Forest floor litter can influence biogeochemical cycling and root growth in Pinus taeda systems, especially on low soil fertility sites. The impact of fertilization and liming on forest floor litter (quantity, elemental composition and root presence) was evaluated in a Pinus taeda stand in southern Brazil. A nutrient omission experiment was initiated in November 2008 on an 11 year-old Pinus taeda plantation. The experiment was a randomized block design with seven treatments and four blocks. The treatments were: complete (macro + micro + lime); minus macronutrients; minus micronutrients; minus K; minus Zn; minus lime; and control. In 2012, forest floor litter samples were collected, divided by layer (new litter, old litter, coarse fragmented forest layer > 2mm, fine fragment forest floor < 2mm, and fine roots) and analyzed for concentrations of Na, Al, and total nutrients. Results indicated that lime increased Ca and Mg concentrations, reduced Al toxicity, and improved fine root growth. An increase in fine roots was observed in treatments without K. There were large increases in Fe and Al as a function of litter age and increased Mn in fragmented litter when lime was applied. There was little variation in forest floor litter accumulation in all treatments. Elemental abundance was C>N>Fe>P>Ca>K>Mg>Mn under control conditions and C>N>Ca>Mg>P>Fe>Mn>K for the complete treatment. Occurrence of needle chlorosis, similar to that reported for Mg, and low growth under lime omission indicate that Mg was a major factor limiting growth. Fertilization and liming affected the bio-cycling of nutrients, Al toxicity, and root growth.
Keywords
, , ,
Citation
Adam WM, Rodrigues VDS, Magri E, Motta ACV, Prior SA, Moraes Zambon L, Lima RLD (2021). Mid-rotation fertilization and liming of Pinus taeda: growth, litter, fine root mass, and elemental composition. iForest 14: 195-202. - doi: 10.3832/ifor3626-014
Academic Editor
Gianfranco Minotta
Paper history
Received: Aug 14, 2020
Accepted: Feb 18, 2021
First online: Apr 24, 2021
Publication Date: Apr 30, 2021
Publication Time: 2.17 months
© SISEF - The Italian Society of Silviculture and Forest Ecology 2021
Open Access
This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Breakdown by View Type
(Waiting for server response...)
Article Usage
Total Article Views: 30388
(from publication date up to now)
Breakdown by View Type
HTML Page Views: 26561
Abstract Page Views: 1729
PDF Downloads: 1702
Citation/Reference Downloads: 2
XML Downloads: 394
Web Metrics
Days since publication: 1307
Overall contacts: 30388
Avg. contacts per week: 162.75
Article Citations
Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)
(No citations were found up to date. Please come back later)
Publication Metrics
by Dimensions ©
Articles citing this article
List of the papers citing this article based on CrossRef Cited-by.
(1)
Albaugh TJ, Allen HL, Dougherty PM, Kress LW, King JS (1998)Leaf area and above-and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science 44 (2): 317-328.
Online |
Gscholar
(2)
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013)Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22 (6): 711-728.
CrossRef |
Gscholar
(3)
Alves MJF, Melo VF, Reissmann CB, Kaseker JF (2013)Reserva mineral de potássio em Latossolo cultivado com
Pinus taeda L. [Mineral potassium reserve in an Oxisol cultivated with
Pinus taeda L.]. Revista Brasileira de Ciência do Solo 37: 1599-1610. [in Portuguese]
CrossRef |
Gscholar
(4)
Babel U (1972)Moderprofile in Wäldern - Morphologie und Umsetzungsprozesse [Moder profiles in forests - Morphology and implementation processes]. Hohenheimer Arbeiten 60, Ulmer, Stuttgart, Germany, pp. 120. [in German]
Gscholar
(5)
Bakker MR (1999)Fine roots parameters as sustainability of forest ecosystems. Forest Ecology and Management 122: 7-16.
CrossRef |
Gscholar
(6)
Bakker MR, Jolicoeur E, Trichet P, Augusto L, Plassar DC, Guinberteau J, Loustau D (2009)Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old
Pinus pinaster stand. Tree Physiology 29 (2): 229-238.
CrossRef |
Gscholar
(7)
Batista AH, Motta ACV, Reissmann CB, Schneider T, Martins IL, Hashimoto M (2015)Liming and fertilisation in
Pinus taeda plantations with severe nutrient deficiency in savanna soils. Acta Scientiarum Agronomy 37 (1): 117-125.
CrossRef |
Gscholar
(8)
Bauhus J, Bartsch N, Cowling N (2004)The effects of gaps and liming on forest floor decomposition and soil C and N dynamics in a
Fagus sylvatica forest. Canadian Journal of Forest Research 34 (3): 509-518.
CrossRef |
Gscholar
(9)
Berg B, Davey MP, Marco A, Emmett B, Faituri M, Hobbie SE, Rutigliano FA (2010)Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100 (1-3): 57-73.
CrossRef |
Gscholar
(10)
Bizon JMC (2005)Avaliação da sustentabilidade nutricional de plantios de
Pinus taeda L. usando um balanço de entrada e saída de nutrientes [Assessment of the nutritional sustainability of
Pinus taeda L. plantations using a nutrient input and output balance]. Dissertação de mestrado, Escola Superior de Agricultura “Luiz de Queiroz”, USP, Piracicaba, Brazil, pp. 96. [in Portuguese]
Gscholar
(11)
Carlson CA, Fox TR, Allen HL, Albaugh TJ, Rubilar RA, Stape JL (2013)Growth responses of loblolly pine in the southeast united states to midrotation applications of nitrogen, phosphorus, potassium, and micronutrients. Forest Science 60 (1): 157-169.
CrossRef |
Gscholar
(12)
Consalter R, Barbosa JZ, Prior SA, Vezzani FM, Bassaco MVM, Pedreira GQ, Motta ACV (2020)Mid-rotation fertilization and liming effects on nutrient dynamics of
Pinus taeda L. in subtropical Brazil. European Journal of Forest Research 140 (1): 19-35.
CrossRef |
Gscholar
(13)
Donagema GK, Campos DB, Calderano SB, Teixeira WG, Viana JM (2011)Manual de métodos de análise de solo [Manual of soil analysis methods]. Embrapa Solos-Documentos (INFOTECA-E), Rio de Janeiro, Brazil, pp. 230. [in Portuguese]
Gscholar
(14)
Epstein E, Bloom AJ (2005)Mineral nutrition of plants: principles and perspectives. Sinauer Associates, Sunderland, MS, USA, pp. 400.
Gscholar
(15)
Huber C, Baier R, Göttlein A, Weis W (2006)Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Höglwald, Germany. Forest Ecology and Management 233 (1): 11-20.
CrossRef |
Gscholar
(16)
Huntington TG (2000)The potential for calcium depletion in forest ecosystems of southeastern United States: review and analysis. Global Biogeochemical Cycles 14 (2): 623-638.
CrossRef |
Gscholar
(17)
Ingerslev M (1997)Effects of liming and fertilization on growth, soil chemistry and soil water chemistry in a Norway spruce plantation on a nutrient-poor soil in Denmark. Forest Ecology Management 92 (1-3): 55-66.
CrossRef |
Gscholar
(18)
Jandl R, Kopeszki H, Bruckner A, Hager H (2003)Forest soil chemistry and mesofauna 20 years after an amelioration fertilization. Restoration Ecology 11 (2): 239-246.
CrossRef |
Gscholar
(19)
Kendorff H, Schnitzer M (1980)Sorption of metals on humic acid. Geochimica and Cosmochimica Acta 44: 1701-1708.
CrossRef |
Gscholar
(20)
Kiser IC, Fox TR, Carlson CA (2013)Foliage and Litter Chemistry, Decomposition, and Nutrient Release in
Pinus taeda. Forests 4 (3): 595-612.
CrossRef |
Gscholar
(21)
Lehto T (1994)Effects of liming and boron fertilization on boron uptake of
Picea abies. Plant and Soil 163 (1): 55-64.
CrossRef |
Gscholar
(22)
Lopes VG, Schumacher MV, Calil FN, Vieira M, Witschoreck R (2010)Fine roots quantification in
Pinus taeda L. stand and grassland area in Cambará do Sul (RS). Ciência Florestal 20 (4): 569-578.
CrossRef |
Gscholar
(23)
Marques R, Motta ACV (2003)Análise química do solo para fins de fertilidade [Chemical soil analysis for fertility purposes]. In: “Manual de Diagnóstico da Fertilidade e Manejo dos Solos Agrícolas” (De Lima MR ed). Departamento de Solos e Engenharia Agrícola, Curitiba, Brazil, pp. 81-102. [in Portuguese]
Gscholar
(24)
Marschner B, Wilczynski A (1991)The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant and Soil 137 (2): 229-236.
CrossRef |
Gscholar
(25)
Martins APL, Reissmann CB (2007)Material vegetal e as rotinas laboratoriais nos procedimentos químico-analíticos [Plant material and laboratory routines in chemical-analytical procedures]. Scientia Agraria 8 (1): 1-17.
CrossRef |
Gscholar
(26)
Martins IL (2011)Análise nutricional do P em um povoamento de
Pinus taeda L. submetido a um ensaio de omissão de nutrientes. [Nutritional analysis of P in a stand of
Pinus taeda L. submitted to a nutrient omission test]. Dissertação de Mestrado, Departamento de Solos e Engenharia Agrícola, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, PR, Brazil, pp. 96. [in Portuguese]
Gscholar
(27)
Matzner E, Khanna PK, Meiwes KJ, Ulrich B (1985)Effects of fertilization and liming on the chemical soil conditions and element distribution in forest soils. Plant and Soil 87 (3): 405-415.
CrossRef |
Gscholar
(28)
Moro L (2017)Produtividade, ciclagem de nutrientes e índices do sistema dris em plantios de pinus submetidos à adubação NPK em três idades [Productivity, nutrient cycling and indexes of the dris system in pine plantations submitted to NPK fertilization at three ages]. Tese de Doutorado, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil, pp. 93. [in Portuguese]
Gscholar
(29)
Motta ACV, Barbosa JZ, Consalter R, Reissmann CB (2014)Nutrição e Adubação da Cultura de Pínus [Pine Crop Nutrition and Fertilization]. In: “Nutrição e Adubação de Espécies Florestais e Palmeiras” (Prado, RM, Wadt PGS eds). Jaboticabal, FUNEP, São Paulo, Brazil, pp. 383-426. [in Portuguese]
Gscholar
(30)
Persson T, Rudebeck A, Wiren A (1995)Pools and fluxes of carbon and nitrogen in 40-year-old forest liming experiments in southern Sweden. Water, Air, and Soil Pollution 85 (2): 901-906.
CrossRef |
Gscholar
(31)
Piatek KB, Allen HL (2001)Are forest floors in mid-rotation stands of loblolly pine (
Pinus taeda) a sink for nitrogen and phosphorus? Canadian Journal of Forest Research 31 (7): 1164-1174.
CrossRef |
Gscholar
(32)
Piovesan G, Schumacher MV, Viera M, Lopes VG, Welter C (2012)Deposição de serapilheira em povoamento de pinus [Litterfall deposition in a pine stand]. Pesquisa Agropecuária Tropical 42: 206-211. [in Portuguese]
CrossRef |
Gscholar
(33)
Prado RM (2008)Nutrição de plantas [Plant nutrition]. UNESP, São Paulo, Brazil, pp. 507. [in Portuguese]
Gscholar
(34)
Prescott CE, Corbin JP, Parkinson D (1992)Immobilization and availability of N and P in the forest floors of fertilized Rocky Mountain coniferous forests. Plant and Soil 143: 1-10.
CrossRef |
Gscholar
(35)
Prescott CE (1995)Does nitrogen availability control rates of litter decomposition in forests? Plant and Soil 168: 83-88.
CrossRef |
Gscholar
(36)
Prietzel J, Rehfuess KE, Stetter U, Pretzsch H (2008)Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine (
Pinus sylvestris L.) sites in Central Europe during 40 years after fertilization, liming, and lupine introduction. European Journal of Forest Research 127 (1): 43-61.
CrossRef |
Gscholar
(37)
Rabel DO, Maeda S, Araujo EM, Gomes JB, Bognolla IA, Prior SA, Magri E, Frigo C, Brasileiro BP, Santos MC, Pedreira GQ, Motta ACV (2020)Recycled alkaline paper waste influenced growth and structure of
Pinus taeda L. forest. New Forests 51: 1-22.
CrossRef |
Gscholar
(38)
Rizvi SH, Gauquelin T, Gers C, Guérold F, Pagnout C, Baldy V (2012)Calcium-magnesium liming of acidified forested catchments: effects on humus morphology and functioning. Applied Soil Ecology 62: 81-87.
CrossRef |
Gscholar
(39)
Rodrigues ANA, Motta ACV, Goularte GD, Prior SA (2018)Forms and buffering potential of aluminum in tropical and subtropical acid soils cultivated with
Pinus taeda L. Journal of Soils and Sediments 19 (3): 1355-1366.
CrossRef |
Gscholar
(40)
Rosberg I, Frank J, Stuanes AO (2006)Effects of liming and fertilization on tree growth and nutrient cycling in a Scots pine ecosystem in Norway. Forest Ecology and Management 237 (1-3): 191-207.
CrossRef |
Gscholar
(41)
Samuelson LJ, Johnsen K, Stokes T (2004)Production, allocation, and stemwood growth efficiency of
Pinus taeda L. stands in response to 6 years of intensive management. Forest Ecology and Management 192 (1): 59-70.
CrossRef |
Gscholar
(42)
Sanchez FG (2001)Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. Forest Ecology and Management 152 (1-3): 85-96.
CrossRef |
Gscholar
(43)
Sayer EJ, Tanner EVJ, Cheesman AW (2006)Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil 281 (1-2): 5-13.
CrossRef |
Gscholar
(44)
Sayer EJ, Wright SJ, Tanner EVJ, Yavitt JB, Harms KE, Powers JS, Kaspari M, Garcia MN, Tuner BL (2012)Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15 (3): 387-400.
CrossRef |
Gscholar
(45)
Schumacher MV, Viera M, Witschoreck R (2008)Produção de serapilheira e transferência de nutrientes em área de segunda rotação com floresta de
Pinus taeda L. no município de Cambará do Sul, RS. [Litter production and nutrients transfer in a second rotation area with
Pinus taeda L. forest in Cambará do Sul, RS]. Ciência Florestal 18 (4): 471-480. [in Portuguese]
CrossRef |
Gscholar
(46)
Sun OJ, Payn TW (1999)Magnesium nutrition and photosynthesis in
Pinus radiata: clonal variation and influence of potassium. Tree Physiology 19: 535-540.
CrossRef |
Gscholar
(47)
Trevisan E (1992)Classificação e caracterização de horizontes orgnicos sob povoamentos de Pinus taeda L. na região de Ponta Grossa - PR [Classification and characterization of organic horizons under stands of
Pinus taeda L. in the region of Ponta Grossa - PR]. Dissertação de Mestrado, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, Brazil, pp. 106. [in Portuguese]
Gscholar
(48)
Vangelova EI, Hirano Y, Eldhuset TD, Sas-paszt L, Bakker MR, Püttsepp U, Brunner I, Lõhmus K, Godbold D (2007)Tree fine roots Ca/Al molar ratio - Indicator of Al and acidity stress. Plant Biosystems 141 (3): 460-480.
CrossRef |
Gscholar
(49)
Vieira M, Schumacher MV (2009)Concentração e retranslocação de nutrientes em acículas de
Pinus taeda L. [Concentration and retranslocation of nutrients in
Pinus taeda L.] Ciência Florestal 19 (4): 375-382. [in Portuguese]
CrossRef |
Gscholar
(50)
Vogel JG, He D, Jokela EJ, Hockaday W, Schuur EAG (2015)The effect of fertilization levels and genetic deployment on the isotopic signature, constituents, and chemistry of soil organic carbon in managed loblolly pine (
Pinus taeda L.) forests. Forest Ecology and Management 355: 91-100.
CrossRef |
Gscholar
(51)
Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ (2011)Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology 36 (4): 433-445.
CrossRef |
Gscholar
(52)
Will GM (1978)Nutrient deficiencies in
Pinus radiata in New Zealand. New Zealand Journal of Forestry Science 8 (1): 4-14.
Online |
Gscholar
(53)
Zhang D, Hui D, Luo Y, Zhou G (2008)Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1 (2): 85-93.
CrossRef |
Gscholar
(54)
Zinn YL, Resck DVS, Silva JE (2002)Soil organic carbon as affected by afforestation with
Eucalyptus and
Pinus in the Cerrado region of Brazil. Forest Ecology and Management 166 (1/3): 285-294.
CrossRef |
Gscholar