iForest - Biogeosciences and Forestry


Distribution factors of the epiphytic lichen Lobaria pulmonaria (L.) Hoffm. at local and regional spatial scales in the Caucasus: combining species distribution modelling and ecological niche theory

Rustam Pshegusov, Zalim Khanov, Victoria Chadaeva

iForest - Biogeosciences and Forestry, Volume 17, Issue 2, Pages 120-131 (2024)
doi: https://doi.org/10.3832/ifor4406-017
Published: Apr 30, 2024 - Copyright © 2024 SISEF

Research Articles

For the rare epiphytic lichen Lobaria pulmonaria (L.) Hoffm., there is a lack of data on ecological niche parameters and distribution factors in the Caucasus, which are necessary to develop an effective system of the species preservation during forest management. The aim of this study was to identify the influence of abiotic, biotic and movement factors on the potential distribution of Lobaria pulmonaria in the Caucasus forests, depending on the spatial scale. We combined species distribution modelling and ecological niche theory based on the BAM (Biotic-Abiotic-Movement) concept. A total of 174 occurrence data were retained in the modelling using Maxent ver. 3.4.3 in R. The distribution models of the main lichen phorophytes in the Caucasus (Pinus sylvestris L. and Fagus orientalis Lipsky) were used as biotic layers in models. The raster of distances from optimal sites, where the probability of the lichen occurrence remained above 0.5, was used as a movement-layer. Different abiotic predictors were significant in the lichen distribution in the Central Caucasus (terrain) and throughout the Caucasus (macroclimate). Interspecific relationships (lichen-phorophyte) were more significant at the local scale. The movement factor contributed most to the local model (80% of the contribution) and limited the lichen distribution to a radius of 20 m in the Central Caucasus and 30 m throughout the Caucasus. Field verification of the local model showed an 85.7% success rate of presence prediction with cutoff values of 0.8. The combination of SDM modelling and ecological niches theory is an effective method for studying the potential localisation and the ecological niches of epiphytic lichens.


Lobaria pulmonaria, Caucasus Forest, Species Distribution Modelling, Ecological Niche, Biotic-Abiotic-Movement Concept, Spatial Scale

Authors’ address

Rustam Pshegusov 0000-0002-6204-2690
Zalim Khanov 0000-0003-3090-2534
Victoria Chadaeva 0000-0002-0788-1395
Tembotov Institute of Ecology of Mountain Territories of Russian Academy of Science, 37a I. Armand Street, 360051 Nalchik (Russia)

Corresponding author


Pshegusov R, Khanov Z, Chadaeva V (2024). Distribution factors of the epiphytic lichen Lobaria pulmonaria (L.) Hoffm. at local and regional spatial scales in the Caucasus: combining species distribution modelling and ecological niche theory. iForest 17: 120-131. - doi: 10.3832/ifor4406-017

Academic Editor

Michele Carbognani

Paper history

Received: Jun 22, 2023
Accepted: Jan 29, 2024

First online: Apr 30, 2024
Publication Date: Apr 30, 2024
Publication Time: 3.07 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 1081
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 316
Abstract Page Views: 286
PDF Downloads: 453
Citation/Reference Downloads: 1
XML Downloads: 25

Web Metrics
Days since publication: 56
Overall contacts: 1081
Avg. contacts per week: 135.13

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Adhikari D, Singh P, Tiwary R, Barik S, Barik K (2019)
Modelling the environmental niche and potential distribution of Magnolia campbellii Hook. f. and Thomson for its conservation in the Indian Eastern Himalaya. In: “Plants of Commercial Values” (Singh B ed.). New India Publishing Agency, New Delhi, india, pp. 277-295.
Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015)
spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541-545.
CrossRef | Gscholar
Banerjee AK, Mukherjee A, Guo W, Ng WL, Huang Y (2019)
Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change. GECCO 20: e00800.
CrossRef | Gscholar
Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson A, Soberon J, Villalobos F (2011)
The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 1810e1819.
CrossRef | Gscholar
Benesperi R, Nascimbene J, Lazzaro L, Bianchi E, Tepsich A, Longinotti S, Giordani P (2018)
Successful conservation of the endangered forest lichen Lobaria pulmonaria requires knowledge of fine-scale population structure. Fungal Ecology 33: 65-71.
CrossRef | Gscholar
Blonder B, Lamanna Ch Violle C, Enquist BJ (2014)
The n-dimensional hypervolume. Global Ecology and Biogeography 23 (5): 595-609.
CrossRef | Gscholar
Bowen AKM, Stevens MHH (2020)
Temperature, topography, soil characteristics, and NDVI drive habitat preferences of a shade-tolerant invasive grass. Ecology and Evolution 10: 10785-10797.
CrossRef | Gscholar
Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002)
Evaluating resource selection functions. Ecological Modelling 157 (2-3): 281-300.
CrossRef | Gscholar
Brooker RW, Callaway RM, Cavieres LA, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Valiente-Banuet A, Whitham TG (2009)
Don’t diss integration: a comment on Ricklefs’ disintegrating communities. The American Naturalist 174: 919-927.
CrossRef | Gscholar
Brunialti G, Frati L, Ravera S (2015)
Ecology and conservation of the sensitive lichen Lobaria pulmonaria in Mediterranean old-growth forests. In: “Old-growth Forests and Coniferous Forests. Ecology, Habitat and Conservation” (Weber RP ed). Nova Science Publishers, New York, USA, pp. 12-28.
Buhl-Mortensen L, Burgos J, Steingrund P, Buhl-Mortensen P, Olafsdottir S, Ragnarsson SA (2019)
Vulnerable marine ecosystems (VMEs): coral and sponge VMEs in Arctic and sub-Arctic waters - Distribution and threats. Nordisk Ministerråd, Copenhagen, Denmark, pp. 145.
CrossRef | Gscholar
Burnham KP, Anderson DR (2002)
Model selection and multimodal inference: a practical information-theoretic approach (2nd edn). Springer-Verlag, New York, USA, pp. 355.
CrossRef | Gscholar
Carlsson R, Nilsson K (2009)
Status of the red-listed lichen Lobaria pulmonaria on the land Islands, SW Finland. Annales Botanici Fennici 46 (6): 549-554.
CrossRef | Gscholar
Daget P, Ahdali L, David P (1988)
Mediterranean bioclimate and its variation in the palaearctic region. In: “Mediterranean-type Ecosystems” (Lieth H, Mooney HA, Specht RL eds). Tasks for Vegetation Science, vol. 19, Springer, Dordrecht, Netherlands, pp. 139-148.
CrossRef | Gscholar
Di Nuzzo L, Giordani P, Benesperi R, Brunialti G, Fačkovcová Z, Frati L, Nascimbene J, Ravera S, Vallese C, Paoli L, Bianchi E (2022)
Microclimatic alteration after logging affects the growth of the endangered lichen Lobaria pulmonaria. Plants 11 (3): 295.
CrossRef | Gscholar
Dodgson NA (1992)
Image resampling. University of Cambridge Computer Laboratory, Cambridge, UK, pp. 264.
Eaton S, Ellis C (2012)
Local experimental growth rates respond to macroclimate for the lichen epiphyte Lobaria pulmonaria. Plant Ecology and Diversity 5 (3): 365-372.
CrossRef | Gscholar
Eaton S, Ellis C, Genney D, Thompson R, Yahr R, Haydon DT (2018)
Adding small species to the big picture: species distribution modelling in an age of landscape scale conservation. Biological Conservation 217: 251-258.
CrossRef | Gscholar
Ellis C (2019)
Climate change, bioclimatic models and the risk to lichen diversity. Diversity 11 (4): 54.
CrossRef | Gscholar
Ellis C, Eaton S (2021)
Climate change refugia: Landscape, stand and tree-scale microclimates in epiphyte community composition. Lichenologist 53 (1): 135-148.
CrossRef | Gscholar
Emberger L (1955)
A biogeograpic classification of climates. Researches and developments in Montpellier Botanical Laboratory, Montpellier 7: 3-43.
ENVIREM (2023)
ENVIronmental Rasters for Ecological Modeling. Web site.
Online | Gscholar
Fielding AH, Bell JF (1997)
A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38-49.
CrossRef | Gscholar
Fos S, Gómez-Serrano M, Moreno M, Carles M (2017)
Redescubrimiento del liquen Lobaria pulmonaria, aparentemente extinto en la comunidad Valenciana [Rediscovery of the lichen Lobaria pulmonaria, apparently extinct in the Valencian Community]. Flora Montiberica 67: 114-119. [In Spanish]
Online | Gscholar
Gasparyan A, Sipman H (2020)
The first record of Lobaria pulmonaria from Armenia. Herzogia 33: 554-558.
CrossRef | Gscholar
GBIF (2023)
Global Biodiversity Information Facility. Web site.
Online | Gscholar
Ginszt T, Laskowska-Ginszt A, Wolkowycki M (2022)
The first observation of Lobaria pulmonaria (L.) Hoffm. on Malus domestica Borkh. in the Bialowieza Forest. Sylwan 166: 297-308.
CrossRef | Gscholar
Guisan A, Thuiller W, Zimmermann N (2017)
Habitat suitability and distribution models: with applications in R. University Printing House, Cambridge, UK, pp. 462.
CrossRef | Gscholar
Hijmans RJ, Phillips SJ, Leathwick J, Elith J (2017)
dismo: species distribution modeling. R package version 1:3-3.
Online | Gscholar
Hilmo O, Rocha L, Holien H, Gauslaa Y (2011)
Establishment success of lichen diaspores in young and old boreal rainforests: a comparison between Lobaria pulmonaria and L. scrobiculata. Lichenologist 43: 241-255.
CrossRef | Gscholar
Holt EA, Bradford R, Garcia I (2015)
Do lichens show latitudinal patterns of diversity? Fungal Ecology 15: 63-72.
CrossRef | Gscholar
Ignatenko R, Tarasova V (2018)
The population structure of the lichen Lobaria pulmonaria in the middle boreal forests depends on the time-since-disturbance. Folia Cryptogam Estonica 54: 83-94.
CrossRef | Gscholar
Istomina NB (2008)
Lobaria pulmonaria (L.) Hoffm. In: “Red Data Book of Russian Federation (Plants and Fungi)” (Bardunov LV ed.). Tovarishchestvo Nauchnykh Izdaniy KMK, Moscow, Russia, pp. 885. [In Russian].
Ivanova N (2015)
Factors limiting distribution of the rare lichen species Lobaria pulmonaria (in forests of the Kologriv Forest Nature Reserve). Biology Bulletin 42: 187-96.
CrossRef | Gscholar
Jüriado I, Liira J, Csencsics D, Widmer I, Adolf C, Scheidegger C (2011)
Dispersal ecology of the endangered woodland lichen Lobaria pulmonaria in managed hemiboreal forest. Biodiversity and Conservation 20: 1803-1819.
CrossRef | Gscholar
Kassambara A, Mundt F (2019)
Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. Web site.
Online | Gscholar
Khanov Z, Pshegusov R (2021)
Modeling of population dynamics of the protected lichen Lobaria pulmonaria (L.) Hoffm. in the Caucasus. BIO Web of Conferences 35: 00015.
CrossRef | Gscholar
Liu C, White M, Newell G (2013)
Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40: 778-789.
CrossRef | Gscholar
Lê S, Josse J, Husson F (2008)
FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25 (1): 1-18.
CrossRef | Gscholar
Matwiejuk A, Zbyryt A (2013)
Nowe stanowisko Lobaria pulmonaria (Stictaceae) z apotecjami w Polsce [New locality of Lobaria pulmonaria (Stictaceae) with apothecia in Poland]. Fragmenta Floristica et Geobotanica Polonica 20: 24-28. [In Polish]
Maus C, Rybacki S, Uhrmacher AM (2011)
Rule-based multi-level modeling of cell biological systems. BMC Systems Biology 5 (1): 166.
CrossRef | Gscholar
Mikryukov V, Mikhailova I, Scheidegger C (2010)
Reproductive parameters of Lobaria pulmonaria (L.) Hoffm. in the Urals. Russian Journal of Ecology 41 (6): 475-479.
CrossRef | Gscholar
Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014)
ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods in Ecology and Evolution 5 (11): 1198-1205.
CrossRef | Gscholar
Myers CE, Stigall AL, Lieberman BS (2015)
PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41 (2): 226-244.
CrossRef | Gscholar
Nadyeina O, Dymytrova L, Naumovych A, Postoyalkin S, Scheidegger C (2014)
Distribution and dispersal ecology of Lobaria pulmonaria in the largest primeval beech forest of Europe. Biodiversity and Conservation 23: 3241-3262.
CrossRef | Gscholar
Nascimbene J, Benesperi R, Casazza G, Chiarucci A, Giordani P (2020)
Range shifts of native and invasive trees exacerbate the impact of climate change on epiphyte distribution: the case of lung lichen and black locust in Italy. Science of the Total Environment 735(9): 139537.
CrossRef | Gscholar
Ockinger E, Niklasson M, Nilsson S (2005)
Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodiversity and Conservation 14: 759-773.
CrossRef | Gscholar
Osorio-Olvera L, Lira-Noriega A, Soberón J, Peterson A, Falconi M, Contreras-Díaz RG, Martínez-Meyer E, Barve V, Barve N (2020)
ntbox: an R package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecology and Evolution 11 (10): 1199-1206.
CrossRef | Gscholar
PanoplyWin (2021)
Panoply netCDF, HDF and GRIB Data Viewer. Web site.
Online | Gscholar
Peterson A, Soberón J (2012)
Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza e Conservação 10 (2): 1-6.
CrossRef | Gscholar
Peterson A, Soberón J, Pearson R, Anderson R, Martínez-Meyer E, Nakamura M, Araújo M (2011)
Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ, USA, pp. 329.
CrossRef | Gscholar
Peterson A, Anamza T (2015)
Ecological niches and present and historical geographic distributions of species: a 15-year review of frameworks, results, pitfalls, and promises. Folia Zoologica 64 (3): 207-217.
CrossRef | Gscholar
Phillips SJ, Anderson RP, Dudik M, Schapire RE, Blair ME (2017)
Opening the black box: an open-source release of Maxent. Ecography 40 (7): 887-893.
CrossRef | Gscholar
Phillips SJ, Dudík M (2008)
Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31 (2): 161-175.
CrossRef | Gscholar
Pshegusov R, Tembotova F, Chadaeva V, Sablirova Y, Mollaeva M, Akhomgotov A (2022)
Ecological niche modeling of the main forest-forming species in the Caucasus. Forest ecosystems 9: 100019.
CrossRef | Gscholar
Qiao H, Escobar LE, Saupe EE, Ji L, Soberón J (2017)
A cautionary note on the use of hypervolume kernel density estimators in ecological niche modelling. Global Ecology and Biogeography 26 (9): 1066-1070.
CrossRef | Gscholar
Riley S, Degloria SD, Elliot SD (1999)
A terrain ruggedness index that quantifies topographic heterogeneity. IJS 5 (1-4): 23-27.
Rys A (2005)
Granicznik plucnik Lobaria pulmonaria w Lasach Panstwowych i jego ochrona [Lobaria pulmonaria in state forests and its protection]. Wyd Studio Avalon, Olsztyn, Poland, pp. 135. [in Polish]
Shkhagapsoev S, Kurasheva L (2022)
Forests of Kabardino-Balkaria: forest management, afforestation, composition, protection. Publishing house of M. and V. Kotlyarov, Nalchik, Russian Federation, pp. 340. [in Russian]
Sillero N, Arenas-Castro S, Enriquez-Urzela U, Vale CG, Sousa-Guedes D, Martínez-Freiría F, Real R, Barbosa AM (2021)
Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling 456: 109671.
CrossRef | Gscholar
Soberón J, Peterson A (2005)
Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1-10.
CrossRef | Gscholar
Soberón J, Osorio-Olvera L (2023)
A dynamic theory of the area of distribution. Journal of Biogeography 50 (6): 1037-1048.
CrossRef | Gscholar
SpatialEco (2023)
Spatial analysis and modelling of ecological systems, version 1:3-7, Web site.
Online | Gscholar
SRTM (2023)
Shuttle radar topography mission. Web site.
Online | Gscholar
Stoykov D (2015)
Lobaria pulmonaria (Ascomycota, Lobariaceae) in Bulgaria. Trakya University Journal of Natural Sciences 13 (2): 109-114.
CrossRef | Gscholar
Sutton L, Anderson D, Franco M, McClure Ch, Miranda E, Vargas F, Vargas G, Puschendorf R (2023)
Prey resources are equally important as climatic conditions for predicting the distribution of a broad-ranged apex predator. Diversity and Distributions 29: 613-628.
CrossRef | Gscholar
Tembotova F, Pshegusov R, Tlupova Y (2012)
Forests of the northern macroslope of the Central Caucasus (Elbrus and Terek variants of zonation). In: “Biological Diversity of Forest Ecosystems” (Isayev AS ed). Tovarishchestvo Nauchnykh Izdaniy KMK, Moscow, Russia, pp. 242-259. [in Russian]
Title PO, Bemmels JB (2018)
ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41 (2): 291-307.
CrossRef | Gscholar
Tytar V (2021)
Associations between habitat quality and body size in the Carpathian-Podolian land snail Vestia turgida (Gastropoda, Clausiliidae): species distribution model selection and assessment of performance. Zoodiversity 55: 25-40.
CrossRef | Gscholar
Urbanavichene IN, Urbanavichus GP (2014)
Contribution to the lichen flora of the Achipse River valley (SW Caucasus, Krasnodarsky Kray). Novosti Sistematiki Vysshikh Rastenii 48: 315-326. [In Russian]
CrossRef | Gscholar
Wickham H (2009)
ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, USA, pp. 260.
Wiens JJ (2011)
The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society of London Series 366 (1576): 2336-2350.
CrossRef | Gscholar
Wisz M, Pottier J, Kissling W, Pellissier L, Lenoir J, Damgaard C, Dormann C, Forchhammer M, Grytnes J, Guisan A, Heikkinen R, Hoye T, Kühn I, Luoto M, Maiorano L, Nilsson M-Ch Normand S, Ockinger E, Schmidt N, Svenning J-C (2013)
The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews of the Cambridge Philosophical Society 88 (1): 15-30.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info