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Seedling emergence capacity and morphological traits are under strong 
genetic control in the resin tree Pinus oocarpa

Mario Valerio Velasco-García (1), 
Liliana Muñoz-Gutiérrez (1), 
Gabriel Martínez-Cantera (2)

Pinus oocarpa is a widely distributed species essential for resin production in 
Mexico, where demand surpasses supply. This study aimed to identify differ-
ences and variation levels of seedling emergence capacity and morphological 
traits in resin-producing high-yield P. oocarpa trees and estimate their genetic 
control. Seeds from 72 open-pollinated families were planted using a random-
ized complete block experimental design. Differences between families were 
determined and pooled using cluster analysis. We recorded wide differences in 
seed  emergence  capacity  and  morphological  traits  (cotyledon  number  and 
length, and hypocotyl length), allowing to establish three family groups. We 
also calculated the contribution of the variation sources to the total variance 
and genetic parameters involved. Our data evidenced high genetic control for 
all tested variables. We found a moderate and positive genetic correlation be-
tween cotyledon length,  cotyledon number,  and hypocotyl  length.  We also 
found a high negative genetic correlation between emergence capacity and 
hypocotyl length. At the phenotypic level, we found a high and significant cor-
relation between cotyledon length and number. Grouping P. oocarpa into fami-
lies should aid decision-making for sexual propagation since a high propagation 
capacity of the high-yield trees is essential for genetic improvement programs. 
Moreover, we demonstrate that the heritability of the emergence capacity and 
other morphological traits is high; these traits can be useful for the early se-
lection of high-yield families.

Keywords: Egg-cone pine, Cotyledons, Genetic Control, Genetic Correlation, 
Genetic Variation, Heritability

Introduction
Pinus  oocarpa  Schiede  ex  Schltdl.  (egg-

cone  pine)  is  naturally  distributed  along 
3,100 km from Sonora, Mexico, through Be-
lize, Guatemala, El Salvador, Honduras, and 
Nicaragua,  between  29°  to  12°  N  latitude 
(OFI-CATIE 2003). Outside its natural distri-

bution,  this  species  is  grown  in  Brazil, 
Colombia,  Honduras,  Mexico,  Venezuela, 
Asia,  Africa,  the  Caribbean,  and  Oceania, 
especially Australia (Greaves 1982,  Dvorak 
et al. 2000). P. oocarpa is widely used in the 
forest industry in Mexico; its wood is used 
for  manufacturing  posts,  beams,  packag-
ing, sheets, plywood, toys, doors, sawmills, 
toothpicks,  pulp for paper,  and firewood. 
The tree also has medicinal and ornamental 
uses.  In  Mexico,  P.  oocarpa is  the  main 
resin-producing  species,  from  which  tur-
pentine (a liquid substance) and tar (a solid 
substance) are obtained through an indus-
trial process. These two raw materials are 
used  to  manufacture  adhesives,  tires, 
paint, rubber, soap, varnish, perfume, and 
pharmaceutical products (CONAFOR 2013).

Resin is the second most important non-
timber  forest  product  in  Mexico,  repre-
senting  39%-44%  of  national  annual  non-
timber  forest  profits  (SEMARNAT  2021). 
The demand for pine resin in Mexico has in-
creased in recent years, exceeding the na-
tional production, while its production has 
decreased in the last two decades. The de-
mand  has  thus  been  mainly  supplied  by 
Venezuela, Honduras, China, and Cuba (CO-
NAFOR 2013).  The deficit  in  resin produc-
tion in Mexico is partly due to the lack of 
research  focused  on  generating  methods 
and integrative technological strategies to 
increase its production. A genetic improve-

ment program should be implemented to 
address supply problems and increase resin 
production,  starting  with  selecting  pine 
species with the highest resin production.

In  Mexico,  P.  oocarpa has  been  studied 
for the magnitude of its wood density vari-
ation (Gutiérrez & Flores 2019) and the ge-
netic  control  of  seedling  growth (Viveros 
et al. 2005). In Michoacán, incipient initia-
tives  for  genetically  improving  P.  oocarpa 
to increase its wood and resin production 
are ongoing (Fabián et al. 2020,  Fabián et 
al.  2021).  In 2019,  such initiatives were in-
cluded in a broader research program (Ro-
mero et al. 2022). Evaluating the reproduc-
tive potential (seed production and germi-
nation) of the selected resin trees and esti-
mating  the  genetic  variation,  heritability, 
and genetic correlation between the traits 
of their progenies is essential for such pur-
pose (Romero et al. 2022).

In  Mexico,  the  forest  genetic  improve-
ment program begins with the phenotypic 
selection  of  superior  trees  in  natural 
stands. These trees are evaluated through 
genetic testing, and seed orchards are es-
tablished. However, no attention has been 
paid to the reproductive capacity of the se-
lected superior  trees,  a  crucial  aspect  for 
forest genetic improvement programs (Zo-
bel & Talbert 1984, White et al. 2007).

Information on the physical  and physio-
logical qualities of seeds from  Pinus trees 
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subjected to intensive resin production is 
insufficient. In P. pseudostrobus Lindl. resin 
trees,  although  the  germination  rate  is 
high, the germination speed indicates wide 
variation among trees (Muñoz-Flores et al. 
2023). In contrast, in the Burseraceae fam-
ily, resin and exudate extraction negatively 
affects  the  species’  reproductive  success 
and particularly decreases the seeds’ viabil-
ity and germination rate (Eshete et al. 2012, 
Abad-Fitz et al. 2022). Therefore, since the 
selected P. oocarpa resinous trees (Romero 
et al. 2022) constitute the base population 
for  the  forest  genetic  improvement  pro-
gram and the seed resources to cover ur-
gent needs in reforestation programs and 
forest  plantations  (Zobel  &  Talbert  1984, 
White et al.  2007),  it  is  essential  to know 
the differences  between families  in  seed-
ling emergence. This information will allow 
decisions to be made to continue the cycle 
of genetic improvement; that is, the study 
of  the  emergence  capacity  of  P.  oocarpa 
resin trees will allow the selection of fami-
lies without reproductive problems to es-
tablish  seed  orchards  in  the  future.  Like-
wise, gaining insight into the variation level 
and genetic control of the emergence and 
morphological characteristics of P. oocarpa 
seedlings is crucial; if a high level of genetic 
control  is  found  in  these  characteristics, 
the selection of phenotypes with high re-
productive capacity will be facilitated (Zo-
bel  & Talbert  1984,  White et  al.  2007).  In 
turn, this will facilitate the study of the ge-
netic  relationships  between  emergence 
and  morphological  characteristics  (Fal-
coner 2017, Escobar-Sandoval et al. 2018).

The objectives of this study are to: (i) de-
termine the differences between  P. oocar-
pa families in seedling emergence capacity 
and  morphological  characteristics;  (ii)  de-
termine the level  of contribution of fami-

lies to the total variance of selector charac-
teristics; and (iii) estimate the genetic con-
trol  of  the  emergence  capacity  and  mor-
phological  characteristics  of  seedlings 
through  heritability  and  genetic/pheno-
typic correlations. Our hypotheses are: (a) 
the differences between families are large 
and allow the integration of the high-yield 
trees into several groups; (b) the contribu-
tion of P. oocarpa families to the total vari-
ance will be low due to the reduced geo-
graphical  interval  where  the  high-yield 
trees were selected; and (c) the character-
istics that we evaluated have high genetic 
control and present a high genetic correla-
tion between them since they depend on 
the embryo’s viability.

Materials and methods

Tree selection and cone collection
High-yield P. oocarpa trees were selected 

from the natural  forest properties of “Bi-
enes Comunales de San Gabriel Cuentla” in 
San  Simón  de  Guerrero,  Mexico  (Fig.  1). 
The 100 trees with the highest  resin pro-
duction  were  chosen.  Cones  from  these 
trees were collected in November-Decem-
ber 2019, and the seeds were cleaned, pre-
serving  the  trees’  identity.  Due  to  seed 
availability, only 72 trees were selected for 
seed emergence trials (Fig. 1). The percent-
age of vain seeds from these trees was be-
low 18%. The selected trees are distributed 
at elevations of 1661-1825 m a.s.l. The mean 
annual  temperature  in  the  collecting  site 
varies from 19.2 to 21.5 °C and mean annual 
precipitations  from  1.055  to  1.093  mm 
(Crookston 2006). The soil types were luvi-
sol, cambisol, and regosol (INEGI 2007).

Seed planting
To  separate  seeds  with  reserves  (full 

seeds) from vain seeds by flotation, a sam-
ple of 300 seeds per tree was soaked in dis-
tilled water for 24 h. Sixty full seeds were 
taken from each tree and sown in pairs in 
280 ml tubes. Each tube was labelled with 
a key number (tree number selected in the 
field  and  consecutive  seed  number)  that 
was kept until the end of the trial. The sub-
strate was a mixture of peatmoss®, perlita®, 
and vermiculita® (60:20:20). Additionally, 5 
g·l-1 of Multicote® brand-controlled release 
fertilizer (06-18-12 + Em) was added. During 
the  first  month,  samples  were  irrigated 
three times a week. Captan WP (1 g·l -1) was 
applied once a week to avoid fungal attack. 
All these experiments were conducted in a 
greenhouse  in  La  Protectora  de  Bosques 
(PROBOSQUE), Mexico. The average tem-
perature  in  the  greenhouse  was  19.5  °C, 
with  minimum  and  maximum  tempera-
tures of 10 and 35 °C, respectively.

Experimental design and evaluated 
variables

The experimental design was randomized 
complete  blocks  with  six  repetitions 
(blocks) per family. The experimental unit 
comprised ten seeds. All germinated seeds 
from the same tree were considered as a 
half-sibs family (Zobel & Talbert 1984,  Fal-
coner & Mackay 1996).

To  determine  the  emergence  capacity 
(EC), the number of seeds that emerged 30 
days after sowing was recorded, using the 
following equation (eqn. 1):

(1)

where Sem is the number of emerging seeds 
and Stot is the total number of seed tested. 
Forty-five days after sowing, the number of 
cotyledons  was  counted,  and  hypocotyl 
length  and  cotyledon  length  were  mea-
sured with a ruler.

Statistical analysis

Differences and grouping of families
Compliance with the assumption of nor-

mality and homogeneity of variances of all 
tested variables (emergence capacity, coty-
ledon number, hypocotyl length, and cot-
yledon length) was verified using the Kol-
mogorov-Smirnov  and  Levene  tests,  re-
spectively. None of the variables met any 
of the assumptions (p < 0.01); therefore, to 
identify  differences  between  P.  oocarpa 
families, non-parametric RT4 variance anal-
yses  and  comparisons  of  range  means 
were performed (Conover 2012). To estab-
lish  groups  of  P.  oocarpa families,  cluster 
analysis was performed based on Euclidean 
distances using Ward’s grouping (Núñez & 
Escobedo 2011).

Estimation of variance components
The variance components associated with 

each  variation  source  were  determined 
with  the  VARCOMP  procedure  using  the 
Restricted Maximum Likelihood method of 
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Fig. 1 - Location of superior resin trees of Pinus oocarpa in San Gabriel Cuentla, Mex-
ico.
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the statistical  package SAS® ver.  9.4 (SAS 
Institute 2016), using the following statisti-
cal model (eqn. 2):

(2)

where  Yijk is  the  observed value,  μ is  the 
overall  mean,  Bi is  the  effect  of  the  i-th 
block, Fj is the effect of the j-th family, Bi×Fj 

is  the effect of the interaction of the  i-th 
block with the j-th family and εijk is the ex-
perimental error.

Genetic parameters and correlations
To calculate the genetic parameters and 

establish correlations, the variance and co-
variance components were obtained with 
the  same  statistical  model  as  above;  the 
block was considered as a fixed effect, the 
family was a random effect, and interaction 
block by family was not considered (Esco-
bar-Sandoval et al. 2018, Reyes et al. 2022). 
The  individual  heritability  (hi

2)  and  family 
means (hf

2) were determined with the fol-
lowing equations (Falconer 2017 – eqn. 3, 
eqn. 4):

(3)

(4)

where  σf
2 is  the family variance,  σe

2 is  the 
error variance,  b is the harmonic mean of 
the number of seedlings per family.

To  avoid  overestimating  heritability,  the 
additive variance (σA =  3σf

2) was calculated 
with the coefficient of genetic determina-
tion 3, since P. oocarpa families come from 
open  pollination  and  are  composed  of  a 
mixture of half-sibs and full-sibs (Escobar-
Sandoval et al. 2018, Reyes et al. 2022). The 
standard  error  of  individual  heritability 
(EE(hi

2)) and the coefficient of genetic vari-
ation (CVg)  were calculated using the fol-
lowing equations (Falconer 2017 – eqn. 5, 
eqn. 6):

(5)

(6)

where  na is  the number of  seedlings  per 
family,  nf is the  number of families,  σA

2 is 
the  additive  variance, ̅X is  the  general 
mean.

The phenotypic correlation coefficient be-
tween pairs of variables was obtained with 
the  Pearson’s  correlation  coefficient  and 
the  genetic  correlation  coefficients  were 
estimated using the  Falconer (2017) equa-
tion (eqn. 7):

(7)

where  σf
2

(X) and σf
2

(Y) are  the variances of 
families X and Y, respectively; COVf(X,Y) is the 

family  covariance  of  those  variables,  ob-
tained using the following formula (White 
& Hodge 1989 – eqn. 8):

(8)

where σf
2

(X+Y) is the covariance of families of 
the variable  X +  Y.  The standard error  of 
the genetic correlation was obtained with 
the following equation (Falconer & Mackay 
1996 – eqn. 9):

(9)

Results

Differences between morphological 
traits and grouping into families

The general average emergence capacity 
was  80%,  the  average  cotyledon  number 
was  5.97,  the  average  cotyledon  length 
was  3.29  cm,  and  the  average  hypocotyl 
length was 0.77 cm. All  the variables pre-
sented  significant  differences  between  P. 
oocarpa families  (p <  0.0001).  The  mean 
emergence  capacity  per  family  ranged 
from 25% (family 21) to 98% (families 7, 43, 
and 87). The mean cotyledon number per 
family ranged from 4.97 cm (family 85) to 
6.93 cm (family  34).  The mean cotyledon 

length  per  family  ranged  from  2.09  cm 
(family 21) to 4.17 cm (family 65), and the 
mean hypocotyl  length per family  ranged 
from 0.55 cm (family 84) to 1.08 cm (family 
56 – Tab. 1).

Our multivariate analysis divided P. oocar-
pa families into three groups: the first com-
prises  25  families,  the second includes 18 
families, and the third group has 29 fami-
lies (Fig. 2). Generally, for all the variables, 
P. oocarpa families of groups 1 and 2 pre-
sented high and low mean values, respec-
tively. Group 3 families presented interme-
diate mean values (Tab. 1).

Variation
On average, the contribution of  P. oocar-

pa families to the total variance was 15.8%. 
The  average  contribution  of  the  block, 
block  interaction  per  family,  and  error 
were  7.6%,  12.3%,  and  64.4%,  respectively. 
For all the variables, the contribution of the 
error to the total variance was higher than 
the contribution of the family,  block,  and 
block by family (Tab. 2). The highest contri-
bution of  P.  oocarpa families  to  the  total 
variance  corresponded  to  the  cotyledon 
number, while the lowest contribution was 
that of hypocotyl length (Tab. 2).

Genetic control
The  individual  heritability  values  (hi

2)  of 
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Tab. 1 - Overall mean, minimum, and maximum averages of traits evaluated by family  
groups of resin-producing high-yield trees of P. oocarpa.

Variables
Overall
mean

Family averages

Group 1 Group 2 Group 3

Min Max Min Max Min Max

Emergence capacity (%) 80.0 66.7 98.3 25.0 85.0 68.3 98.3

Number of cotyledons 5.97 5.75 6.93 4.97 6.48 5.40 6.28

Cotyledon length (cm) 3.29 2.94 4.17 2.09 3.40 2.70 3.60

Hypocotyl length (cm) 0.77 0.64 1.08 0.55 0.88 0.65 0.88

Fig. 2 - Grouping of families of highest resin production of Pinus oocarpa.
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the  evaluated  traits  ranged  from  0.46 
(hypocotyl  length)  to  0.70  (cotyledon 
length), while the heritability value of the 
family means (hf

2) varied from 0.67 (hypo-
cotyl  length)  to  0.70  (cotyledon  length). 
The  additive  genetic  variation  coefficient 
ranged from 10.3% (number of cotyledons) 
to 36.5% (emergence capacity – Tab. 3).

Genetic correlations between the number 
of  cotyledons,  hypocotyl  length,  and cot-
yledon length were positive, while the ge-
netic  correlation between these variables 
and the emergence capacity was negative. 
Half  of  the  genetic  correlations  between 
variables were low; cotyledon length mod-
erately  correlated  with  hypocotyl  length 
and  cotyledon  number.  Only  cotyledon 
length had a high genetic correlation with 
emergence  capacity,  but  it  was  negative 
(Tab. 4). On the other hand, only the phe-
notypic  correlation  between  cotyledon 
length  and  number  was  high  and  signifi-
cant; the rest of the phenotypic correlation 
values  between  variables  were  low  (Tab.
4).

Discussion

Differences and grouping of families
Our first objective was to determine the 

differences  between  P.  oocarpa families’ 
seedling emergence capacity and morpho-
logical characteristics. The wide differences 
observed in seed emergence capacity and 
seedling morphological traits of P. oocarpa 
trees with the highest resin yields allowed 
us to establish three groups. This grouping 
provides important guidelines for the sex-
ual  propagation  of  these  trees.  A  high 
propagation capacity is essential for the se-
lection of high-yield trees. According to our 
data,  P. oocarpa families of groups 1 and 3 
are better than families of group 2 in terms 
of emergence.

In  our  study,  the  average  seed  emer-
gence  capacity  of  high-yield  resin-bearing 
P. oocarpa trees was higher than that previ-
ously reported for the same species (Riv-
era 2012) and  P. pseudostrobus Lindl. (78% 
germination  – Aragón  et  al.  2020).  How-
ever, in our study the emergence capacity 
was similar to other species, such as P. leio-

phylla Schiede ex Schltdl.  & Cham. and  P. 
ayacahuite var. veitchii (Roezl) Shaw (Góm-
ez et al. 2010,  López et al. 2018). Likewise, 
the  overall  average  emergence  capacity 
was lower than the germination rate of  P. 
pseudostrobus resin  trees  in  Michoacán, 
Mexico (Muñoz-Flores et al. 2023).

Notably, the average emergence capacity 
of  group 2  P.  oocarpa families  was  lower 
than  in  other  pine  species  (Gómez  et  al. 
2010, López et al. 2018, Aragón et al. 2020), 
which may result from deficient pollination 
and a possible inbreeding effect (Castilleja 
et  al.  2016,  Capilla  et  al.  2021).  Intensive 
resination might also decrease the physio-
logical quality and, consequently, the viabil-
ity  of  these  families’  seeds  (Eshete  et  al. 
2012, Abad-Fitz et al. 2022), warranting fur-
ther investigations.

A previous study reported that the differ-
ences in the number and length of P. oocar-
pa cotyledons  are  under  strong  genetic 
control (Viveros et al. 2005). This informa-
tion  is  evidenced  by  comparing  our  data 
with reports on other species. For instance, 
in our study, the average cotyledon num-
ber was the same as that reported for  P. 
oocarpa species  in  Michoacán (Viveros  et 
al. 2005). Also, the general and group aver-
age number of  P. oocarpa cotyledons was 
lower than the average number of  P. sylv-
estris L.  cotyledons (Ulusan & Bilir  2008). 
The cotyledon number was lower in groups 
2 and 3 than in group 1,  which had more 
cotyledons than the mean value reported 
for  P.  oocarpa trees (Viveros et  al.  2005). 
Additionally,  the average (general  and by 
groups) cotyledon length was lower than 
that of  P. oocarpa trees in Michoacán (Vi-
veros  et  al.  2005).  Regarding  hypocotyl 
length,  group  2  families  presented  lower 
values than groups 1 and 3.

The  differentiation  between  families  by 
emergence capacity and seedling morpho-
logical traits (e.g., hypocotyl and cotyledon 
length) has implications for plant produc-
tion due to a positive relationship between 
these  variables  and  survival  and  initial 
growth in the nursery phase (Juárez et al. 
2006).  Moreover,  hypocotyls  are  consid-
ered an early selection trait  because they 
represent  the  initial  growth  vigor  of  the 
seedlings and an indicator of morphologi-
cal variation (Juárez et al. 2006,  Ulusan & 
Bilir 2008). Thus, our grouping of  P. oocar-
pa trees  into  families  differentiated  by 
emergence capacity, hypocotyl, and cotyle-
don length may represent a methodologi-
cal advantage for future studies.

Variation
The family’s contribution to the total vari-

ance  indicates  a  high  genetic  control  for 
the traits studied here; therefore, selecting 
between and within families to obtain ge-
netic gains should be feasible. In our study, 
the  variance  of  cotyledon  number  and 
length was similar to that of another popu-
lation of P. oocarpa (Viveros et al. 2005). On 
the other hand, the family’s contribution to 
the  total  variance  of  emergence  capacity 

248 iForest 17: 245-251

Tab. 2 - Contribution of variance of seedlings morphological variables and emergence 
of families of resin-producing high-yield trees of Pinus oocarpa.

Variable

Variance components (%)
Total

VarianceBlock Family
Block×
Family

Error

Emergence capacity 0.7 15.64 11.48 72.18 0.16

Number of cotyledons 0.01 19.12 1.21 79.66 0.66

Cotyledon lenght 11.43 17.9 21.27 49.4 0.79

Hypocotyl lenght 18.28 10.38 15.16 56.19 0.1

Mean 7.6 15.76 12.28 64.36 -

Tab.  3 -  Coefficient  of  additive genetic  variation (CVga),  individual  heritability  (hi
2), 

standard error (EE(hi
2)) and heritability of family means (hf

2) of morphological vari-
ables of  seedling and emergence of  families  of  resin-producing high-yield trees of 
Pinus oocarpa.

Variables CVga (%) hi
2 EE(hi

2) hf
2

Emergence capacity 36.45 0.53 0.05 0.7

Number of cotyledons 10.32 0.58 0.07 0.69

Cotyledon lenght 20.52 0.7 0.06 0.7

Hypocotyl lenght 24.06 0.46 0.07 0.67

Tab. 4 - Genetic correlations (with standard error, right of diagonal) and phenotypic 
correlations (with p-values, left of diagonal) between the characteristics evaluated in  
Pinus oocarpa.

Variables
Number of 
cotyledons

Cotyledon 
length

Hypocotyl 
length

Emergence 
capacity

Number of cotyledons - 0.414 ± 0.046 0.169 ± 0.108 -0.235 ± 0.120

Cotyledon length 0.539 ± 0.001 - 0.544 ± 0.046 -0.211 ± 0.091

Hypocotyl length -0.045 ± 0.794 -0.134 ± 0.435 - -0.774 ± 0.221

Emergence capacity -0.254 ± 0.135 0.091 ± 0.599 -0.06 ± 0.73 -
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Genetic control of seedling emergence and morphological traits in egg-cone pine

was lower than that of  P. greggii Engelm. 
(López et al. 2000) and P. leiophylla Schiede 
ex  Schltdl.  &  Cham.  (Gómez  et  al.  2010). 
The high contribution of  the error  to the 
total  variance  indicated  greater  variation 
between  plants  within  the  same  family, 
which  agrees  with  reports  on  P.  oocarpa 
and P. leiophylla  (Viveros et al. 2005.  Góm-
ez  et  al.  2010).  The  contribution  of  the 
block to the total variance indicated a mod-
erate  environmental  effect  for  cotyledon 
and hypocotyl length. However, the block 
had a very low effect on emergence capac-
ity and cotyledon number since these traits 
depend on the embryo’s viability and are 
independent  of  the  environmental  effect 
of the experiment (Sáenz et al. 2004,  Ulu-
san & Bilir  2008).  Notably,  the  cotyledon 
number is not affected by the age of the 
parent trees (Ulusan & Bilir 2008).

Genetic control and correlation 
between variables

In previous reports (Stanfield 1971, Corne-
lius 1994), the heritability values of emer-
gence capacity, number of cotyledons, and 
cotyledon  length  have  been  regarded  as 
“high”;  for instance,  these variables have 
heritability  values  higher  than  those  of 
growth  traits,  shape,  wood  quality,  and 
morphology  in  forest  species  (Cornelius 
1994,  Escobar-Sandoval et al. 2018,  Fabián 
et  al.  2020,  Reyes  et  al.  2022).  High heri-
tability  values  indicate  a  strong  genetic 
control  on  the  emergence  and  seedling 
characteristics of P. oocarpa. These charac-
teristics can thus be useful for the early se-
lection of families (López et al. 2000).

In our study, the individual heritability val-
ues of cotyledon number and length were 
similar to those of other P. oocarpa popula-
tions (0.89 and 0.84 – Viveros et al. 2005). 
In  contrast,  the  heritability  of  the  mean 
cotyledon  number  and  length  of  families 
with the same characteristics was slightly 
lower than the values reported for another 
P. oocarpa population (0.90 and 0.84  – Vi-
veros et al. 2005). Similarly, we found that 
the  heritability  of  cotyledon  number  and 
length was lower than the reported heri-
tability  in  the  broad sense in  P.  sylvestris 
(0.983 and 0. 956 – Ulusan & Bilir 2008). In 
contrast,  the  heritability  values  of  the 
cotyledon  number  in  P.  oocarpa were 
higher  than  the  broad  sense  heritability 
(0.503) in  Pinus wallichiana A. B. Jack (Ra-
wat & Bakshi 2011). Additionally, we found 
that  the  individual  and  family  mean  heri-
tability values of emergence capacity in  P. 
oocarpa were lower than the broad sense 
heritability mean of the germinative capac-
ity of P. wallichiana (0.80 – Kaur et al. 2022) 
and  Picea  sitchensis (Bong.)  Car.  (0.78  – 
Chaisurisri  et al.  1992). However, the final 
germination  rate  of  P.  wallichiana had  a 
lower broad sense heritability (0.665 – Ra-
wat  &  Bakshi  2011)  than  the  heritability 
value of family means obtained for emer-
gence capacity in the present study.

In our study, the additive genetic variabil-
ity  of  emergence  capacity  and  hypocotyl 

and cotyledon length was higher than the 
mean additive genetic variability reported 
for  other  forest  trees  (14.7%  – Cornelius 
1994). Our high values of the coefficient of 
additive  genetic  variation  indicate  a  high 
genetic  variability  between  families  of  P. 
oocarpa trees  relative  to  the  population 
mean,  reflecting a high genetic  variability 
of these traits. We found a moderate posi-
tive  correlation  between  cotyledon  and 
hypocotyl length and cotyledon length and 
number. Moreover, the genetic correlation 
between cotyledon number and length re-
ported here is very similar to that obtained 
(0.44)  for  other  P.  oocarpa populations 
from Michoacán (Viveros et al. 2005).

We also found a high negative correlation 
between hypocotyl length and emergence 
capacity,  possibly  due  to  common  genes 
affecting these traits and the linkage effect 
between  nearby  genes  (Falconer  2017). 
From the point of view of plant selection, 
this correlation is unfavorable; although it 
is  desirable  to  select  families  with  high 
emergence  capacity,  a  negative  genetic 
correlation  with  hypocotyl  length  could 
negatively  influence  plant  growth  in  the 
nursery  phase.  This  observation  suggests 
that the genetic correlation between seed-
ling morphological traits and growth in the 
nursery  phase  should  be  further  investi-
gated  in  P.  oocarpa families  selected  for 
high resin production. For instance, an im-
portant  genetic  correlation  has  been  re-
ported between cotyledon length, growth, 
and height in the rearing phase (Viveros et 
al. 2005). In our study, the significant phe-
notypic  correlation  between  cotyledon 
number  and  length  was  consistent  with 
their  genotypic  correlation.  The  value  of 
the phenotypic correlation between cotyle-
don  number  and  length  was  higher  than 
the value reported for another population 
of the same species (0.036 – Viveros et al. 
2005).

We did not find a phenotypic correlation 
between  cotyledons  number  and  hypo-
cotyl  length,  consistent  with  previous  re-
ports  for  P.  oocarpa (Viveros  et  al.  2005) 
and  P. sylvestris (Ulusan & Bilir 2008). The 
low and non-significant phenotypic correla-
tion between cotyledon length and emer-
gence capacity is possible because the ge-
netic  component,  environmental  effect, 
and interaction between these factors do 
not  favor  the  genetic  response  in  these 
variables. However, even without a strong 
correlation between all the variables, some 
seedling  traits  could  have  an  important 
phenotypic correlation with height and di-
ameter growth in the nursery phase. For in-
stance, in P. oocarpa and P. sylvestris, a sig-
nificant  phenotypic  correlation  between 
cotyledon length and number on one hand 
and seedling height  and diameter  on the 
other  hand  was  observed  in  the  nursery 
stage  (Viveros  et  al.  2005,  Ulusan  &  Bilir 
2008). These observations illustrate the im-
portance of studying the phenotypic rela-
tionship  between  seedling  traits,  height 
and diameter growth, and other variables 

of  high-yield  resin-producing  P.  oocarpa 
trees. Grouping P. oocarpa into families, as 
illustrated here, should aid decision-making 
for  sexual  propagation  because  a  high 
propagation capacity of high-yield trees is 
essential to any genetic improvement pro-
gram.  In  addition,  we  demonstrate  here 
that  the  heritability  of  emergence  and 
other  seedling  traits  is  high;  therefore, 
these traits could be useful for selecting su-
perior trees with high sexual reproductive 
capacity.

Conclusions
Seed  emergence  capacity  and  seedling 

characteristics of  P.  oocarpa differ widely, 
allowing the grouping of families into three 
groups, one of which presents emergence 
problems. The family’s contribution to the 
total variance of the evaluated characteris-
tics was moderate and lower than the con-
tribution of the error; therefore, there is a 
larger  variation  between  seedlings  and 
seeds  within  families  than between fami-
lies. However, the variation levels indicated 
the  possibility  of  selecting  high-yield  P. 
oocarpa trees between and within families.

A strong genetic control was detected for 
the  emergence  and  other  seedling  traits. 
There was a high and negative genetic cor-
relation  between  hypocotyl  length  and 
emergence capacity that is unfavorable be-
cause  hypocotyl  length  influences  early 
growth, and families with high germination 
capacity and growth are required.

The differences, the grouping, the varia-
tion levels between families, and the heri-
tability will allow identifying high-yield indi-
viduals in seedling emergence capacity and 
morphological traits, key aspects for forest 
genetic improvement programs.
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