*
 

iForest - Biogeosciences and Forestry

*

Total tree height predictions via parametric and artificial neural network modeling approaches

Yasin Karatepe (1), Maria J Diamantopoulou (2)   , Ramazan Özçelik (1), Zerrin Sürücü (3)

iForest - Biogeosciences and Forestry, Volume 15, Issue 2, Pages 95-105 (2022)
doi: https://doi.org/10.3832/ifor3990-015
Published: Mar 21, 2022 - Copyright © 2022 SISEF

Research Articles


Height-diameter relationships are of critical importance in tree and stand volume estimation. Stand description, site quality determination and appropriate forest management decisions originate from reliable stem height predictions. In this work, the predictive performances of height-diameter models developed for Taurus cedar (Cedrus libani A. Rich.) plantations in the Western Mediterranean Region of Turkey were investigated. Parametric modeling methods such as fixed-effects, calibrated fixed-effects, and calibrated mixed-effects were evaluated. Furthermore, in an effort to come up with more reliable stem-height prediction models, artificial neural networks were employed using two different modeling algorithms: the Levenberg-Marquardt and the resilient back-propagation. Considering the prediction behavior of each respective modeling strategy, while using a new validation data set, the mixed-effects model with calibration using 3 trees for each plot appeared to be a reliable alternative to other standard modeling approaches based on evaluation statistics regarding the predictions of tree heights. Regarding the results for the remaining models, the resilient propagation algorithm provided more accurate predictions of tree stem height and thus it is proposed as a reliable alternative to pre-existing modeling methodologies.

  Keywords


Tree Height Model Prediction, Generalized Models, Mixed-Effects Models, Levenberg-Marquardt Algorithm, Resilient Propagation

Authors’ address

(1)
Yasin Karatepe 0000-0002-8795-3829
Ramazan Özçelik 0000-0003-2132-2589
Faculty of Forestry, Isparta University of Applied Sciences, East Campus, 32260 Isparta (Turkey)
(2)
Maria J Diamantopoulou 0000-0002-6003-1285
Faculty of Agriculture, Forestry and Natural Environment, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)
(3)
Zerrin Sürücü
Ministry of Agriculture and Forestry, VI Regional Directorate, 27002 Burdur (Turkey)

Corresponding author

 
Maria J Diamantopoulou
mardi.diamant@gmail.com

Citation

Karatepe Y, Diamantopoulou MJ, Özçelik R, Sürücü Z (2022). Total tree height predictions via parametric and artificial neural network modeling approaches. iForest 15: 95-105. - doi: 10.3832/ifor3990-015

Academic Editor

Angelo Rita

Paper history

Received: Oct 04, 2021
Accepted: Jan 11, 2022

First online: Mar 21, 2022
Publication Date: Apr 30, 2022
Publication Time: 2.30 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 20350
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 17848
Abstract Page Views: 1252
PDF Downloads: 1002
Citation/Reference Downloads: 1
XML Downloads: 247

Web Metrics
Days since publication: 738
Overall contacts: 20350
Avg. contacts per week: 193.02

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2022): 2
Average cites per year: 1.00

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Adame P, Del Río M, Canellas I (2008)
A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management 256: 88-98.
CrossRef | Gscholar
(2)
Adamec Z, Drápela K (2016)
Comparison of parametric and nonparametric methods for modeling height-diameter relationships. iForest - Biogeosciences and Forestry 10 (1): 1-8.
CrossRef | Gscholar
(3)
Adeloye A, De Munari A (2006)
Artificial neural network based generalized storage-yield-reliability models using the Levenberg-Marquardt algorithm. Journal of Hydrology 326 (1-4): 215-230.
CrossRef | Gscholar
(4)
Beale MH, Hagan M, Demuth H (2017)
Neural network toolbox: user’s guide, v. R2017a. Mathworks Inc, Natick, MA, USA, pp. 446.
Gscholar
(5)
Boydak M (2003)
Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management 178: 231-243.
CrossRef | Gscholar
(6)
Bronisz K, Mehtätalo L (2020)
Mixed-effects generalized height-diameter model for young silver birch stands on post-agricultural lands. Forest Ecology and Management 460, 117901.
CrossRef | Gscholar
(7)
Calama R, Montero G (2004)
Interregional nonlinear height diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research 34: 150-163.
CrossRef | Gscholar
(8)
Cariboni J, Gatelli D, Liska R, Saltelli A (2007)
The role of sensitivity analysis in ecological modeling. Ecological Modeling 203: 167-182.
CrossRef | Gscholar
(9)
Catal Y (2012)
Height-diameter model for black locust, Anatolian black pine and Taurus cedar tree species in Lakes Region. Turkish Journal of Forestry 13: 92-96.
Online | Gscholar
(10)
Catal Y, Carus S (2018)
A height-diameter model for brutian pine (Pinus Brutia Ten.) plantations in southwestern Turkey. Applied Ecology and Environmental Research 16 (2): 1445-1459.
Online | Gscholar
(11)
Colbert KC, Larsen DR, Lootens JR (2002)
Height-diameter equations for thirteen midwestern bottomland hardwood species. Northern Journal of Applied Forestry 19 (4): 171-176.
CrossRef | Gscholar
(12)
Corral-Rivas S, Alvarez-González JG, Crecente-Campo F, Corral-Rivas JJ (2014)
Local and generalized height-diameter models with random parameters for mixed, uneven-aged forests in Northwestern Durango, Mexico. Forest Ecosystems 1: 1-9.
CrossRef | Gscholar
(13)
Cosenza DN, Soares AAV, De Alcntara AEM, Da Silva AAL, Rode R, Soares VP, Leite HG (2017)
Site classification for eucalypt stands using artificial neural network based on environmental and management features. Cerne 23: 310-320.
CrossRef | Gscholar
(14)
Crecente-Campo F, Tomé M, Soares P, Diéguez-Aranda U (2010)
A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management 259: 943-952.
CrossRef | Gscholar
(15)
Curtis RO (1967)
Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest Science 13: 365-375.
Online | Gscholar
(16)
Diamantopoulou MJ, Ozçelik R (2012)
Evaluation of different modeling approaches for total tree height estimation in Mediterranean Region of Turkey. Forest Systems 21: 383-397.
CrossRef | Gscholar
(17)
Diamantopoulou MJ, Ozçelik R, Crecente-Campo F, Eler U (2015)
Estimation of Weibull function parameters for modeling tree diameter distribution using least squares and artificial neural networks methods. Biosystems Engineering 133: 33-45.
CrossRef | Gscholar
(18)
Ercanli I, Günlü A, Senyurt M, Keles S (2018)
Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey. Forest Ecosystems 5: 1-12.
CrossRef | Gscholar
(19)
Ercanli I (2020)
Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height. Forest Ecosystems 7: 1-18.
CrossRef | Gscholar
(20)
Fausett L (1994)
Fundamentals of neural networks architectures. Algorithms and applications. Prentice Hall, Englewood Cliffs, NJ, USA, pp. 461.
Gscholar
(21)
Florescu C, Igel C (2018)
Resilient backpropagation (RPROP) for batch-learning in tensorflow. In: Proceedings of the “6th International Conference on Learning Representations - ICLR 2018”. OpenReview.net 2018, web site.
Online | Gscholar
(22)
Freedman D, Pisani R, Purves R (2007)
Statistics - International student edition (4th edn) (Pisani Purves R eds). WW Norton and Company, New York, USA, pp. 720.
Gscholar
(23)
GDF (2015)
Forest resources. General Directorate of Forests - GDF, Ankara, Turkey, pp. 162.
Gscholar
(24)
Gómez-García E, Diéguez-Aranda U, Castedo-Dorado F, Crecente-Campo F (2014)
A comparison of model forms for the development of height-diameter relationships in even-aged stands. Forest Science 60: 560-568.
CrossRef | Gscholar
(25)
Gómez-García E, Fonseca TF, Crecente-Campo F, Almeida LR, Dieguez-Aranda U, Huang S, Marques CP (2015)
Height-diameter models for maritime pine in Portugal: a comparison of basic, generalized and mixed-effects models. iForest - Biogeosciences and Forestry 9 (1): 72-78.
CrossRef | Gscholar
(26)
Hagan MT, Menhaj MB (1994)
Training feedforward networks with the Marquardt algorithm. IEEE transactions on Neural Networks 5 (6): 989-993.
CrossRef | Gscholar
(27)
Hall DB, Clutter M (2004)
Multivariate multilevel nonlinear mixed effects models for timber yield predictions. Biometrics 60: 16-24.
CrossRef | Gscholar
(28)
Huang S, Titus SJ, Wiens DP (1992)
Comparison of nonlinear height-diameter functions for major Alberta tree species. Canadian Journal of Forest Research 22 (9): 1297-1304.
CrossRef | Gscholar
(29)
Huang S, Wiens DP, Yang Y, Meng SX, Vanderschaaf CL (2009)
Assessing the impacts of species composition, top height and density on individual tree height prediction of quaking aspen in boreal mixedwoods. Forest Ecology and Management 258: 1235-1247.
CrossRef | Gscholar
(30)
Hursch R (1991)
Validation samples. Biometrics 47: 1193-1194.
Gscholar
(31)
Kearsley E, Moonen PC, Hufkens K, Doetterl S, Lisingo J, Bosela FB, Boeckx P, Beeckman H, Verbeeck H (2017)
Model performance of tree height-diameter relationships in the central Congo Basin. Annals of Forest Science 74 (1): 1-13.
CrossRef | Gscholar
(32)
Konukçu M (2001)
Forests and forestry. State Planning Organization publications, Ankara, Turkey, pp. 238. [in Turkish]
Gscholar
(33)
Krumland BE, Wensel LC (1988)
A generalized height-diameter equation for coastal California species. Western Journal of Applied Forestry 3: 113-115.
CrossRef | Gscholar
(34)
Leahy K (1994)
The overfitting problem in perspective. AI Expert: The Magazine of Artificial Inteligence 9 (10): 35-36. [ISSN 0888-3785]
Gscholar
(35)
Lei X, Peng C, Wang H, Zhou X (2009)
Individual height-diameter models for young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations in New Brunswick, Canada. Forestry Chronicle 85: 43-56.
CrossRef | Gscholar
(36)
Leite HG, Da Silva MLM, Binoti DHB, Fardin L, Takizawa FH (2011)
Estimation of inside-bark diameter and heartwood diameter for Tectona grandis Linn. trees using artificial neural networks. European Journal of Forest Research 130 (2): 263-269.
CrossRef | Gscholar
(37)
Levenberg K (1944)
A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2: 164-168.
CrossRef | Gscholar
(38)
Lhotka JM (2012)
Height-diameter relationships in Sweetgum (Liquidambar styraciflua)-dominated stands. Southern Journal of Applied Forestry 36 (2): 98-106.
CrossRef | Gscholar
(39)
Li YX, Jiang LC (2010)
Application of ANN algorithm in tree height modeling. Applied Mechanics and Materials 20 (23): 756-761.
CrossRef | Gscholar
(40)
Liu C, Zhang L, Davis CJ, Solomon DS, Brann TB, Caldwell LE (2003)
Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data. Forest Science 49 (4): 619-631.
Online | Gscholar
(41)
Maier HR, Dandy GC (2000)
Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling and Software 15: 101-124.
CrossRef | Gscholar
(42)
Marquardt DW (1963)
An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics 11 (2): 431-441. -
Online | Gscholar
(43)
May RJ, Maier HR, Dandy GC (2010)
Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Networks 23 (2): 283-294.
CrossRef | Gscholar
(44)
Mehtätalo L, De-Miguel S, Gregoire TG (2015)
Modeling height-diameter curves for prediction. Canadian Journal of Forest Research 45: 826-837.
CrossRef | Gscholar
(45)
Meng SX, Huang S (2009)
Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function. Forest Science 55 (3): 238-248.
Online | Gscholar
(46)
MGM (2013)
Official statistics. Statistical data of Isparta Province and Districts. Turkish State Meteorological Service - MGM, Ankara, Turkey, web site. [In Turkish]
Online | Gscholar
(47)
Monteiro Da Silva EJ, Maia RD, Cabacinha CD (2018)
Bee-inspired RBF network for volume estimation of individual trees. Computers and Electronics in Agriculture 152: 401-408.
CrossRef | Gscholar
(48)
Newton P, Amponsah I (2007)
Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management 247: 149-166.
CrossRef | Gscholar
(49)
Olson DL, Delen D (2008)
Advanced data mining techniques. Springer-Verlag, Berlin, Heidelberg, Germany, pp. 180.
CrossRef | Gscholar
(50)
Ozçelik R, Diamantopoulou MJ, Crecente-Campo F, Eler U (2013)
Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models. Forest Ecology and Management 306: 52-60.
CrossRef | Gscholar
(51)
Ozçelik R, Diamantopoulou MJ, Brooks JR (2014)
The use of tree crown variables in over-bark diameter and volume prediction models. iForest - Biogeosciences and Forestry 7 (3): 132-139.
CrossRef | Gscholar
(52)
Ozçelik R, Diamantopoulou MJ, Eker M, Gürlevik N (2017)
Artificial neural network models: an alternative approach for reliable aboveground pine tree biomass prediction. Forest Science 63 (3): 291-302.
CrossRef | Gscholar
(53)
Ozçelik R, Cao QV, Trincado G, Göçer N (2018)
Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest Ecology and Management 419: 240-248.
CrossRef | Gscholar
(54)
Ozçelik R, Diamantopoulou MJ, Trincado G (2019)
Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey. Computers and Electronics in Agriculture 162: 773-782.
CrossRef | Gscholar
(55)
Patterson DW (1996)
Artificial neural networks, theory and applications. Prentice Hall, Singapore, pp. 477.
Gscholar
(56)
Peng C, Zhang L, Liu J (2001)
Developing and validating nonlinear height-diameter models for major tree species of Ontario’s boreal forests. Northern Journal of Applied Forestry 18 (3): 87-94.
CrossRef | Gscholar
(57)
Raptis DI, Kazana V, Kazaklis A, Stamatiou C (2021)
Mixed-effects height-diameter models for black pine (Pinus nigra Arn.) forest management. Trees 35: 1167-1183.
CrossRef | Gscholar
(58)
Reis LP, De Souza AL, Mazzei L, Dos Reis PCM, Leite HG, Soares CPB, Torres CMME, Da Silva LF, Ruschel AR (2016)
Prognosis on the diameter of individual trees on the eastern region of the amazon using artificial neural networks. Forest Ecology and Management 382: 161-167.
CrossRef | Gscholar
(59)
Riedmiller M, Braun H (1993)
A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: “IEEE International Conference on Neural Networks”, vol. 1, pp. 586-591.
CrossRef | Gscholar
(60)
Robinson AP, Wykoff WR (2004)
Imputing missing height measures using a mixed-effects modeling strategy. Canadian Journal of Forest Research 34 (12): 2492-2500.
CrossRef | Gscholar
(61)
Saatçioglu A (1979)
Silviculture II. Istanbul University Faculty of Forestry publications, Istanbul, Turkey, pp. 562. [In Turkish]
Gscholar
(62)
Saputra W, Tulus Zarlis M, Sembring RW, Hartama D (2017)
Analysis resilient algorithm on artificial neural network backpropagation. Journal of Physics: Conference Series 930: 0120 35.
CrossRef | Gscholar
(63)
SAS Institute (2010)
SAS/OR® 9. 22 user’s guide: mathematical programming. SAS Institute Inc., Cary, NC, USA, pp. 1264.
Gscholar
(64)
Scanlan D, Mulvaney D (2013)
Graphics processor unit hardware acceleration of Levenberg-Marquardt artificial neural network training. Research Inventy: International Journal of Engineering and Science 2 (7): 7.
Online | Gscholar
(65)
Schmoldt DL, Li P, Abbott AL (1997)
Machine vision using artificial neural networks with local 3D neighborhoods. Computers and Electronics in Agriculture 16 (3): 255-271.
CrossRef | Gscholar
(66)
Sharma M, Parton J (2007)
Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management 249 (3): 187-198.
CrossRef | Gscholar
(67)
Soares FAA, Flores EL, Cabacinha CD, Carrijo GA, Veiga ACP (2013)
Recursive diameter prediction for calculating merchantable volume of eucalyptus clones using Multilayer Perceptron. Neural Computing and Applications 22 (7): 1407-1418.
CrossRef | Gscholar
(68)
Soares P, Tomé M (2002)
Height-diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecology and Management 166: 99-109.
CrossRef | Gscholar
(69)
Sun Y, Ao Z, Jia W, Chen Y, Xu K (2021)
A geographically weighted deep neural network model for research on the spatial distribution of the down dead wood volume in Liangshui National Nature Reserve (China). iForest - Biogeosciences and Forestry 14 (4): 353-361.
CrossRef | Gscholar
(70)
Temesgen H, Monleon V, Hann D (2008)
Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Canadian Journal of Forest Research 38 (3): 553-565.
CrossRef | Gscholar
(71)
Thanh TN, Tien TD, Shen HL (2019)
Height-diameter relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast China using nonlinear regressions and artificial neural network models. Journal of Forest Science 65 (4): 134-143.
CrossRef | Gscholar
(72)
Trincado G, VanderSchaaf CL, Burkhart HE (2007)
Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research 126 (2): 253-262.
CrossRef | Gscholar
(73)
Vacchiano G, Berretti R, Motta R, Mondino Borgogno E (2018)
Assessing the availability of forest biomass for bioenergy by publicly available satellite imagery. iForest - Biogeosciences and Forestry 11 (4): 459-468.
CrossRef | Gscholar
(74)
VanderSchaaf CL (2013)
Mixed-effects height-diameter models for commercially and ecologically important hardwoods in Minnesota. Northern Journal of Applied Forestry 30 (1): 37-42.
CrossRef | Gscholar
(75)
Vargas-Larreta B, Castedo-Dorado F, Alvarez-González JG, Barrio-Anta M, Cruz-Cobos F (2009)
A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). Forestry 82 (4): 445-462.
CrossRef | Gscholar
(76)
Vieira GC, De Mendonça R, Da Silva GF, Zanetti SS, Da Silva MM, Dos Santos AR (2018)
Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Science of the Total Environment 619: 1473-1481.
CrossRef | Gscholar
(77)
Wilamowski BM, Yu H (2010)
Improved computation for Levenberg-Marquardt training. IEEE Transactions on Neural Networks 21 (6): 930-937.
CrossRef | Gscholar
(78)
Wu D (2014)
Estimation of forest volume based on LM-BP neural network model. Computer Modelling and New Technologies 18 (4): 131-137.
Online | Gscholar
(79)
Wu D, Ji Y (2015)
Dynamic estimation of forest volume based on multi-source data and neural network model. Journal of Agricultural Science 7 (3): 18-31.
CrossRef | Gscholar
(80)
Wu C, Chen Y, Peng C, Li Z, Hong X (2019)
Modeling and estimating aboveground biomass of Dacrydium pierrei in China using machine learning with climate change. Journal of Environmental Management 234: 167-179.
CrossRef | Gscholar
(81)
Zhang X, Duan A, Zhang J, Xiang C (2014)
Estimating tree height-diameter models with the Bayesian method. The Scientific World Journal 2014, 683691.
CrossRef | Gscholar
(82)
Zang H, Lei X, Zeng W (2016)
Height-diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models. Forestry 89 (4): 434-445.
CrossRef | Gscholar
(83)
Zhou R, Wu D, Fang L, Xu A, Lou X (2018)
A Levenberg-Marquardt backpropagation neural network for predicting forest growing stock based on the least-squares equation fitting parameters. Forests 9 (12): 757.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info