)
The evolution of thermally modified timber and beyond. Presentation given at Forest Industry Engineering Association (FIEA) event “Wood Innovations 2014“ Melbourne (Australia), 23-24 Sept 2014.
Gscholar
(51)
Militz H (1991)
The improvement of dimensional stability and durability of wood trough treatment with non-catalysed acetic acid anhydride. Holz als Roh- und Werkstoff 49 (4): 147-152.
CrossRef | Gscholar
(52)
Militz H (1993)
Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability. Wood Science and Technology 27: 347-355.
CrossRef | Gscholar
(53)
Millett MA, Gerhards CC (1972)
Accelerated aging: residual weight and flexural properties of wood heated in air at 115 °C to 175 °C. Wood Science 4 (4): 193-201.
Gscholar
(54)
Mohebby B, Militz H (2010)
Microbial attack of acetylated wood in field soil trials. International Biodeterioration and Biodegradation 64: 41-50.
CrossRef | Gscholar
(55)
Navi P, Sandberg D (2012)
Thermo hydro mechanical processing of wood. EPFL Press, Lausanne, Switzerland, pp. 376.
Gscholar
(56)
Neyses B (2016)
Surface-densified wood: from laboratory-scale research towards a competitive product. Licentiate thesis, Wood Science and Engineering, Luleå University of Technology, Skellefteå, Sweden, pp. 59.
Online | Gscholar
(57)
Neyses B, Hagman O, Nilsson A (2016)
Development of a continuous wood surface densification process: the roller pressing technique. In: Proceedings of the “59th International Convention of Society of Wood Science and Technology. Forest Resource and Products: Moving Toward a Sustainable Future” (LeVan-Green S ed). Curitiba (Brasil) 6-10 March 2016, pp. 17-24.
Gscholar
(58)
Nicholas DD, Williams AD (1987)
Dimensional stabilization of wood with dimethylol compounds. In: Proceedings of the “International Research Group on Wood Protection”. Honey Harbour, Ontario (Canada) 17-22 May 1987. Document IRG/WP 3412, IRG, Stockholm, Sweden, pp. 10.
Gscholar
(59)
Nordstierna L, Lande S, Westin M, Karlsson O, Furo I (2008)
Towards novel wood-based materials: chemical bonds between lignin-like model molecules and poly (furfuryl alcohol) studied by NMR. Holzforschung 62 (6): 709-713.
CrossRef | Gscholar
(60)
Papadopoulos AN, Hill CAS (2002)
The biological effectiveness of wood modification with linear chain carboxylic acid anhydrides against Coniophoraputeana. Holz als Roh- und Werkstoff 60: 329-332.
CrossRef | Gscholar
(61)
Papadopoulos AN (2010)
Chemical modification of solid wood and wood raw material for composites production with linear chain carboxylic acid anhydrides: a brief review. BioResources 5 (1): 499-506.
Gscholar
(62)
Papadopoulos AN, Mantanis G (2012)
Vapour sorption studies of Belmadur wood. Advances in Forestry Letter 1 (1): 1-6.
Online | Gscholar
(63)
Pelaez-Samaniego MR, Yadama V, Lowell E, Espinoza-Herrera R (2013)
A review of wood thermal pretreatments to improve wood composite properties. Wood Science and Technology 47: 1285-1319.
CrossRef | Gscholar
(64)
Pilgård A, Treu A, Zeeland V, Gosselink JA, Westin M (2010)
Toxic hazard and chemical analysis of leacheates from furfurylated wood. Environmental Toxicology Chemistry 29: 1918-1924.
Gscholar
(65)
Pillow MY (1929)
Effect of high temperatures on the mode of fracture and other properties of a hardwood. Southern Lumberman 137 (1766): 58-60.
Gscholar
(66)
Pittman C, Kim MG, Nicholas DD, Wang L, Kabir FRA, Schultz TP, Ingram LL (1994)
Wood enhancement treatments. I. Impregnation of southern yellow pine with melamine formaldehyde and melamine-ammeline formaldehyde resins. Journal of Wood Chemistry and Technology 14 (4): 577-603.
CrossRef | Gscholar
(67)
Pizzi A, Leban JM, Zanetti M, Pichelin F, Wieland S, Properzi M (2005)
Surface finishes by mechanically induced wood surface fusion. Holz als Roh- und Werkstoff 63 (4): 251-255.
CrossRef | Gscholar
(68)
Rapp A, Peek RD (1999)
Melaminharzimprägniertes so wiemitWetterschutzlasuro-berflächenbehandeltes und unbehandeltes Vollholz während zweijähriger Freilandbewitterung [Melamine resin treated as well as varnish coated and untreated solid wood during drying two years of natural weathering]. Holz als Roh- und Werkstoff 57: 331-339. [in German]
CrossRef | Gscholar
(69)
Rautkari L, Properzi M, Pichelin F, Hughes M (2009)
Surface modification of wood using friction. Wood Science and Technology 43(3-4): 291-299.
CrossRef | Gscholar
(70)
Ringman R, Pilgård A, Richter K (2015)
In vitro oxidative and enzymatic degradation of modified wood. International Wood Products Journal 6 (1): 36-39.
CrossRef | Gscholar
(71)
Rowell RM (1983)
Chemical modification of wood: a review. Commonwealth Forestry Bureau, Oxford, UK, vol. 6, pp. 363-382.
Gscholar
(72)
Rowell RM, Simonson R, Hess S, Plackett DV, Cronshaw D, Dunningham E (1994)
Acetyl distribution in acetylated whole wood and reactivity of isolated wood cell wall components to acetic anhydride. Wood and Fiber Science 26 (1): 11-18.
Gscholar
(73)
Rowell RM, Ibach RE, McSweeny J, Nilsson T (2009)
Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood. Wood Material Science and Engineering 4(1-2): 14-22.
CrossRef | Gscholar
(74)
Rowell RM (2012)
Handbook of wood chemistry and wood composites (2nd edn). CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, pp. 703.
Online | Gscholar
(75)
Rowell RM (2014)
Acetylation of wood - a review. International Journal of Lignocellulosic Products 1 (1): 1-27.
Online | Gscholar
(76)
Rowell RM (2016)
Dimensional stability and fungal durability of acetylated wood. Drewno 59 (197): 139-150.
Online | Gscholar
(77)
Sadatnezhad SH, Khazaeian A, Sandberg D, Tabarsa T (2017)
Continuous surface densification of wood: a new concept for large-scale industrial processing. BioResources 12 (2): 3122-3132.
CrossRef | Gscholar
(78)
Sandberg D, Haller P, Navi P (2013)
Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science and Engineering 8 (1): 64-88.
CrossRef | Gscholar
(79)
Sandberg D, Kutnar A (2016)
Thermal modified timber: recent developments in Europe and North America. Wood and Fiber Science 48 (1): 28-39.
Online | Gscholar
(80)
Scheider MH (1995)
New cell wall and cell lumen wood polymer composites. Wood Science and Technology 29: 121-127.
Gscholar
(81)
Sears CU (1900)
Preparing wood matrices. US Patent No. 646547, United States Patent and Trademark Office, Alexandria, VA, USA, pp. 3.
Gscholar
(82)
Seborg R, Millet M, Stamm A (1945)
Heat-stabilized compressed wood - Staypack. Mechanical Engineering 67: 25-31.
Gscholar
(83)
Sint KM, Adamopoulos S, Koch G, Hapla F, Militz H (2013)
Impregnation of Bombax ceiba and Bombax insigne wood with a N-methylol melamine compound. Wood Science and Technology 47: 43-58.
CrossRef | Gscholar
(84)
Stamm AJ, Hansen LA (1937)
Minimizing wood shrinkage and swelling. Effect of heating in various gasses. Industrial and Engineering Chemistry 29 (7): 831-833.
CrossRef | Gscholar
(85)
Stamm AJ, Burr HK, Kline AA (1946)
Staybwood. Heat stabilized wood. Industrial and Engineering Chemistry 38 (6): 630-634.
CrossRef | Gscholar
(86)
Stamm AJ, Seborg RM (1955)
Forest products laboratory resin-treated wood (impreg). Research Report no. 1380, Forest Products Laboratory, Madison, WI, USA, pp. 10.
Gscholar
(87)
Stamm AJ (1977)
Dimensional stabilization of wood with furfuryl alcohol. In: “Wood technology: Chemical aspects” (Goldstein I ed). ACS Symposium Series, Vol. 43. American Chemical Society, Washington, DC, USA, pp. 141-149.
CrossRef | Gscholar
(88)
Tarkow H (1946)
A new approach to the acetylation of wood. Forest Products Laboratory, USDA Forest Service, Madison, WI, USA, pp. 9.
Gscholar
(89)
Tarkow H, Seborg R (1968)
Surface densification of wood. Forest Products Journal 18 (9): 104-107.
Gscholar
(90)
Thunell B, Elken E (1948)
Värmebehandling av trä för minskning av svällning och krympning [Heat treatment of wood for decreased swelling and shrinkage]. Report No. 18, The Swedish Wood Technology Research Institute, Stockholm, Sweden, pp. 23. [in Swedish]
Gscholar
(91)
Thygesen LG, Barsberg S, Venås TM (2010)
The fluorescence characteristics of furfurylated wood studied by fluorescence spectroscopy and confocal laser scanning microscopy. Wood Science and Technology 44 (1): 51-65.
CrossRef | Gscholar
(92)
Tiemann HD (1915)
The effect of different methods of drying on the strength of wood. Lumber World Review 28 (7): 19-20.
Gscholar
(93)
United Nations (2015)
Paris agreement. UN, New York, USA, pp. 25.
Online | Gscholar
(94)
Van Der Lugt P, Vogtländer JG (2014)
Wood acetylation: a potential route towards climate change mitigation. WIT Transactions on Ecology on The Built Environment, Eco-Architecture V 142: 241-252.
CrossRef | Gscholar
(95)
Van Der Lugt P, Bongers F, Vogtländer J (2016)
Environmental impact of constructions made of acetylated wood. In: Proceedings of the “WCTE 2016 - World Conference on Timber Engineering”. Vienna (Austria) 22-25 Aug 2016, pp. 1-6.
Online | Gscholar
(96)
Wang JY, Cooper PA (2005)
Effect of grain orientation and surface wetting on vertical density profiles of thermally compressed fir and spruce. Holz als Roh- und Werkstoff 63 (6): 397-402.
CrossRef | Gscholar
(97)
Werner F, Richter K (2007)
Wood building products in comparative LCA. A literature review. International Journal of LCA 12 (7): 470-479.
Gscholar
(98)
Westin M, Nilsson T, Hadi, YS (1998)
Field performance of furfuryl alcohol treated wood. In: Proceedings of the “4th Pacific Rim Bio-Based Composites Symposium” Bogor (Indonesia) 2-5 Nov 1998. Bogor Agricultural University, Bogor, West Indonesia, pp. 305-331.
Gscholar
(99)
Westin M, Larsson-Brelid P, Nilsson T, Rapp A, Dickerson JP, Lande S, Cragg S (2016)
Marine borer resistance of acetylated and furfurylated wood - Results from up to 16 years of field exposure. In: Proceedings of the “47th Annual Meeting of the International Research Group (IRG) on Wood Protection”. Lisbon (Portugal) 15-19 May 2016. Document IRG/WP 16-40756, IRG, Stockholm, Sweden, pp. 10.
Gscholar
(100)
Wilson TRC (1920)
The effect of kiln drying on the strength of airplane woods. Report No. 68, National Advisory Committee for Aeronautics, Washington, DC, USA, pp. 79.
Online | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info