iForest - Biogeosciences and Forestry


Characterization of technological properties of matá-matá wood (Eschweilera coriacea [DC.] S.A. Mori, E. odora Poepp. [Miers] and E. truncata A.C. Sm.) by Near Infrared Spectroscopy

Cristiano Souza do Nascimento (1)   , Claudete Catanhede do Nascimento (2), Roberto Daniel de Araújo (2), Jose Carlos Rodrigues Soares (3), Niro Higuchi (4)

iForest - Biogeosciences and Forestry, Volume 14, Issue 5, Pages 400-407 (2021)
doi: https://doi.org/10.3832/ifor3748-014
Published: Sep 01, 2021 - Copyright © 2021 SISEF

Research Articles

The aim of this study was to determine the technological properties (chemical, mechanical and physical) of Eschweilera sp. woods using near infrared spectroscopy (NIRS). NIR spectroscopy proved to be efficient for chemical analysis (extractives, lignin and carbohydrates) and physical-mechanical testing (moisture content, basic density - BD, modulus of elasticity - MOE and modulus of rupture - MOR) of wood, providing a powerful tool for use in sustainable forest management activities in the Amazon. Wood samples from three trees of each Eschweilera species were collected from the Experimental Station of Tropical Forestry/INPA/Brazil. Specimens were extracted from the cross-sectional area (20 × 20 × 30 mm) in the direction sapwood-heartwood. NIR spectra (4.000-10.000 cm-1) were then obtained from the samples (moisture 12%) using Fourier-transform spectrometry. The Partial Least Squares (PLS) regression prediction models for the chemical, mechanical and physical properties of Amazonian woods were used for quantification. The results for total extractives (both in toluene and ethanol) and hot water solubility showed a maximum extractive concentration of 7.66% and 3.13% for E. odora (yellow matá-matá), including several compounds with low molecular weight, such as resins, gums, terpenes, alkaloids, flavonoids, and tannins. The highest concentration of phenolic substances (tannins) was found in E. Truncata (black matá-matá, 10.00%). The macrocomponents (primary metabolism) of Eschweilera species were in the range of 44.20-46.33% for cellulose and 28.89-31.21% for lignin. Mineral compounds (ash) were quantified in concentrations < 0.70%. The predictive results for the physical and mechanical properties of matá-matá wood are in the standard range for tropical woods. The higher calorific value (HCV) varied from 4.993-5.033 cal g-1 and the BD from 0.78-0.88 g m-3. Regarding moisture, the highest content was observed in E. truncata (13.46%). Values for mechanical resistance were in the range of 14,253-17,447 MPa for MOE and 146.04-175.73 MPa for MOR, with the greatest strength attributed to E. truncata wood. The values obtained for the wood technological properties of E. coriacea (white matá-matá), E. odora (yellow matá-matá) and E. truncata (black matá-matá) were compatible with those obtained by destructive determination of tropical species and also for other species of the genus Eschweilera.


Eschweilera, Amazonian Woods, Wood Chemistry, Physico-mechanical Properties, NIR Spectroscopy, Forest Management

Authors’ address

Cristiano Souza do Nascimento 0000-0002-5322-2534
Graduate Program in Tropical Forest Science (PPG-CFT), National Institute of Amazonian Research (INPA). Av. Efigênio Sales, 2.239 - Aleixo - CEP 69060-020, Manaus, AM (Brazil)
Claudete Catanhede do Nascimento 0000-0001-7048-3720
Roberto Daniel de Araújo 0000-0002-9653-305X
Engineering Laboratory and Wood Artifacts (LEAM/COTEI), National Institute of Amazonian Research (INPA). Av. André Araújo, 2.936 - Petrópolis - CEP 69067-375, Manaus, AM (Brazil)
Jose Carlos Rodrigues Soares 0000-0003-1307-9371
Master’s, Graduate Program in Environmental and Forestry Sciences (PPG-CIFA), Federal University of Amazonas (UFAM). Av. Rodrigo Otávio, Coroado - CEP 69067005, Manaus, AM (Brazil)
Niro Higuchi 0000-0002-1203-4502
Forest Management Laboratory (LMF/CODAM), National Institute of Amazonian Research (INPA). Av. Efigênio Sales, 2.239 - Aleixo - CEP 69060-020, Manaus, AM (Brazil)

Corresponding author

Cristiano Souza do Nascimento


Nascimento CS, Nascimento CC, Araújo RD, Soares JCR, Higuchi N (2021). Characterization of technological properties of matá-matá wood (Eschweilera coriacea [DC.] S.A. Mori, E. odora Poepp. [Miers] and E. truncata A.C. Sm.) by Near Infrared Spectroscopy. iForest 14: 400-407. - doi: 10.3832/ifor3748-014

Academic Editor

Giacomo Goli

Paper history

Received: Jan 10, 2021
Accepted: Jul 02, 2021

First online: Sep 01, 2021
Publication Date: Oct 31, 2021
Publication Time: 2.03 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 23922
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 20960
Abstract Page Views: 1223
PDF Downloads: 1452
Citation/Reference Downloads: 1
XML Downloads: 286

Web Metrics
Days since publication: 1052
Overall contacts: 23922
Avg. contacts per week: 159.18

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2021): 3
Average cites per year: 1.00


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

ABNT (1997)
Projeto de estruturas de madeira - ABNT (NBR7190) [Design of wooden structures - ABNT (NBR7190)]. Associação Brasileira de Normas Técnicas - ABNT, Rio de Janeiro, RJ, Brazil, pp. 68. [in Portuguese]
Andrade CR, Trugillo PF, Napoli A, Vieira RS, Lima JT, Sousa LC (2010)
Estimation of the mechanical properties of wood from Eucalyptus urophylla using near infrared spectroscopy. Cerne 16 (3): 291-298.
CrossRef | Gscholar
Araújo RD, Santos J, Nascimento CC, Nascimento CS, Barros SVS, Lima MP (2019)
Surface roughness of Edge Glued Panels (EGP) of amazon grown species. Ciência e Agrotecnologia 43: e019119.
CrossRef | Gscholar
ASTM (2013)
Annual book of ASTM standards. Section 4 - Construction, Volume 04.10 - Wood. American Society for Testing and Materials - ASTM, West Coshohocken, PA, USA, pp. 1054.
Balboni BM, Silva TS, Andrade FWC, Freitas LJM, Moutinho VHP (2018)
Physical-mechanical characterization of two amazon woods coming from the second cutting cycle. Anais da Academia Brasileira de Ciências 90: 3565-3572.
CrossRef | Gscholar
Barbosa AP, Palmeira RCF, Nascimento CS, Feitoza D (2006)
A chemical survey of central Amazonian Leguminosae species. I. Substances found in the bark of woody species. Fitos 1: 47-57.
Online | Gscholar
Bieker D, Rust S (2010)
Non-destructive estimation of sapwood and heartwood width in Scot’s pine (Pinus sylvestris L.). Silva Fennica 44: 267-273.
CrossRef | Gscholar
Callegari-Jacques SM (2003)
Bioestatística: princípios e aplicações [Biostatistics: principles and applications]. Artemed, Porto Alegre, RS, Brazil, pp. 255 [in Portuguese]
Online | Gscholar
Castilho MEU (1984)
Determinacion del poder calorífico de 20 especies florestales de la Amazonia peruana [Determination of the calorific value of 20 forest species of the Peruvian Amazon]. Revista florestal do Peru 12: 98-117. [in Spanish]
Online | Gscholar
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009)
Towards a worldwide wood economics spectrum. Ecology Letters 12: 351-366.
CrossRef | Gscholar
COPANT (1973)
COPANT 555, método de ensayo de flexión estática [COPANT 555, static bending test method]. Comisión Panamericana de Normas Técnicas - COPANT, Buenos Aires, Argentina, pp. 10. [in Spanish]
Fengel D, Wegener G (2003)
Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, Germany, pp. 895.
Fernandes C, Gaspar MJ, Pires J, Alves A, Simões R, Rodrigues JC, Silva ME, Carvalho M, Brito JE, Lousada JL (2017)
Physical, chemical and mechanical properties of Pinus sylvestris wood at five sites in Portugal. iForest 10: 669-679.
CrossRef | Gscholar
Freitas JA, Vasconcellos FJ (2019)
Identificação de madeiras comerciais da Amazônia [Identification of commercial wood from the Amazon]. INPA, Manaus, AM, Brazil, pp. 70. [in Portuguese]
Fróes DF, Nascimento CC, Freitas JA, Silva GM, Araújo RD, Dantas GS, São Pedro Filho F (2019)
Managing the technological potential of Eschweilera truncata A.C. Sm in the Amazon. International Journal for Innovation Education and Research 7 (11): 585-598.
CrossRef | Gscholar
Fujimoto T, Kurata Y, Matsumoto K, Tsuchikawa S (2008)
Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full-length lumber specimens. Journal of Near Infrared Spectroscopy 16: 529-537.
CrossRef | Gscholar
Garcia FM, Manfio DR, Sansigolo CA, Magalhães PAD (2012)
Yield of Itaúba (Mezilaurus itauba) and Tauarí (Couratari guianensis) logs sawmill according to log quality classification. Floresta e Ambiente 19 (4): 468-474.
CrossRef | Gscholar
Halward A, Sanchez C (1975)
Métodos de ensaios nas indústrias de celulose e papel [Test methods in the pulp and paper industries]. Brusco, São Paulo, SP, Brazil, pp. 75. [in Portuguese]
Hammer Ø, Harper DAT, Ryan PD (2001)
Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (1): 9.
Online | Gscholar
Higuchi T (1997)
Biochemistry and molecular biology of wood. Springer Verlag, Berlin, Germany, pp. 362.
INPA/CPPF (1991)
Catálogo de madeiras da Amazônia. Área da hidrelétrica de Balbina [Amazon timber catalog. Balbina hydroelectric area]. Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, AM, Brazil, pp. 78. [in Portuguese]
IPT (2020)
Wood Information. Instituto de Pesquisas Tecnologias - Web site.
Online | Gscholar
Kilic A, Niemz P (2012)
Extractives in some tropical woods. European Journal of Wood and Wood Products 70: 79-831.
CrossRef | Gscholar
Kollmann FFP, Cotê Junior WA (1968)
Principles of wood science and technology (vol. 2). Springer, Berlin, Germany, pp. 674.
Online | Gscholar
Liu C, Zhang SY, Cloutier A, Rycabel T (2007)
Modeling lumber bending stiffness and strength in natural black spruce stands using stand and tree characteristics. Forest Ecology and Management 242 (2-3): 648-655.
CrossRef | Gscholar
Lovaglio T, D’Auria M, Rita A, Todaro L (2017)
Compositions of compounds extracted from thermo-treated wood using solvents of different polarities. iForest 10: 824-28.
CrossRef | Gscholar
Mancini M, Leoni E, Nocetti M, Urbinati C, Duca D, Brunetti M, Toscano G (2019)
Near infrared spectroscopy for assessing mechanical properties of Castanea sativa wood samples. Journal of Agricultural Engineering L 953: 191-197.
CrossRef | Gscholar
Moutinho VHP, Couto AM, Lima JT, De Aguiar OJR, Nogueira MOG (2011)
Energetic characterization of Matá-Matá wood from the brazilian rain forest (Eschweilera Mart Ex Dc). Scientia Forestalis 39: 457-461.
Online | Gscholar
Nascimento CS, Varejão MJC (2012)
NIR models for predicting chemical and physical properties of Amazonian woods - LQM/INPA (version 1:0-12). Web site.
Online | Gscholar
Nascimento CC, Nascimento CS, Brasil MM (2016)
NIR models for predicting physico-mechanical properties of Amazonian wood - LEAM/INPA (version 1:0-16). Web site.
Online | Gscholar
Nascimento CC, Brasil MM, Nascimento CS, Barros SVS (2017)
Estimation of the basic density of wood Eschweilera odora (Poepp.) Miers by near infrared spectroscopy. Brazilian Journal of Wood Science 8: 42-53.
CrossRef | Gscholar
Nascimento CS, Nascimento CC, Cruz IA, Araújo RD (2019)
Perfil químico dos extrativos de espécies arbóreas da família Lecythidaceae [Chemical profile of extractives of tree species in the family Lecythidaceae]. In: Anais da “Semana Florestal - O Setor Florestal na Atualidade - SF/UFAM” (Almeida NO ed). Manaus (AM, Brazil), 12-14 Nov 2019. UFAM, Manaus, AM, Brazil, pp. 10-15. [in Portuguese]
Nuopponen MH, Birch GM, Sykes RJ, Lee SJ, Stewart D (2006)
Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy. Journal of Agricultural and Food Chemistry 4: 34-40.
CrossRef | Gscholar
OIMT (2015)
Reseña bienal y evaluación de la situación mundial de las maderas 2013-2014 [Biennial review and assessment ofthe world timber situation 2013-2014]. Organización Internacional de las Maderas Tropicales - OIMT, Yokohama, KNG, Japan, pp. 145. [in Spanish]
Pizzi A (2019)
Tannins: prospectives and actual industrial applications. Biomolecules 9 (344): 1-29.
CrossRef | Gscholar
R Core Team (2020)
R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Online | Gscholar
Santos ACM (2020)
Influência do teor de extrativos na arquitetura hidráulica em espécies florestais da Amazônia Central [Influence of extractives content on hydraulic architecture in forest species in Central Amazonia]. Master’s dissertation in Science of tropical forests, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil, pp. 93. [in Portuguese]
Schimleck LR, Matos JLM, Trianoski R, Prata JG (2018)
Comparaison of methods for estimating mechanical properties of wood by NIR spectroscopy. Journal of Spectroscopy 2018: 1-10.
CrossRef | Gscholar
Serafimova E, Mladenov M, Mihailova I, Pelovski Y (2011)
Study on the characteristics of waste wood ash. Journal of the University of Chemical Technology and Metallurgy 46 (1): 31-34.
Online | Gscholar
Silva AC, Silva MBC (1991)
Influência da anatomia e química nas propriedades da madeira [Influence of anatomy and chemistry on the properties of wood]. CEPEF/UTAM, Manaus, Brazil, pp. 55. [in Portuguese]
Silva DA, Almeida VC, Viana LC, Klock U, Muñiz GIB (2014)
Evaluation of the energy - related properties of tropical wood waste using NIR spectroscopy. Floresta e Ambiente 21: 561-568.
CrossRef | Gscholar
Silva AP, Nascimento CC, Nascimento CS, Carmo MA, Araújo RD, Freitas JA (2020)
Technological characterization of wood residues from the Amazon for the production of briquetes. International Journal of Advanced Engineering Research and Science 7 (9): 408-417.
CrossRef | Gscholar
Silveira LHC, Rezende AV, Vale AT (2013)
Moisture content and basic wood density of nine commercial Amazonian tree species. Acta Amazonica 43: 197-184.
CrossRef | Gscholar
Sjöström E (2013)
Wood chemistry. Fundamentals and applications (2nd edn). Academic Press, Espoo, Finland, pp. 293.
Online | Gscholar
Soares AK, Lourenço TV, Delucis RA, Gatto DA (2018)
Chemical composition and dimensional stability of three eucalypts wood. Matéria 23 (4): e12226.
CrossRef | Gscholar
Telmo C, Lousada J (2011)
The explained variation by lignin and extractive contents on higher heating value of wood. Biomass and Bioenergy 35: 1663-1667.
CrossRef | Gscholar
Todaro L, Rita A, Cetera P, D’Auria M (2015)
Thermal treatment modifies the calorific value and ash content in some wood species. Fuel 140 (1): 1-3.
CrossRef | Gscholar
Tsuchikawa S, Schwanninger M (2013)
A review of recent near-infrared research for wood and paper (Part 2). Applied Spectroscopy Reviews 48: 560-587.
CrossRef | Gscholar
Vale AT, Dias IS, Santana MAE (2010)
Relationships among chemical properties, physical and energy wood properties of five cerrado species. Ciência Florestal 20: 137-145.
CrossRef | Gscholar
Varejão MJC, Nascimento CS, Cruz IA (2012)
Avançando fronteiras: potencial químico, ecológico-econômico de espécies florestais de São Gabriel da Cachoeira, AM [Advancing frontiers: chemical, ecological-economic potential of forest species of São Gabriel da Cachoeira, AM]. In: “Desvendado as Fronteiras do Conhecimento na Região Amazônica do Alto Rio Negro” (Souza LAG, Guillermo-Castellón E eds). INPA - FRONTEIRAS, Manaus, AM, Brazil, pp. 51-67. [in Portuguese]
Online | Gscholar
Yu L, Liang Y, Zhang Y, Cao J (2020)
Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-square. Journal of Forestry Research 31: 1053-1060.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info