iForest - Biogeosciences and Forestry


Complex networks, an innovative methodology for functional zoning in forest management

Elizabeth Serrano-Ramírez (1), José René Valdez-Lazalde (1)   , Roman Anselmo Mora-Gutiérrez (2), Héctor Manuel De Los Santos-Posadas (1), Gregorio Ángeles-Pérez (1)

iForest - Biogeosciences and Forestry, Volume 15, Issue 4, Pages 299-306 (2022)
doi: https://doi.org/10.3832/ifor3927-015
Published: Aug 22, 2022 - Copyright © 2022 SISEF

Research Articles

Forest management planning requires a permanent collection of data on the distribution, composition, and structure of the stands that conform a woodland. These data serve as the basis for suggesting the most appropriate management scheme according to the natural resource conditions and management objectives. It is common for the collected databases’ structure and dimension to hinder their analysis using traditional descriptive techniques. Therefore, alternative methodologies are required to facilitate both the exploration of data properties and their collective behavior. We used complex networks analysis to identify distribution patterns of topographic, biological, and productive conditions of a managed forest, suggesting its functional zoning. The forest was considered a graph consisting of nodes and edges; the stands served as nodes and interactions between them as edges. Degree, clustering coefficient, triangles, and modularity were used as segregation and connectivity metrics to evaluate forest properties and allocate stands to five predefined potential forest uses (zones). The clustering coefficient metric provided the better graph partition, allowing to obtain the best alternatives for zoning the forest in conservation areas, areas with potential for timber production, and carbon storage. Proposing forest functional zoning through complex network theory is a powerful methodological option to represent the spatial and nonspatial interactions among the relevant attributes defining a forest ecosystem condition.


Forest Planning, Spatial Interactions, Segregation And Connectivity Metrics, Graph Theory

Authors’ address

Roman Anselmo Mora-Gutiérrez 0000-0002-2112-7049
Systems Department, UAM - Iztapalapa, Mexico City C.P. 02210 (Mexico)

Corresponding author

José René Valdez-Lazalde


Serrano-Ramírez E, Valdez-Lazalde JR, Mora-Gutiérrez RA, De Los Santos-Posadas HM, Ángeles-Pérez G (2022). Complex networks, an innovative methodology for functional zoning in forest management. iForest 15: 299-306. - doi: 10.3832/ifor3927-015

Academic Editor

Matteo Garbarino

Paper history

Received: Jul 14, 2021
Accepted: Jun 10, 2022

First online: Aug 22, 2022
Publication Date: Aug 31, 2022
Publication Time: 2.43 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 17067
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 15339
Abstract Page Views: 957
PDF Downloads: 637
Citation/Reference Downloads: 1
XML Downloads: 133

Web Metrics
Days since publication: 601
Overall contacts: 17067
Avg. contacts per week: 198.78

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Amaral LAN, Ottino JM (2004)
Complex networks - Augmenting the framework for the study of complex systems. The European Physical Journal B 38: 147-162.
CrossRef | Gscholar
Amaral LAN, Uzzi B (2007)
Complex systems - A new paradigm for the integrative study of management, physical, and technological systems. Management Science 53: 1033-135.
CrossRef | Gscholar
Barbierato E, Bernetti I, Capecchi I, Saragosa C (2020)
Integrating remote sensing and street view images to quantify urban forest ecosystem services. Remote sensing 12: 1-22.
CrossRef | Gscholar
Baskent EZ, Borges JG, Vacik H, Reynolds KM, Rodriguez CE (2021)
Management of multiple ecosystem services under climate change, bioeconomy and participation. Forests 3: 1-7.
CrossRef | Gscholar
Berrendero RJ, Bueno-Larraz B, Cuevas A (2020)
On Mahalanobis distance in functional settings. Journal of Machine Learning Research 21: 1-33.
Online | Gscholar
Blondel VD, Guillaume J, Lambiotte R, Lefebvre E (2008)
Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008: 1-12.
CrossRef | Gscholar
Bullmore E, Sporns O (2009)
Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10: 312-312.
CrossRef | Gscholar
Clauset A, Newmany MEJ, Moore C (2004)
Finding community structure in very large networks. Physical Review E 70: 1-6.
CrossRef | Gscholar
Cestero EV, Caballero MA (2018)
Data science y redes complejas: métodos y aplicaciones [Data science and complex networks: methods and applications]. Centro de Estudios Ramon Areces S.A., Madrid, Spain, pp. 21-32. [in Spanish]
Cosović M, Bugalho MN, Thom D, Borges JG (2020)
Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 3: 1-24.
CrossRef | Gscholar
De los Santos-Posadas HM, Valdez-Lazalde JR, Torres-Rojo JM (2015)
San Pedro El Alto community forest, Oaxaca, Mexico. In: “Forest Plans of North America” (Siry JP, Bettinger P, Merry K, Grebner DL, Bostosn K, Cieszewski C eds). Elsevier, London, UK, pp. 199-208.
ESRI Inc. (2015)
ArcGIS for Desktop version 10.3.1. ESRI Inc., Redlands, CA, USA.
Galeano P, Joseph E, Lillo RE (2014)
The Mahalanobis distance for functional data withy applications to classification. Technometrics 57: 281-291.
CrossRef | Gscholar
Gao Y, Feng Z, Wang Y, Liu JL, Li SC, Zhu YK (2014)
Clustering urban multifunctional landscapes using the self-organizing feature map neural network model. Journal of Urban Planning and Development 140: 1-11.
CrossRef | Gscholar
Hernández-González S, Hernández-Torres JE, Hernández-Ripalda MD (2020)
Análisis de las ventas empleando redes complejas: comunidades y centralidad de productos [Sales analysis using complex networks: communities and product centrality]. Ingeniería Industrial 2020: 177-191. [in Spanish]
CrossRef | Gscholar
Jiménez CA (2017)
Dinámica y efectividad de las fanpages de Facebook de candidatos a gobernador en los resultados electorales [Dynamics and effectiveness of the Facebook fanpages of gubernatorial candidates in the electoral results]. Innovaciones de Negocios 13: 221-238. [in Spanish]
Karkra R, Kaur S, Kaur M, Sharma R, Upadhyay RR (2020)
Management zone delineation in precision agriculture using machine learning algorithms. Journal of Natural Remedies 21: 22-29.
Kupfer JA, Gao P, Guo D (2012)
Regionalization of forest pattern metrics for the continental United States using contiguity constrained clustering and partitioning. Ecological Informatics 9: 11-18.
CrossRef | Gscholar
Latapy M (2008)
Main-memory triangle computations for very large (sparse(power-law)) graphs. Theoretical Computer Science 407: 458-473.
CrossRef | Gscholar
Latora V, Nicosia V, Russo G (2017)
Complex networks: principles, methods and applications. Cambridge University Press, Cambridge, UK, pp. 1-28.
CrossRef | Gscholar
Lawal O (2020)
Spatially constrained clustering of Nigerian states: perspective from social, economic and demographic attributes. International Journal of Environment and Geoinformatics 7: 68-79.
CrossRef | Gscholar
Liu Y, Zhao W, Wang S, Fu B (2019)
Landscape functional zoning at a country level based on ecosystem services bundle: Methods comparison and management indication. Journal of Environmental Management 249: 1-11.
CrossRef | Gscholar
Mahfuz NM, Yusoff M, Ahmad Z (2019)
Review of single clustering methods. IAES International Journal of Artificial Intelligence 8: 221.
Marques M, Reynolds KM, Marques S, Marto M, Paplanus S, Borges JG (2021)
A participatory and spatial multicriteria decision approach to prioritize the allocation of ecosystem services to management units. Land 10: 1-22.
CrossRef | Gscholar
Martínez-García V, González O, Ortiz-Pulido R (2020)
Hummingbird-plan network in a lowland dry forest in Yucatan, Mexico. Tropical Conservation Science 13: 1-12.
CrossRef | Gscholar
Matese A (2020)
Editorial for the special issue: forestry applications of Unmanned Aerial Vehicles (UAVs). Forests 11: 406.
CrossRef | Gscholar
Messier C, Bauhus J, Doyon F, Maure F, Sousa-Silva R, Nolet P, Mina M, Aquilué N, Fortin MJ, Puettmann K (2019)
The functional complex network approach to foster forest resilience to global changes. Forest Ecosystems 6: 1-16.
CrossRef | Gscholar
Montes-Orozco E, Mora-Gutiérrez RA, Obregón-Quintana B, De los Cobos-Silva SG, Rincón-García EA, Lara-Velázquez P, Gutiérrez-Andrade MA (2020)
Inverse percolation to quantify robustness in multiplex networks. Complexity ID 8796360: 1-11.
CrossRef | Gscholar
Müller A, Olschewski R, Unterberger C, Knoke T (2020)
The valuation of forest ecosystem services as a tool for management planning- A choice experiment. Journal of Environmental Management 271: 1-13.
CrossRef | Gscholar
Myasnikov AA (2018)
Zonal forest communities and forest zoning of western Siberia (Russia). Iraqi Journal of Agricultural Sciences 49: 938-943.
CrossRef | Gscholar
Opach T, Scherzer S, Lujala P, Ketil RJ (2020)
Seeking commonalities of community resilience to natural hazards: a cluster analysis approach. Norwegian Journal of Geography 74: 181-199.
CrossRef | Gscholar
Peng J, Hu X, Qiu S, Hu Y, Meersmans J, Liu Y (2019)
Multifunctional landscapes identification and associated development zoning in mountainous area. Science of the Total Environment 660: 765-775.
CrossRef | Gscholar
Rodrigues AR, Marques S, Botequim B, Marto M, Borges JG (2021)
Forest management for optimizing soil protection: a landscape-level approach. Forest Ecosystems 8: 1-13.
CrossRef | Gscholar
Rubinov M, Sporns O (2010)
Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52: 1059-1069.
CrossRef | Gscholar
Srinivasaraghavan J, Allada V (2006)
Application of Mahalanobis distance as a lean assessment metric. International Journal of Advanced Manufacturing Technology 29: 1159-1168.
CrossRef | Gscholar
The MathWorks Inc. (2020)
MATLAB for Desktop version R2020b. The MathWorks Inc., Natick, MA, USA.
Velandia LA (2020)
Aportes de los sistemas y redes complejas para la transformación social [Contributions of complex systems and networks for social transformation]. Revista Logos, Ciencia and Tecnología 12: 204-216. [in Spanish]
CrossRef | Gscholar
Wang L, Zhou Y, Li Q, Zuo Q, Gao H, Liu J, Tian Y (2021)
Forest land quality evaluation and the protection zoning of subtropical humid evergreen broadleaf forest region based on the PSOTOPSIS model and the local indicator of spatial association: a case study of Hefeng County, Hubei Province, China. Forests 12: 1-25.
CrossRef | Gscholar
Zanin M, Papo D, Sousa PA, Menasalvas E, Nicchi A, Kubike E, Boccaletti S (2016)
Combining complex networks and data mining: why and how. Physics Reports 635: 1-44.
CrossRef | Gscholar
Zemp DC, Schleussner CF, Barbosa HM, Hirota M, Montade V, Sampaio G, Staal A, Wang-Erlandsson L, Rammig A (2017)
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications 8: 1-10.
CrossRef | Gscholar
Zou W, Jing W, Chen G, Lu Y, Song H (2019)
A survey of big data analytics for smart forestry. IEEE Access 7: 46621-46636.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info