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Total tree height predictions via parametric and artificial neural 
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Height-diameter relationships are of critical importance in tree and stand vol-
ume estimation. Stand description, site quality determination and appropriate
forest management decisions originate from reliable stem height predictions.
In this work, the predictive  performances of height-diameter models devel-
oped for Taurus cedar (Cedrus libani A. Rich.) plantations in the Western Medi-
terranean Region of Turkey were investigated. Parametric modeling methods
such  as  fixed-effects,  calibrated fixed-effects,  and  calibrated  mixed-effects
were evaluated.  Furthermore,  in  an effort  to  come up with more reliable
stem-height prediction models, artificial neural networks were employed using
two different modeling algorithms: the Levenberg-Marquardt and the resilient
back-propagation.  Considering  the  prediction  behavior  of  each  respective
modeling strategy, while using a new validation data set, the mixed-effects
model with calibration using 3 trees for each plot appeared to be a reliable al-
ternative to other standard modeling approaches based on evaluation statistics
regarding the predictions of tree heights. Regarding the results for the remain-
ing models, the resilient propagation algorithm provided more accurate pre-
dictions of tree stem height and thus it is proposed as a reliable alternative to
pre-existing modeling methodologies.

Keywords:  Tree Height Model  Prediction,  Generalized Models,  Mixed-Effects
Models, Levenberg-Marquardt Algorithm, Resilient Propagation

Introduction
Natural  forest  areas  have  continued  to

decline  in  the  last  30  years  while  planta-
tions  have  increased  in  the  same  time-
frame,  now  comprising  some  7%  of  the
global forest area. Plantations are of great
importance  in  economic  and  ecological
terms.  Thus,  robust  and  reliable  informa-
tion on the growth and development char-
acteristics of these species are essential in
order  to  sustainably  manage  plantations
and determine the success of afforestation
efforts.  Diameter  at  breast  height  (d)  of
trees and total tree-bole height (h) are two
basic commonly used parameters in forest
inventory,  planning  and  management  of
plantations.  These  parameters  are  funda-
mental variables in several forest practices
such  as  prediction  of  standing  yield,

growth  projection,  carbon  accounting,
identification of stand structural diversity,
determination of the extent of damage in
forest  or stands,  and to estimate missing
tree  heights  (Curtis  1967,  Adame  et  al.
2008).

In  forest  management  applications  or
field  inventories,  d in  trees  can  be  mea-
sured  rapidly  and  precisely,  while  h is
costly, more time consuming, and challeng-
ing to measure (Meng & Huang 2009, Shar-
ma & Parton 2007, Ozçelik et al. 2018). It is
also known that there is a strong correla-
tion between d and h in the stem of trees.
Because of this, models can be created to
discover the relationship between d and h
based  on  the  tree  diameter  at  breast
height and the total stem height of trees
that are measured. Ultimately, these mod-

els are used to estimate the height of any
tree in the stand with unknown height (Ro-
binson & Wykoff 2004, Lei et al. 2009).

There  are  many  studies  describing  tree
height  estimation  and  prediction  models,
mainly using well-known classical modeling
techniques,  such  as  non-linear  regression
models (Colbert et al. 2002,  Kearsley et al.
2017) and Bayesian modeling (Zhang et al.
2014), using in most cases allometric mod-
els.  Further  research  evaluating  more  re-
cent  and  promising  modeling  methods
such as techniques  based on the artificial
intelligence are warranted to improve effi-
cacy. Previous research on height-diameter
(h-d) modeling of cedar plantations in Tur-
key  was  conducted  by  Catal  (2012),  al-
though it was based on a limited number
of traditional  h-d models,  without further
investigation of the potential  efficiency of
other modeling approaches.

Generally,  h-d models  may be simple  or
generalized. Simple models utilize d to cal-
culate  h,  as  the relationship between the
two  variables  is  well-known  (Bronisz  &
Mehtätalo 2020).  The limitation with  sim-
ple models, however, is the large sampling
effort required (Gómez-García et al. 2014).
In contrast, the correlation between d and
h  (total height) varies among species and
can  be  influenced  by  stand-specific  vari-
ables such as stand structure and site pro-
ductivity  (Lhotka  2012).  Models  that  in-
clude measures of stand structure, site pro-
ductivity and tree social position are com-
monly referred to as generalized  h-d  (GM)
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models. Mehtätalo et al. (2015) used fixed-
effects (FE) and generalized mixed-effects
(ME) modeling techniques to show differ-
ences  between  marginal  and plot-specific
h-d relationships, in a range of different ge-
ographical/ecological regions and tree spe-
cies. The use of additional stand-level vari-
ables  was  previously  shown  to  improve
tree height estimates (Vargas-Larreta et al.
2009,  Lhotka 2012).  For example,  Newton
& Amponsah (2007) used dominant height
(H0) within a stand to estimate stand-level
competition.

Since  the  estimation  and  prediction  of
tree heights are crucial in tree growth and
tree volume prediction, alternative and ac-
cepted modeling techniques exist such as
the generalized, FE and ME models, and ar-
tificial  neural  network  modeling  tech-
niques, that may be useful in modeling the
relationship between h-d and reducing the
measurement  efforts  on the ground.  The
most basic (Huang et al. 1992,  Peng et al.
2001, Soares & Tomé 2002) and generalized
h-d models (Gómez-García et al. 2015, Ada-
me et al. 2008,  Vargas-Larreta et al. 2009,
Crecente-Campo  et  al.  2010,  Lhotka  2012,
Zang  et  al.  2016,  Ozçelik  et  al.  2018)  are
available  for  many tree  species.  Most  re-
search has focused on mixed-models to un-
derstand h-d relationships (Calama & Mon-
tero 2004,  Sharma & Parton 2007,  Lhotka
2012,  Ozçelik et al. 2013,  2018,  Gómez-Gar-
cía et al. 2014,  2015,  Mehtätalo et al. 2015,
Adamec & Drápela 2016,  Bronisz & Mehtä-
talo 2020).  In  Turkey,  h-d equations were
developed for some tree species at region-
al  scale  (Diamantopoulou  &  Ozçelik  2012,
Ozçelik et al. 2014, Catal & Carus 2018). 

Taurus cedar (Cedrus libani A. Rich.)  natu-
ral range includes the Taurus Mountains of
Turkey, where it is an ecologically and eco-
nomically important component of the for-
est  ecosystems  (Boydak 2003).  The most
recent inventory data show that cedar cov-
ers an area of approximately 463,521 ha in
Turkey, with a total growing stock of 27.4
million m3 (GDF 2015). It is not only an im-
portant  resource  of  raw  material  for  the

forest  product  industry,  but  it  also  fulfils
critical ecological tasks including the reduc-
tion of soil erosion and the conservation of
water resources,  the mitigation of  the ad-
verse impacts of climate change, and is es-
sential in the maintenance of biological di-
versity  in Turkey.  It  has moderate soil  re-
quirements and is tolerant to extremes of
temperature  and drought  in  summer and
to cold temperatures in winter (Saatçioglu
1979); therefore,  C. libani has great poten-
tial  for  afforestation,  especially  in  areas
with semi-arid climates. Given that 35% of
Turkey’s  territory  has  semi-arid  climate,
cedar is a critical tree species for use in af-
forestation. As of 2000, an area of approxi-
mately  110,000 ha was  re-afforested  with
cedar  (Konukçu  2001).  However,  there  is
still relatively little information concerning
the  growth  of  Taurus  cedar  plantation
compared with the quantity of information
available for natural cedar stands. H-d rela-
tionship is one of the most important com-
ponents  of  growth  and  yield  models  for
sustainable  management  of  Taurus  cedar
plantations. Moreover,  to our best knowl-
edge,  h-d generalized mixed-effects model
has not been developed for Taurus cedar
plantations.

Until now, the use of artificial neural net-
works (ANNs) in forest modeling has led to
the conclusion that they can be considered
as  significant  alternative  techniques  for
many characteristics of trees growth com-
pared to classical modeling methods, both
in classification tasks (Schmoldt et al. 1997,
Liu et al. 2003, Cosenza et al. 2017), and for
estimation and prediction problems (Leite
et  al.  2011,  Soares  et  al.  2013,  Reis  et  al.
2016, Ozçelik et al. 2017, Ercanli et al. 2018,
Monteiro Da Silva et al. 2018, Vacchiano et
al.  2018,  Wu et  al.  2019,  Sun et  al.  2021).
Specifically,  artificial  intelligence  was  suc-
cessfully implemented to the development
of total tree height models as well (Li & Ji-
ang 2010,  Diamantopoulou & Ozçelik 2012,
Ozçelik et al. 2013, Vieira et al. 2018, Thanh
et al.  2019,  Ercanli  2020).  The majority  of
the ANN modeling studies employed multi-

layer perceptron architecture combined by
the standard backpropagation algorithm.

The incentive for developing an artificial
neural network modeling approach in the
present work was that ANNs can discover
and thus automatically model the relation-
ships  underlying  input  and  output  vari-
ables,  a property reflected in the connec-
tion weights of the network. Instead, tradi-
tional  approaches,  such as  the widely  ac-
cepted  generalized,  fixed  and  mixed-ef-
fects modeling methods, require certain as-
sumptions about the form of a fitting func-
tion which must be specified in advance, in-
troducing  limitations  that  mainly  impact
model  applicability  to different  scenarios.
In contrast, an ANN model is trained to find
this relationship, thus fitting complex non-
linear models. In addition, given that ANNs
provide  resilience  to  outliers,  the  tech-
niques generally perform well where there
are missing or inaccurate data;  this  prob-
lem  is  typically  found in  forest-data  mea-
surements which require substantial effort
in-the-field, increasing proneness to errors.
Furthermore, this generalization ability en-
ables ANN models to generate reliable pre-
dictions with new data sets. ANN modeling
techniques, therefore, can overcome prob-
lems in basic  data gathered in the forest,
including nonlinear relationships, multicol-
linearity,  heteroscedasticity,  outliers  and
noise.  Although  ANNs  may  suffer  from
over-fitting  of  data,  this  problem  can  be
avoided by selecting a suitable training ar-
chitecture followed by testing and valida-
tion.  

The objective  of  this work was  to  com-
pare the effectiveness of different model-
ing approaches in providing accurate pre-
dictions  of  total  stem  height  of  C.  libani
plantations of Turkey. After developing the
ANN models, validation was carried out us-
ing simple measurements from the forest
environment,  such  as  d.  Variability  be-
tween sampling plots was included in the
models by recording dominant heights (H0)
and  diameters  (D0)  of each  sample  plot.
The adjusted fixed-and mixed-effects mod-
els,  after  being localized using calibration
data from one to three sample cedar trees
were compared against the prediction abili-
ties of the novel ANN models. For this pur-
pose,  two  different  learning  algorithms,
that have shown significant ability to cope
the  known  disadvantages  and  limitations
of  the  most  used  standard  backpropaga-
tion learning algorithm (Wu & Ji 2015), i.e.,
the resilient propagation (RPANN) and the
Levenberg-Marquardt  (LMANN),  were ap-
plied as innovative modeling strategies in
forest model building, with the aim of opti-
mizing the learning process and better  ex-
ploting the information in  real  data mea-
surements originating from the forests.

Materials and methods

Site description
Data  used  for  development  of  models

were gathered in cedar  plantations.  Sam-
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Tab. 1 - Summary statistics for the fitting and the validation data sets. (d): diameter at
breast height (1.3 m above the ground); (h): total tree height; (H0): dominant height;
(D0): dominant diameter; (G): basal area per hectare; (dm): mean diameter; (hm): mean
height; (Dg): quadratic mean diameter; (SD): standard deviation.

Variable
Fitting data (70%)
(630 trees in 21 plots)

Validation data (30%)
(270 trees in 9 plots)

Mean Min Max SD Mean Min Max SD

d (cm) 10.31 3.20 20.00 3.12 11.37 5.40 20.00 3.50

h (m) 6.12 3.00 11.75 1.42 6.66 3.20 11.00 1.81

Age (years) 26.00 17.00 35.00 6.30 31.00 23.00 35.00 4.70

D0 (cm) 13.96 9.72 18.30 2.38 14.86 7.82 19.24 3.49

H0(m) 7.51 5.44 10.02 1.21 8.30 5.66 10.65 1.67

G (m2 ha-1) 30.30 12.75 50.70 10.86 36.96 12.01 58.25 15.02

dm(cm) 10.29 6.68 13.53 2.02 11.35 6.74 14.64 2.51

hm(m) 6.10 4.31 7.93 1.03 6.66 4.50 8.65 1.37

Dg(cm) 10.57 6.98 13.92 2.08 11.60 6.77 14.92 2.59
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Methods for accurate tree height predictions

ple plots were in the Isparta Regional  Di-
rectorate of Forestry, which includes the Is-
parta and Burdur provinces (south-western
Turkey),  at  an elevation between 1000 to
1600 m a.s.l. Climate in this region is char-
acterized as transitional from the Mediter-
ranean to continental climate.  Annual pre-
cipitation  varies between 426 to 814 mm,
while  annual  mean  temperature  ranges
from 11.9 to 13.2 °C (MGM 2013). The bed-
rock of the study site is composed of sedi-
mentary  rock  including  limestone,  sand-
stone, and claystone.

Data collection
To  determine  diameter-height  associa-

tions,  data  were  collected  from  30  sam-
pling  plots  randomly  distributed  among
Taurus cedar plantations in Isparta and Bur-
dur Forest Regions. Sample plots were se-
lected to represent a range of age classes,
site conditions, and densities for the spe-
cies  in  the  Mediterranean  Region  of  Tur-
key.  Plot  size varied  between 270 to 540
m2, depending on density, with a minimum
of 30 trees per plot. The age of the sam-
pling plots varied from 17 to 35. Two per-
pendicular  over-bark  diameters  (di)  were
measured with a precision of 0.1 cm and av-
eraged to find actual diameter (d, cm) for
each tree. A Blume-Leiss hypsometer was
used to obtain total heights with precision
of 0.5 m. Depending on plot size, dominant
heights  (H0)  and diameters  (D0)  were  ob-
tained as the average heights and diame-
ters of the 100 trees with the thickest di-
ameter at breast height (d) per hectare.

The  available  Cedar  data  set  was  ran-
domly split into two groups; some 21 sam-
ple plots (70% of all plots) were randomly
selected for the model fitting while the re-
maining 9  sample  plots  (30% of  all  plots)
were used for evaluating the models’ per-
formance on this new data set (Tab. 1). The
basic descriptive statistics for the dataset
used  has  been  given  in  Tab.  1 and  illus-
trated in Fig. 1.

Generalized height-diameter models 
(GM)

Twenty-one generalized  height-diameter
models selected from earlier studies were
evaluated  using  non-linear  least  squares
(NLS  –  Crecente-Campo et al. 2010, Corral-
Rivas  et  al.  2014).  These models  included
different  stand-level  variables  such  as  H0,
D0, and quadratic mean diameter, to repre-
sent the variation between forest stands.

Fixed-effects model (FE)
A large number of nonlinear model forms

with two and three parameters were evalu-
ated for cedar plantations, including those
noticed by Huang et al. (1992) and Lei et al.
(2009) as  Curtis,  Weibull,  Exponential,
Chapman-Richards,  Gompertz,  Schnute,
and Korf-Lundgvist. The NLS were fitted to
the datasets to determine the most appro-
priate model for cedar plantations. To eval-
uate the prediction accuracy  of  the mod-
els,  statistical  and  graphical  evaluations

were used. Of the models assessed, predic-
tive capability of the Chapman-Richards ap-
peared best to model height-diameter rela-
tionships in cedar plantations (eqn. 1):

(1)

where hij is the total tree height (m) of the
j-th tree in the  i-th plot,  dij is the diameter
(cm), and β1- β3 are model parameters.

To  calibrate  the  FE  model,  a  correction
factor  k* (eqn. 2) suggested by  Temesgen
et  al.  (2008) was  used.  Temesgen  et  al.
(2008) indicated that when the heights of
a subsample of nim trees from the i-th stand
is known, the predicted heights of the re-
maining trees from the same stand can be
calibrated (eqn. 2):

(2)

where  ĥhi is the predicted height from the
FE model  (eqn.  1),  and  hij is  the observed
value.

The predicted values of height (h̃) for the
remaining trees in the same stand can be
calculated as follows (eqn. 3):

(3)

The influence of the correction factor on
the prediction accuracy  of  a nonlinear  FE
model was also investigated.

Nonlinear mixed-effects model (ME)
In the ME model structure, parameters of

eqn.  1  comprise the  plot-specific  random-
effect parameters and the population level
fixed-effect  parameters  that  are  common
to all trees. In matrix notation, eqn. 1 can
be represented as (eqn. 4):

(4)

where  yi = [hi1,  hi2, …,  hin]T,  di = [di1,  di2, …,
din]T, εi = [εi1, εi2, …, εin]T, ni is the sample size
for tree height values in plot i, and ui and b
and are column vectors representing ran-
dom- and fixed-effects parameters, respec-
tively;  εi ~N(0,R)  and  ui ~N(0,D),  where  R
and D are diagonal matrices. Additionally, it
is assumed that  ui and  εi are independent.

SAS  procedure  NLMIXED  (SAS  Institute
2010) was used to obtain the parameters
of nonlinear ME models (eqn. 4).

The  first-order  Taylor  series  expansion
can  be  used  to  obtain  the  random-effect
parameters  ui  for the  i-th plot (Hall & Clut-
ter 2004, Meng & Huang 2009 – eqn. 5):

(5)

where  ûi
k  is an estimate of the random-ef-

fect parameters for plot  i at the k-th itera-
tion, D̂ is an estimate of D, the variance-co-
variance matrix for ui, and Zi is (eqn. 6):

(6)

R̂ is an estimate of R, the variance-covari-
ance matrix for  εi,  yi is the m × 1 vector of
observed tree heights, and  m  is  the num-
ber of tree height measurements used to
localize the height growth model.

Estimating  ui requires  an  iterative  proc-
ess. In eqn. 5,  a null  starting value (ûi

0=0)
was used and repeatedly updated until the
absolute  difference  between  ûi

k and  ûi
k+1

was  smaller  than  a  predetermined  toler-
ance limit. For the random effects, the out-
come  is  the  approximated  empirical  best
linear unbiased predictor (EBLUP).

ANN models
The  most  significant  advantage  of  an

ANN model is that it is trained from mea-
sured data without the need to add further
information. That is, after the fitting of the
system  with  the  available  ground-truth
data, the ANN model automatically discov-
ers the existing dependencies,  and finally
produces  a  trained  model.  On  the  other
hand, the net topology, the learning algo-
rithms  used,  and  the  learning  constrains
are specified by the modeler.

Levenberg-Marquardt artificial neural 
network model (LMANN)

The  Levenberg-Marquardt  (LM)  algo-
rithm  was  selected  for  application  in  the
multilayer  perceptron  learning  of  ANN
(Levenberg  1944,  Marquardt  1963).  Past
studies showed that the LM algorithm has
the ability, on the one hand, to cope with
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Fig. 1 - Scatter plot 
of total height (h) 
against diameter 
at breast height 
(d) for cedar pine 
trees for both fit-
ting and validation 
data sets.
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hij=1.3+β 1 (1−exp(−β 2d ij))
β 3+ε ij

k*=
∑j=1

n im [(ĥhi−1.30)(hij−1.30 )]
∑ j=1

n im (ĥij−1.30)

~hij=1.3+k
*β 1[1−exp(−β 2d ij)]

β 3

y i= f(b ,ui ,di)+ε i

ûi
k +1=D̂Zi

T (Zi D̂ZiT+R̂)−1

[yi−f ( b̂ , ûik ,di)+Zi ûik ]

Zi=
 f (b ,ui ,di)

ui |
b̂ ,ûi
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known  disadvantages  and  limitations  of
the standard backpropagation learning al-
gorithm, such as slow convergence, much
off-line  training  requirements,  instability,
trapped at local minima (Adeloye & De Mu-
nari 2006,  Wilamowski & Yu 2010,  Scanlan
&  Mulvaney  2013,  Wu  &  Ji  2015);  on  the
other hand, LM algorithm have showed sig-
nificant ability on the prediction of environ-
mental  variables (Wu 2014,  Diamantopou-
lou et al. 2015,  Zhou et al. 2018,  Ozçelik et
al. 2019).

A detailed description of how the Leven-
berg-Marquardt algorithm is embedded to
neural network training can be found in Ha-
gan & Menhaj  (1994).  Concisely,  the Hes-
sian  matrix  (Hm)  approximation  is  intro-
duced by the LM algorithm as (Ozçelik et
al. 2019 – eqn.  7):

(7)

where I is the identity matrix, J is the Jaco-
bian matrix, and μ is  the combination co-
efficient.

The  update  rule  of  the  LM  algorithm is
wt+1  =  wt  -  (Hm)-1 JTe,  where  w are  the
weights,  and  e are  the  biases.  The  effi-
ciency  and  convergence  of  the  LMANN
models are very sensitive to the configura-
tion of the coefficient value (μ) of eqn.  7.
As  the  value  becomes  larger,  the  more
weight is given to gradient descent learn-
ing with a small step size. The smaller it is,
the  more  weight  is  given  to  large  step
sizes.  For  μ equal  to  zero,  the  algorithm
turns to the Gauss-Newton method.

Resilient propagation artificial neural 
network model (RPANN)

Resilient propagation, known as Rprob, is
a neural network algorithm which was fully
described by Riedmiller & Braun (1993) and
successfully used (Saputra et al. 2017,  Flo-
rescu & Igel 2018), so that known disadvan-
tages of the standard back-propagation al-
gorithm can be overcome. The back-propa-
gation  algorithm  has  known  drawbacks,
due to elementary learning processes. The
main  problems  of  the  learning  phase  in-
clude  slow  convergence  resulting  from

small  changes  in  weights,  and the neural
network weights trapping around local op-
tima.

Rprob mainly refers to the gradient direc-
tion. The algorithm calculates a delta value
(Δij)  for  each weight  that  increases  when
the gradient  does  not  change sign under
the prerequisite that the system works on
the right direction, or decreases when the
gradient  does  change  sign.  The  learning
rule used to calculate delta value which im-
proves the change of the network weights
is the following (Riedmiller & Braun 1993 –
eqn. 8):

(8)

where 0 < η– < 1 < η+.
Finally, the new weight value wt

ij between
i and  j neurons in two consecutive layers
on the (t-1) is given by (eqn. 9):

(9)

Aspects of ANN model training
In geotechnical engineering, the selection

of  the  proper  input  variables  for  ANN
model building is usually based on  a priori
knowledge of the physical problem (Maier
& Dandy 2000). In order to construct a reli-
able  model  for  total  stem  height  predic-
tion,  the  sensitivity  analysis  was  used  to
choose the proper input layer nodes of the
ANNs. The analysis was performed  on the
available  variables  measured  in  the  field
(Tab. 1), that were selected in advance due
to  the  physical  problem  (Cariboni  et  al.
2007).

To avoid overfitting and undertraining of
the network in reaching the best possible
training efficiency of the model, the train-
ing process was initiated with the smallest
possible  network  and  no  hidden  nodes.
Then the construction of the model contin-
ued by adding any necessary hidden nodes

in order the network learning to be com-
pleted. Finally, the architecture is reached
to an end, when the agreement obtained
between ANN model  predictions  and tar-
gets can be considered as satisfactory.

Overfitting avoidance of the ANN models
led to acceptable generalization ability  of
the  models.  For  this  reason,  the  k-fold
cross  validation  resampling  method  with
k=10  was  applied (Olson  &  Delen  2008,
May et al. 2010) to both training and test-
ing data sets (Leahy 1994), due to its effi-
ciency  and  easiness  to  apply.  This  proce-
dure was not applied in regression model
building, where there is little to be gained
by separating data into parts (Hursch 1991).
As  described  above,  the  whole  data  set
was randomly divided into two parts. The
fitting data set was used for the construc-
tion of  all  different types  of  models.  The
validation data set was used only for  the
evaluation of the predictive capability of all
constructed models.

Due to the fact that the ANN model error
value is strongly affected by the number of
the weights, the credibility and the gener-
alization capability of the model was deter-
mined through the mean error rate on the
cross-validation examples,  and the valida-
tion data set, respectively (Fig. 2).

As  mentioned above,  the  efficiency  and
convergence  of  training  of  the  LMANN
models significantly depends on the proper
value selection for the combination coeffi-
cient (μ in eqn. 7). The initial value of μ was
set to 0.001 (Diamantopoulou et al.  2015)
and the final value that led to the lowest
sum  of  square  errors  model  value  was
found equal to 1.00e-07.

Similar to the LMANN models, training of
RPANN  models  is  very  sensitive  to  the
value of delta rule Δij

(t) (eqn. 8), which is re-
sponsible  for  the  sign  (positive  or  nega-
tive) of the gradient to show the direction
of  the  adjustment  weight.  Through  this
process  the  iteration  of  learning  stops
when the error target is reached. The initial
delta value was 0.07, with increment steps
of 1.2 and decrease steps of 0.5.

The architecture of both the LMANN and
RPANN  algorithms  finalized  after  the  de-
tection of the correct number of nodes in
the hidden layer. This final number was ob-
tained during a trial-and-error process: the
process began with one hidden node and
was repeated until the desired target error
value was reached. During the trial-and-er-
ror process, selection of the correct combi-
nation of transfer functions was made. The
combination of functions that provided the
optimal behavior  of both the ANN models
was:  (i)  the  hyperbolic  tangent  transfer
function  (tansig)  to  transfer  knowledge
from the input layer  to the  hidden layer;
and (ii) the linear activation function (pure-
lin), transferring information from the hid-
den  layer  to  the  output  layer  (Fausett
1994). The ANN models were constructed
using  the  neural  network  toolbox  of  the
MATLAB software ver. R2017a (Beale et al.
2017) developed by The Math Works™ Inc.
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Fig. 2 - The 10-fold cross validation division for the ANN models construction.
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Evaluation
The evaluation of the different modeling

approaches (i) Generalized Model (GM), (ii)
non-calibrated fixed-effects model [FE(0)],
(iii)  calibrated fixed-effect model [FE(1-3)],
(iv) calibrated mixed-effects model [ME (1-
3)],  (v)  LMANN,  and  (vi)  RPANN  tech-
niques,  was  made using  the  mean  differ-
ence  (MD,  m),  the  mean  absolute  differ-
ence (MAD, m), the fit index (FI) and the
root  square  mean  error  (RSME),  which
were calculated as follows:

(10)

(11)

(12)

(13)

where n is number of plots, ni is number of
tree height values for plot  i,  hij and  ĥij are
measured  and  predicted  heights,  respec-
tively, and ħi is mean height of hij for plot i.

It  is  worth noting,  that  the  adjusted FE
and the calibrated ME models’ parameters
were “localized” by the use of a number of
sampled heights in each plot.  Trincado et
al.  (2007) recommended that the number
of  tree  heights  measured  in  each  plot
ranged from one to three. Finally, to com-
pare and evaluate the generalization ability
of the constructed models by the different
modeling  approaches,  the  above  metrics
were computed for the validation data set
as well (Ozçelik et al. 2018, Bronisz & Meh-
tätalo 2020).

Results

Parametric modeling approaches 
(generalized models, fixed-and mixed-
effects models)

Twenty-one GM models were fitted using
the NLS  method with the fitting data set,
while the predictive capability of the mod-
els was evaluated using the validation data
set. The final GM model (Krumland & Wen-
sel 1988) including  D0 and  H0 as additional
independent variables, was (eqn. 14):

(14)

The model given in  eqn. 14 and its modi-
fied forms was successfully used by many
authors (e.g.,  Crecente-Campo et al. 2010).
H0  was  the  most  important  contributor
among stand level variables since it can al-
low a plot-level adaptation related to many
factors, such as genetics, topography, silvi-
cultural  regime,  and environment  (Huang
et  al.  2009).  Further,  the accuracy  of  h-d
models can be improved by the incorpora-

tion of D0 and H0 as covariates (Crecente-
Campo et al. 2010, Raptis et al. 2021).

A series  of  parameters  from eqn.  1 was
implemented (Tab. 2). Model (1) with ran-
dom components β1 and β3 resulted in the
lowest values for both Akaike’s (AIC) and
Bayesian (BIC) information criteria.  The fi-
nal ME model was (eqn. 15):

(15)

where  u1 and  u2 are  random  parameters.
Parameter estimates were obtained using
the  fitting  data  set  for  the  best  models
(GM, FE and ME models) and are given in
Tab. 3.

According  to  the  predictions,  the  mar-
ginal  non-calibrated  fixed-effects  (FE)  re-
sponse model gave more unsuccessful out-
comes,  when  random  parameters  of  the
mixed models were zero and prior height
information  was  not  available  for  model
calibration for both datasets (Tab. 4).

Artificial neural network modeling 
approaches

ANN models used a three-layer architec-
ture that included:  (i) one input layer with
three variables (diameter at breast height,
d;  dominant  height,  H0;  and  dominant di-
ameter, D0).  Sensitivity  analysis  was  per-
formed using the available variables  listed
in Tab. 1. The three variables given above
had significant entry on the target variable
configuration,  with  a  value  of  error  ratio
higher than one;  (ii) one output layer with
one target variable (total tree stem height,

h)  specified by the physical  problem; and
(iii) one hidden layer, comprising the prop-
er  number  of  hidden  nodes  specified  by
the network learning.

Using the LM algorithm for  ANN model
learning,  the  LMANN  showing the  best
adaptation to the fitting data set was 3-2-
1/0.5512,  i.e., the specific model included a
single input layer with the input nodes d, H0

and D0, one hidden layer with two hidden
nodes and an output layer with one node
(h),  with RMSE equal to 0.5512. Using the
RP algorithm for ANN model learning, the
RPANN showing the best adaptation to the
fitting data set was the 3-2-1/0.5387 model,
i.e., the specific model comprised one input
layer with input variables d, Ho and Do, a sin-
gle output layer with output node  h as in
LMANN  models  building  and,  between
these layers, a single hidden layer with two
hidden nodes  resulted from the trial-and-
error process.  The  RMSE was 0.5387.  For
both ANN algorithms,  the optimum num-
ber of  hidden nodes  was determined fol-
lowing  examination  of  different  numbers
of  nodes.  The  optimum  values  were  se-
lected as those leading to the best learning
of  the  ANN  models,  with  the  smallest
RMSE value (Fig. 3).

The k=10 cross validation method applied
during  the  learning  using  the  fitting data
set  for  both  ANN  algorithms  for  training
and testing in the construction phase, en-
sured  the  absence  of  overfitting  and  in-
creased the ability of the ANNs to general-
ize.  Both  networks  were  trained  for  as
many epochs as required for the models to
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Tab. 2 - Fit statistics for eqn. 1 for different combinations of random parameters.

Random Parameters AIC (smaller is better) BIC (smaller is better)

None (Fixed-effects) 2503 2522

β1 1617 1624

β2 1821 1828

β3 1605 1612

β1 and β2 1540 1550

β1 and β3 1539 1548

β2 and β3 1714 1724

β1, β2 and β3 1656 1670

Tab. 3 - Parameter estimates and standard errors (in parentheses) for the fixed- and
mixed-effects regression models. (σ2): residual variance of the model; (σ2

u1): variance
of the random-effect u1; (σ2

u2): variance of the random-effect u2; (σ2
u1 u2): covariance of

the random-effects u1 and u2.

Parameter 
estimates

Generalized Model Fixed-effects Mixed-effects

β1 -6.9087 (0.5670) 7.8237 (0.6187) 24.7062 (11.3829)

β2 -0.0294 (0.0045) 0.1348 (0.0315) 0.0159 (0.0113)

β3 - 1.5604 (0.2998) 0.8643 (0.0750)

σ2 - 0.8311 (0.0468) 0.2216 (0.0129)

σ2
u1 - - 73.9740 (113.22)

σ2
u2 - - 0.0448 (0.0176)

σ2
u1 u2 - - 1.6671 (1.3800)
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reach the minimum MSE value (Fig. 4). As
shown in  Fig.  4,  the  estimated errors  for
the training and the test data sets were not
significantly different for either ANN mod-
el, which indicated the absence of overfit-
ting.  The  LMANN  was  stopped  after  200
training interactions  (epochs)  as  no influ-
ential reduction of the MSE value occurred
after  28  epochs,  while  the  RPANN  was
trained for  500 interactions  as  there  was
no  influential  reduction  in  MSE  after  167
epochs (Fig. 4).

Evaluation of the different modeling 
approaches

A synopsis of the evaluation statistics cal-
culated with the fitting and validation data
sets  using  the  different  modeling  ap-
proaches  is given in  Tab. 4. The best out-
comes among the GM models are reported
in Tab. 4. Comparing the MD, MAD, RMSE,
and FI values for the fitting data set, both
the RPANN and the LMANN models gave

the best results (Tab. 4). Further, in order
to enrich the conclusions derived from the
results  for  the  constructed  models  using
the fitting data set, where the total height
approximately normally distributed, the  t-
paired test was applied. The two-tailed p-
values of the test were <0.05 for both the
LMANN and the RPANN constructed mod-
els, suggesting that there is no mean differ-
ence between the observed and the esti-
mated height values. The same conclusion
can  be derived for  both the  fixed-effects
(FE) Chapman-Richards model (eqn. 1) and
the generalized Krumland & Wensel (eqn.
14) model, while the mean error of mixed-
effects model (eqn. 14) was found signifi-
cant (p<0.05) for the fitting data set.

The  accuracy  of  the  estimated  results
from the ANN models was examined fur-
ther by  analyzing  the correlation between
the observed h values and their predictions
from  the models (Freedman et  al.  2007).
The  Pearson’s  correlation  coefficient  (r)

was  computed as  the  ratio  between  the
covariance of the observed heights and the
height predictions by the constructed mod-
els. The LMANN model’s estimations gave
r =  0.9223,  while for  the  RPANN  model
gave  r =  0.9259, indicating  a  high  accor-
dance between  observed  and  predicted
values. The variability of the estimation er-
rors (CV% = (RMSE/ĥ · 100) in relation to the
mean of the total tree height for the fitting
data set was 9.00% and 8.80% of the mean
height  for  the  LMANN  and  the  RPANN
models, respectively. The reliability and the
predictive capabilities of both ANN models
was also examined based on the validation
data set taken from 270 trees in 9 plots in
the same forest areas. The LMANN model
predicted an r value of 0.9318 with a CV% of
10.27%,  while  the  r value  for  the  RPANN
model was 0.9336, with a CV% of 10.02%. Ac-
cording  to  the  validation  data  set,  the
Chapman-Richards mixed-calibrated model
using  three  trees  for  calibration  showed
the next  best  predictive capabilities,  with
CV% equals to 10.17% and  r = 0.9309, while
the  non-calibrated  generalized  model  of
Krumland & Wensel (1988) gave similar re-
sults  as  compared  to  Chapman-Richards
mixed-calibrated model, with CV% equals to
10.83%  and  r =  0.9269.  Finally,  the  Chap-
man-Richards  fixed-model  produced  the
poorest results for the validation data set
with CV% equals to 17.13 and r = 0.8140.

Discussion
Important  ecosystem  services  including

usable  forest  products  and  biodiversity
conservation can be obtained through sus-
tainably  managed  forests.  The  develop-
ment  of  a  reliable model  that  could  esti-
mate the total height of trees using easily
measurable  characteristics  of  trees,  can
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Tab. 4 - Fit statistics for the constructed basic h-d mixed-model, generalized h-d model and artificial neural network models (LMANN
and RPANN) for (a) the fitting dataset, (b) the validation data sets, and (c) the calibrated adjusted fixed and mixed models, using 1,
2, and 3 sampled trees for calibration. (§): denote the best method for cedar plantations; (*): for p-value <0.05, the null hypothesis
(Ho: μ1=μ2) was rejected.

Dataset Model Type RMSE FI
MD/two tailed 

p-value* MAD

(a) Fitting data set
(630 trees in 21 
plots)

LMANN: 3-2-1 ANN 0.5512 0.8241 -0.0407494 0.4306

RPANN: 3-2-1 ANN 0.5387 § 0.8353 0.0074/0.729 0.4155 §

Chapman-Richards (eqn. 1) Fixed 0.9116 0.5912 -0.0019833 0.7088

Chapman-Richards (eqn. 15) Mixed 0.6316 0.8059 0.1905/0.000 0.4684

Krumland & Wensel (eqn. 14) Generalized 0.5677 0.8422 -0.7526316 0.4299

(b) Validation data 
set (270 trees in
9 plots)

LMANN: 3-2-1 ANN 0.6839 0.8 -0.1138 0.5673

RPANN: 3-2-1 ANN 0.6671 § 0.8176 -0.0995 § 0.55 §

Chapman-Richards (eqn. 1) Fixed [F(0)] 1.1401 0.6017 0.2101 0.8943

Krumland & Wensel (eqn. 14) Generalized (GM) 0.721 0.7825 -0.2272 0.5985

(c) Validation data
(270 trees in 9 
plots) after 
using 
localization

Chapman-Richards (eqn. 3) Fixed-Calibrated, FE(1) 0.8759 0.7649 0.3114 0.6417

Chapman-Richards (eqn. 3) Fixed-Calibrated, FE(2) 0.7427 0.831 -0.1683 0.5937

Chapman-Richards (eqn. 3) Fixed-Calibrated, FE(3) 0.7348 0.8346 -0.1778 0.5809

Chapman-Richards (eqn. 15) Mixed-Calibrated ME(1) 0.7573 0.8243 0.2129 0.5798

Chapman-Richards (eqn. 15) Mixed- Calibrated ME(2) 0.6799 0.8585 -0.1335 § 0.5377

Chapman-Richards (eqn. 15) Mixed-Calibrated ME(3) 0.6773 § 0.8594 § -0.1523 0.5242 §

Fig. 3 - Optimum
number of nodes

in the hidden layer
for the LMANN

and RPANN mod-
els.
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contribute  efficiently  to  the  above goal.
Our  approach attempts  to  compare,  sug-
gest and finally provide an alternative new
methodology to the field of optimal forest
management design, which would be able
to give reliable predictions of tree heights,
as  this  tree  characteristic  has  great  influ-
ence on the stand description, site quality
determination,  and  tree  and  stand  wood
volume estimation.

Parametric modeling techniques 
assessment

The  adjusted  fixed-effects  model  devel-
oped for Taurus cedar stem heights in the
present work had a much lower mean devi-
ation  (MD)  for  all  calibration  alternatives
compared to the fixed-effects model. With
all calibration parameters tested, the fit in-
dex increased at rates varying from 27% to
39%,  with a mean increase of  35%.  Similar
findings  were  also  reported  in  the  litera-
ture (Lhotka 2012,  VanderSchaaf 2013,  Oz-
çelik  et  al.  2018).  The  most  effective  im-
provement  in  predictions,  among  the
tested  calibration  alternatives,  was  ob-
tained through the use of  3 trees for cali-
bration  in  each  sampling  plot.  Different
sampling  alternatives  tested  for  both  ad-
justed fixed-effects model and ME model,
corresponding  to  number  of  trees  mea-
sured in each plot. These tree heights were
used to estimate the random parameters
of the ME model, to calibrate heights and
to  calculate  the  assessment  statistics  for
the validation data set (Tab. 4).

According to the ME model, lower mean
deviations were obtained following calibra-
tion with 3 trees, when compared with the
adjusted FE model.  Comparing all  calibra-
tion  alternatives,  ME  model  gave  a  de-
crease of 32% and 39% in the mean devia-
tion and mean absolute difference, respec-
tively.  Previous  studies  (Trincado  et  al.
2007, Lhotka 2012, Huang et al. 2009, Góm-
ez-García  et  al.  2014,  VanderSchaaf  2013)
also demonstrated that calibration can sig-
nificantly  improve  height  predictions.
There were no  large differences between
the  calibrations  performed  with  2  and  3
trees for cedar plantations (Tab. 4) through
testing  different  calibration  alternatives
with  the  use  of  the  mixed-effects  model,
while  there  were  similar  trends  between
different  calibration  alternatives  for  MAD
and  FI  values.  When  the  calibrated  fixed
effect model and the calibrated mixed ef-
fect models were compared, for all calibra-
tion alternatives, the ME model was more
successful than the calibrated FE model in
accurately estimating heights in cedar plan-
tations.

The results obtained  using the  Krumland
& Wensel (1988) model, compared with the
outcomes  of the  FE  model,  suggest  that
the GM model gave more accurate results
than  the  FE  model.  The  generalized  h-d
model gave an average reduction of 17% in
MAD  values,  when  compared  to  the  FE
model. The GM models exhibited better re-
sults  than  the  adjusted FE  models  for  all

evaluation statistics, except for MD values.
The model of Krumland & Wensel (1988) in-
cludes  H0 and  D0 as  fixed  effects  at  plot
level.  H0 is preferred to other parameters,
as  measurement  of  mean  height  across
plots involves more sampling effort than H0

(Huang  et  al.  2009).  However,  Bronisz  &
Mehtätalo (2020) did not suggest H0 to be
included in the model as a fixed effect pre-
dictor  when a  small  sample  of  H0 values
based  on  a  certain  number  of  dominant
height measurements is used in the model
fitting process. In this case, the inclusion of
a similar number of height values could im-
prove  model  accuracy;  otherwise,  model
outcomes may suffer from large and unpre-
dictable  measurement  errors  impacts  on
the estimates (Bronisz & Mehtätalo 2020).
The calibrated basic mixed  h-d model pro-
duced  more  accurate  tree  height  predic-
tions  than  the  generalized  h-d model  for
Turkish cedar plantations without the inclu-
sion of other measurements as covariates.
This is an important issue with practical im-
plications in forest economics, such as the
reduction of time, effort, and cost for col-
lecting  additional  covariates.  Similar  con-
clusions  have been reported by  Huang et
al. (2009).

The sample size used in model calibration
had an impact  on prediction accuracy,  as
height predictions improved depending on
the number of trees used in the calibration
process (Trincado et al. 2007,  Huang et al.
2009,  VanderSchaaf  2013,  Ozçelik  et  al.

2018).  The  accuracy  of  prediction,  how-
ever, decreased substantially beyond a cer-
tain number of trees. Therefore, the num-
ber  of  trees  to  be  used  for  calibration
should be chosen so as to strike a balance
between  the  costs  of  inventory  and  the
prediction  accuracy.  Calama  &  Montero
(2004) suggested  that  calibration  should
be  performed  with  additional  trees,  thus
increasing the  success  of  height  predic-
tions.  Trincado  et  al.  (2007) also  argued
that  height  prediction  accuracy  increases
with increasing the numbers of trees used
for calibration. According to these authors,
the  prediction  accuracy  reached  to  maxi-
mum using three calibration trees. Similar
outcomes were also reported by Temesgen
et  al.  (2008).  Adame et  al.  (2008) tested
different  calibration  alternatives  and  sug-
gested that the use 2 or 3 trees was neces-
sary and adequate for calibration. Huang et
al. (2009) used between 1 to 9 trees for cal-
ibration,  obtaining  the  most  accurate  re-
sults  in  height  predictions  when  the  cali-
bration was performed with  a single tree.
The results of the present study suggested
that there was a minimal improvement in
prediction  capability  of  the  model  when
the  number  of  calibration  trees  was  in-
creased above three.

Assessment of artificial neural network 
modeling techniques

We  examined  the  performances  of  the
LM and RP algorithms in tree height predic-
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Fig. 4 - LMANN (a) and RPANN (b) models’ training and test performance for the best
case of two hidden nodes in the hidden layer, using the fitting data set.
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tion,  with  the  disadvantages  and  restric-
tions of the standard back-propagation al-
gorithm (Fausett 1994, Patterson 1996, Wil-
amowski & Yu 2010). The low dispersion of
predicted  values  around  the  1:1  line
throughout the observed range of  values
(Fig.  5a,  Fig.  5b) indicates that both ANN

models had similar adjustments to the data
used  in  model  construction.  Moreover,
both ANN models showed better adapta-
tion to the fitting data set than the fixed
(Fig.  5c),  mixed (Fig.  5d)  and generalized
(Fig. 5e) models.  Furthermore, the statisti-
cal evaluation of the null hypothesis (H0: in-

tercept = 0 and H0:slope = 1) for the linear
relatonship hobs =  intercept  +  slope  · hpred

was performed for all models (Fig. 5).  The
null  hypotheses  were  not  rejected  at
α=0.05  for  either  ANN models,  indicating
no significant differences between the 45
degree line and the linear trendline derived
by the observed and the estimated height
values (Fig. 5a, Fig. 5b). Finally, the RPANN
model  (Fig.  5b)  appeared  to  provide
slightly  more  accurate  fitting to  the  ob-
served  data  as  compared  to  the  LMANN
model (Fig. 5a).  The distribution of predic-
tion errors  from ANN models (Fig. 6a,  Fig.
6b) revealed a frequency peak at zero and
a rapid decline of the frequency at larger
error values, thus corroborating that both
ANN  models  are  well-trained  networks.
Nonetheless,  it  is  worth  noting  that  the
most  accurate  predictions were  obtained
by  the  best  RPANN  model,  with  a  RMSE
value  of  2.25%  lower  than  the  error  ob-
tained from the best LMANN model.

The prediction errors histograms and the
relative  errors  box  plots  (Fig.  7,  Fig.  8),
along  with  the  validation  statistics  pre-
sented  in  Tab.  4,  clearly  show  that  the
RPANN model provided the most accurate
and reliable prediction results as compared
to the other models tested. The variability
of  the  prediction  errors  (CV%)  of the
RPANN  model  was  approximately  2.43%,
which was lower than that  of  the LMANN
model, and 1.47% lower than the variability
derived from the Chapman-Richards mixed
effect calibrated model [ME(3)]. The distri-
bution analysis of prediction errors  for all
tested models suggested that the  perfor-
mances of the RPANN model  are superior
to those of all the other un-calibrated and
calibrated models. Therefore, we conclude
that  the RPANN model  provides the best
performances in the estimation and predic-
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Fig. 5 -  Forty-five-degree plots with the linear trendline  of height estimations obtained by (a) LMANN, (b) RPANN, (c) fixed, (d)
mixed, and (e) generalized models.

Fig. 6 - Errors histogram for height estimations obtained by the (a) LMANN, (b) RPANN models, and (c) errors box plots for both 
ANN models using the training data set.

Fig. 7 - Errors histograms for height predictions obtained by (a) LMANN, (b) RPANN,
(c) Chapman-Richards [eqn. 1 – FE(0)], (d) Krumland & Wensel (eqn. 13 – GM) models,
and (e) errors’ box plots for all models using the validation data set..
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tion of tree height, as compared with fixed,
generalized, fixed-calibrated and mixed cal-
ibrated models.

Conclusions
In this study, equations for height predic-

tion were developed for Cedrus libani plan-
tations,  which  involved  the  evaluation  of
five alternative modeling methods: (i) the
Generalized  (GM);  (ii)  the  non-calibrated
fixed-effects  [FE(0)]; (iii)  the  calibrated
fixed-effect,  using  1  to  3  calibration trees
per plot [FE(1-3)]; (iv) the calibrated mixed-
effects  using  1  to  3  calibration  trees  per
plot [ME (1-3)]; and (v) the ANNs using two
different  learning  algorithms,  the  RP  and
the LM. As compared to the FE, all the con-
structed models (generalized, adjusted FE,
ME, LMANN and BPANN) gave better per-
formance,  providing accurate and reliable
tree  height  predictions.  As  expected,  the
predictive ability  of  the  adjusted  and ME
models improved with increasing the cali-
bration  sample  size.  However,  increasing
the  number  of  trees  used  for  calibration
had a minimal effect on the accuracy of the
models.

The  LMANN  and  RPANN  models  con-
structed in the present work showed reli-
able abilities to generalize from the input
data and gave accurate predictions of the
total tree height variable. Both alternatives
exhibited similar  performance in the con-
struction phases, in addition to the ability
to generalize. Based on the cumulative re-
sults  from  all  approaches,  the  resilient
propagation algorithm was more effective
in predicting total stem height of  C. libani
growing  in  Turkey.  The  effectiveness  and
efficiency of ANN modeling in general and,
specifically of the resilient propagation al-
gorithm, along with the fit to the current
dataset, the potential of this modeling ap-

proach  to  forest  management,  are  clear.
This direction is being followed in future re-
search.
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