Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal

B Botequim (1)   , J Garcia-Gonzalo (1), S Marques (1), A Ricardo (1), JG Borges (1), M Tomé (1), MM Oliveira (2)

iForest - Biogeosciences and Forestry, Volume 6, Issue 4, Pages 217-227 (2013)
doi: https://doi.org/10.3832/ifor0821-006
Published: May 27, 2013 - Copyright © 2013 SISEF

Research Articles

This paper presents a model to predict annual wildfire risk in pure and even-aged eucalypt stands in Portugal. Emphasis was in developing a management-oriented model, i.e., a model that might both: (a) help assess wildfire occurrence probability as a function of readily available forest inventory data; and (b) help predict the effects of management options (e.g., silvicultural treatments) on the risk of fire in eucalypt stands. Data from both the 1995/1998 and the 2005/2006 Portuguese National Forest Inventories as well as wildfire perimeters’ data were used for modeling purposes. Specifically, this research considered 1122 inventory plots with approximately 1.2 million trees and 85 wildfire perimeters. The model to predict the probability of wildfire occurrence is a logistic function of measurable and controllable biometric and environmental variables. Results showed that wildfire occurrence probability in a stand increases with the ratio basal area/quadratic mean diameter and with the shrubs biomass load, while it decreases with stand dominant height. They further showed that the probability of wildfire occurrence is higher in stands that are over 1 Km distant from roads. These results are instrumental for assessing the impact of forest management options on wildfire risk levels thus helping forest managers develop plans that may mitigate wildfire impacts.


Forest Fires, Forest Management, Eucalyptus globulus Labill, Annual Wildfire Risk Model

Authors’ address

B Botequim
J Garcia-Gonzalo
S Marques
A Ricardo
JG Borges
M Tomé
Forest Research Centre, School of Agriculture, Departamento de Recursos Naturais, Ambiente e Território, Technical University of Lisbon, tapada da Ajuda, P-1349-017 Lisboa (Portugal)
MM Oliveira
Research Centre in Mathematics and Applications, Colégio Luís Verney, University of Évora, rua Romão Ramanho 59, P-7000-671 Évora (Portugal)

Corresponding author



Botequim B, Garcia-Gonzalo J, Marques S, Ricardo A, Borges JG, Tomé M, Oliveira MM (2013). Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. iForest 6: 217-227. - doi: 10.3832/ifor0821-006

Academic Editor

Marco Borghetti

Paper history

Received: Oct 12, 2012
Accepted: Mar 18, 2013

First online: May 27, 2013
Publication Date: Aug 01, 2013
Publication Time: 2.33 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 14906
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 10882
Abstract Page Views: 301
PDF Downloads: 2841
Citation/Reference Downloads: 32
XML Downloads: 850

Web Metrics
Days since publication: 2341
Overall contacts: 14906
Avg. contacts per week: 44.57

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Aug 2019)

Total number of cites (since 2013): 20
Average cites per year: 2.86


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Agee JK, Skinner CN (2005)
Basic principles of forest fuel reduction treatments. Forest Ecology and Management 211: 83-96.
CrossRef | Gscholar
Agee JK, Wakimoto RH, Darley EF, Biswell HH (1973)
Eucalyptus fuel dynamics, and fire hazard in the Oakland Hills. California Agriculture, 13-15 September 1973, CA, USA.
Badia-Perpinya A, Pallares-Barbera M (2006)
Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia. International Journal of Wildland Fire 15: 187-196.
CrossRef | Gscholar
Barreiro S, Tomé M (2011)
Simplot: Simulating the impacts of fire severity on sustainability of eucalyptus forests in Portugal. Ecological Indicators 11: 36 -45.
CrossRef | Gscholar
Botequim B, Borges P, Carreiras J, Oliveira MM, Borges J (2009)
Development of a shrub growth model in understory conditions (preliminary model), Technical Report 7, FORCHANGE, Instituto Superior de Agronomia, Lisboa, Portugal.
Bradstock RA, Williams RJ (2009)
Can Australian fire regimes be managed for carbon benefits? New Phytologist 183:931-934.
CrossRef | Gscholar
Burnham KP, Anderson DR (2003)
Model selection and multi model inference: a practical information-theoretic approach. Springer, New York, USA.
Bylin CV (1982)
Estimating dbh from stump diameter from 15 southern species. USDA Forest Service Research, New Orleans, LA, USA, vol. 286, pp. 1-3.
Cardille JA, Ventura SJ, Turner MG (2001)
Environmental and social factors influencing wildfires in the Upper Midwest, USA. Ecological Applications 11:111-127.
CrossRef | Gscholar
Carreiras JMB, Pereira JMC (2006)
An inductive fire risk map for Portugal. In: Proceedings of the “5 International Conference on Forest Fire Research” (DX Viegas ed). Figueira da Foz (Portugal) 27-30 November 2006. Associação para o Desenvolvimento da Aerodin’mica Industrial, ADAI, Coimbra, Portugal. [CD-ROM]
Castro FX, Tudela A, Sebastià MT (2003)
Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agricultural and Forest Meteorology 116: 49-59.
CrossRef | Gscholar
Catry FX, Rego FC, Moreira F, Bação F (2008)
Characterizing and modelling the spatial patterns of wildfire ignitions in Portugal: fire ignitions and resulting burned area. In: “ Modelling, monitoring and management of forest fires” (De La Heras J, Brebbia CA, Viegas D, Leone V eds). WIT Transactions on Ecology and the Environment 199: 213-221.
CrossRef | Gscholar
Catry FX, Rego FC, Bação F, Moreira F (2009)
Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire 18: 921-931.
CrossRef | Gscholar
Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002)
Designing a spectral index to estimate vegetation water content from remote sensing data - part 1. Theoretic approach. Remote Sensing of Environment 82: 188-197.
CrossRef | Gscholar
Cheney NP, Richmond RR (1980)
The impact of intensive forest management on fire protection with special regard to plantations of eucalypts. Prepared for the 11 Commonwealth Forestry Conference, Canberra, Australia.
Crecente-Campo F, Marshall P, Rodríguez-Soalleiro R (2009)
Modeling non-catastrophic individual-tree mortality for Pinus radiata plantations in northwestern Spain. Forest Ecology and Management 257: 1542-1550.
CrossRef | Gscholar
Cruz MG, Alexander ME, Wakimoto RH (2004)
Modeling the likelihood of crown fire occurrence in conifer forest stands. Forest Science 50 (5): 640-658.
Cumming SG (2001)
Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecological Applications 11: 97-110.
CrossRef | Gscholar
Curtin RA (1966)
The effect of fire on tree health and growth. Technical Paper no. 13, New South Wales Forest Commission, Sidney, Australia, pp. 21-35.
DGRF (2006)
Estratégia nacional para as Florestas, Direcção-Geral dos Recursos Florestais, Lisboa, Portugal, pp. 189. [In Portuguese]
DGRF (2007)
Análise da evolução do comércio externo de produtos florestais. Boletim de Informação. Direcção-Geral dos Recursos Florestais, Lisboa, Portugal, pp. 21. [In Portuguese]
Diéguez-Aranda U, Barrio-Anta M, Castedo-Dorado F, Balboa-Murias M (2003)
Estimación del diámetro normal y del volumen del tronco a partir de las dimensiones del tocón para seis especies forestales comerciales de Galicia. Investigación Agraria - Sistemas y Recursos Florestales 12 (2): 131-139. [In Spanish]
Duncker P, Barreiro S, Hengeveld GM, Lind T, Mason WL, Ambrozy S, Spiecker H (2012)
Classification of forest management approaches: a new methodological framework and its applicability to European forestry. Ecology and Society 17(4): 51.
CrossRef | Gscholar
Fernandes P (2009)
Combining structure data and fuel modeling to classify fire hazard in Portugal. Annals of Forest Science 66: 4-15.
CrossRef | Gscholar
Fernandes P, Rigolot E (2007)
The fire ecology and management of maritime pine (Pinus pinaster Ait.). Forest Ecology and Management 241: 1-13.
CrossRef | Gscholar
Fernandes P, Botelho H, Rego F (2005)
A piroecologia do Pinheiro bravo. Silva Lusitana 13 (2): 233-248. [In Portuguese]
Fernandes P, Luz A, Loureiro C (2010)
Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal. Forest Ecology and Management 260: 883-892.
CrossRef | Gscholar
Fernandes P, Luz A, Loureiro C, Godinho-Ferreira P, Loureiro H (2006)
Fuel modelling and fire hazard assessment based on data from Portugal National Inventory. In: Proceedings of the “International Conference on Forest Fire Research” (Viegas X ed). ADAI, Figueira da Foz, Portugal.
Fernandes P, Loureiro C, Palheiro P, Vale-Gonçalves HF, Fernandes M, Cruz M (2011)
Fuels and fire hazard in Blue Gum (Eucalyptus globulus) stands in Portugal. Boletín del CIDEU 10: 53-61.
Ferreira L, Constantino M, Borges JG (2011)
A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Annals of Operations Research. [in press].
Ferreira L, Constantino M, Borges J, Garcia-Gonzalo J (2012)
A stochastic dynamic programming approach to optimize short-rotation coppice systems management scheduling: an application to eucalypt plantations under wildfire risk in Portugal. Forest Science 58: 353-365.
CrossRef | Gscholar
Finney MA (1999)
Mechanistic Modelling of landscape fire patterns. In: “Spatial Modelling of Forest Landscape Change: Approaches and Applications” (Mladenoff DJ, Baker WL eds), Cambridge University Press, Cambridge, UK, pp. 186-209.
Finney MA (2005)
The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management 211: 97-108.
CrossRef | Gscholar
Freire J (2009)
Modelação do Crescimento e da Produção de Pinha no Pinheiro Manso. Dissertação de Doutoramento em Engenharia Florestal. Instituto Superior de Agronomia, UTL, Lisboa, Portugal. [in Portuguese]
Garcia-Gonzalo J, Pukkala T, Borges J (2011a)
Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal. Annals of Operational Research.
CrossRef | Gscholar
Garcia-Gonzalo J, Marques S, Borges JG, Botequim B, Oliveira MM, Tomé J, Tomé M (2011b)
A three-step approach to post-fire mortality modelling in maritime pine (Pinus pinaster Ait.) stands for enhanced forest planning in Portugal. Forestry 84 (2): 197-206.
CrossRef | Gscholar
Garcia-Gonzalo J, Zubizarreta-Gerendiain A, Ricardo A, Marques S, Botequim B, Borges JG, Oliveira MM, Tomé M, Pereira JMC (2012)
Modelling wildfire risk in pure and mixed forest stands in Portugal. Allgemeine Forst und Jagdzeitung (AFJZ) - German Journal of Forest Research 183 (11/12): 238-248.
Godinho-Ferreira P, Azevedo A, Rego F (2005)
Carta da tipologia florestal de Portugal continental. Silva Lusitana 13: 1-34. [in Portuguese]
González-Olabarria J, Pukkala T (2011)
Integrating fire risk considerations in landscape-level forest planning. Forest Ecology and Management 261: 278-287.
CrossRef | Gscholar
Gould JS, McCaw W, Cheney NP (2011)
Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in western Australia for fire management. Forest Ecology and Management 262 (3): 531-546.
CrossRef | Gscholar
González JR, Palahí M, Trasobares A, Pukkala T (2006)
A fire probability model for forest stands in Catalonia (north-east Spain). Annals of Forest Science 63: 169-176.
CrossRef | Gscholar
González JR, Palahí M, Pukkala T, Trasobares A (2008)
Optimising the management of Pinus nigra Arn. stands under endogenous risk of fire in Catalonia. Investigación Agraria - Sistemas y Recursos Forestales 17 (1): 10-17.
CrossRef | Gscholar
Graham RT,Harvey A,Jain TB,Tonn JR (1999)
The effects of thinning and similar stand treatments on fire behavior in western Forests. General Technical Report PNW-GTR-463, USDA Forest Service, Portland, OR, USA.
Graham R, McCaffrey S, Jain T (2004)
Science basis for changing forest structure to modify wildfire behavior and severity. USDA Forest Service, Fort Collins, CO, USA, pp. 43.
Guinto DF, House APN, Xu ZH, Saffigna PG (1999)
Impacts of repeated fuel reduction burning on tree growth, mortality and recruitment in mixed species eucalypt forests of southeast Queensland, Australia. Forest Ecology and Management 115: 13-27.
CrossRef | Gscholar
Hanewinkel M, Peltola H, Soares P, González-Olabarria JR (2010)
Recent approaches to model the risk of storm and fire to European forests and their integration into simulation and decision support tools. Forest Systems 19: 30-47.
Online | Gscholar
Hosmer DW, Lemeshow S (2000)
Applied logistic regression (2 edn). Probability and Mathematical Statistics, vol. 452, Wiley Series, New York, USA, pp. 307.
ICNF (2013)
IFN6 - Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, Lisboa, Portugal, pp. 34. [in Portuguese]
Jactel H, Nicoll BC, Branco M, González-Olbararria JR, Grodzki W, Langstrom B, Moreira F, Netherer S (2009)
The influences of forest stand management on biotic and abiotic risks of damage. Annal of Forest Science 66 (701): 1-18.
CrossRef | Gscholar
Kazanis D, Xanthopoulos G, Arianoutsou M (2012)
Understorey fuel load estimation along two post-fire chronosequences of Pinus halepensis Mill. forests in Central Greece. Journal of Forest Research 17: 105-109.
CrossRef | Gscholar
Keeley JE, Zedler P (2009)
Large, high-intensity fire events in southern California shrublands: Debunking the fine-grain age patch model. Ecological Applications 19: 69-94.
CrossRef | Gscholar
Kleinbaum DG (1996)
Logistic regression: a self- learning text. Statistical Methods in Medical Research 5: 103-104.
CrossRef | Gscholar
Kozak A, Kozak R (2003)
Does cross validation provide additional information in the evaluation of regression models? Canadian Journal of Forest Research 33 (6): 976-987.
CrossRef | Gscholar
Marques S, Borges JG, Garcia-Gonzalo J, Moreira F, Carreiras JMB, Oliveira MM, Cantarinha A, Botequim B, Pereira JC (2011a)
Characterization of wildfires in Portugal. European Journal of Forest Research 130 (5): 775-784.
CrossRef | Gscholar
Marques S, Garcia-Gonzalo J, Borges JG, Botequim B, Oliveira MM, Tomé J, Tomé M (2011b)
Developing post-fire Eucalyptus globulus stand damage and tree mortality models for enhanced forest planning in Portugal. Silva Fennica 45 (1): 69-83.
CrossRef | Gscholar
Marques S, Garcia-Gonzalo J, Botequim B, Ricardo A, Borges J G, Tomé M, Oliveira MM (2012)
Assessing wildfire risk probability in Pinus pinaster Ait. stands in Portugal. Forest Systems 21 (1): 111-120.
CrossRef | Gscholar
Mather A, Pereira JMC (2006)
Transição florestal e fogo em Portugal. In: “Incêndios florestais em Portugal: caracterização, impactes e prevenção” (Pereira JS, Pereira JMC, Rego F, Silva JMN, Silva TP eds). ISA Press, Lisboa, Portugal, pp. 257-282. [in Portuguese]
McArthur AG (1962)
Control burning in eucalypt forests. Leaflet no. 80, Commonwealth of Australia Forest and Timber Bureau, Canberra, ACT, Australia.
McArthur AG (1967)
Fire behaviour in eucalypt forests. Leaflet no. 107, Commonwealth of Australia Forest and Timber Bureau, Canberra, ACT, Australia.
McClure JP (1968)
Predicting tree dbh from stump measurements in the southeast. Research Note SE-99, USDA Forest Service, USA, pp. 4.
Mercer DE, Haight RG, Prestemon JP (2008)
Analyzing trade-offs between fuels management, suppression, and damages from wildfire. Forestry Sciences 79 (4): 247-272.
CrossRef | Gscholar
Myers RH (1990)
Classical and modern regression with applications. PWS-Kent Publishing, Boston, MS, USA, pp. 488.
Monserud R, Sterba H (1999)
Modeling individual tree mortality for Austrian tree species. Forest Ecology and Management 113 (2/3): 109-123.
CrossRef | Gscholar
Moreira F, Rego FC, Ferreira PG (2001)
Temporal (1958-1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landscape Ecology 16: 555-567.
CrossRef | Gscholar
Moreira F, Vaz P, Catry FX, Silva JS (2009)
Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. International Journal of Wildland Fire 18: 563-574.
CrossRef | Gscholar
Moreno JM (1999)
Forest fires: trends and implications in desertification prone areas of Southern Europe. In: “Mediterranean desertification: research results and policy implications” (Balabanis P, Peter D, Ghazi A, Tsogas M eds). DG Research, European Commission, Brussels, Belgium, pp. 115-150.
Nogueira CDS (1990)
A floresta Portuguesa. DGF Informação 2: 18-28. [in Portuguese]
Nunes MCS, Vasconcelos MJ, Pereira JMC, Dasgupta N, Alldredge RJ, Rego FC (2005)
Land cover type and fire in Portugal: do fires burn land cover selectively? Landscape Ecology 20: 661-673.
CrossRef | Gscholar
Omi PN, Martinson EJ (2004)
Effectiveness of thinning and prescribed fire in reducing wildfire severity . In: Proceedings of the Sierra Nevada Science Symposium: “Science for Management and conservation” (Murphy DD, Stine PA ed). General Technical Report PSW-193, USDA Forest Service, Albany, CA, USA, pp. 87-92.
Pausas JP, Llovet J, Rodrigo A, Vallejo R (2008)
Are wildfires a disaster in the Mediterranean basin: a review. International Journal of Wildland Fire 17 (6): 713-723.
CrossRef | Gscholar
Pasalodos-Tato M, Pukkala T, Rojo Alboreca R (2010)
Optimal management of Pinus pinaster in Galicia (north-western Spain) under endogenous risk of fire. International Journal of Wildland Fire 19 (7): 937-948.
CrossRef | Gscholar
Peet GB (1965)
A fire danger rating and controlled burning guide for the northern Jarrah (E. marginata) forest of western Australia. Bulletin No. 74, Forests Department of Western Australia, Perth, WA, Australia.
Pereira JS, Santos TN (2003)
Fire risk and burned area mapping in Portugal. Direcção Geral das Florestas, Lisboa, Portugal.
Pereira JS, Carreiras JMB, Silva JMN, Vasconcelos MJ (2006)
Alguns conceitos básicos sobre fogos rurais em Portugal. In: “Incêndios Florestais em Portugal” (Pereira JS, Pereira JMC, Rego FC, Silva JMN, SilvaTP eds). ISAPress, Lisboa, Portugal, pp. 133-161. [in Portuguese]
Pereira JS, Correia AV, Correia AP, Pereira JMC, Oliveira AC, Freitas H, Reis RM, Branco M, Caldeira MC, Cruz CS, Bugalho M, Vasconcelos MJ (2002)
Forests and biodiversity. In: “Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures” (Santos FD, Forbes K, Moita R eds). Gradiva, Lisboa, Portugal, pp. 369-413.
Peterson DL, Jonhson MC, Agee JK, Jain TB, Mckenzie D, Reinhard ED (2005)
Forest structure and fire hazard in dry forests of the western United States. General Techical Report PNW-GTR-628, Pacific Northwest Research Station, USDA Forest Service, Portland, OR, USA, pp. 30.
Rego F (1992)
Land use change and wildfires. In: “Responses of forest ecosystems to environmental changes”(Teller A, Mathy P, Jeffers JNR eds). Elsevier Applied Science, London, UK, pp. 367-373.
Romero-Calcerrada R, Barrio-Parra F, Millington JDA, Novillo CJ (2010)
Spatial modelling of socioeconomic data to understand patterns of human-caused wildfire ignition risk in the SW of Madrid (central Spain). Ecological Modelling 221: 34-45.
CrossRef | Gscholar
Rothermel RC (1983)
How to predict the spread and intensity of forest and range fires. General Technical Report INT-143, Intermountain Forest and Range Experiment Station, USDA Forest Service, Ogden, UT, USA.
Rothermel RC, Philpot CW (1983)
How to predict the spread and intensity of forest and range fires. GTR-INT-143, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT, USA, pp. 161.
Rundel PW (1998)
Landscape disturbance in Mediterranean ecosystems: an overview. In: “Landscape disturbance and biodiversity in Mediterrean-type ecosystems” (Rundel PW, Monenegro G, Jaksic FM eds). Springer-Verlag, Berlin, Germany, pp. 3-22.
Ryan TP (1997)
Modern regression methods. John Wiley and Sons, New York, USA.
Sah JP, Ross MS, Snyder JR, Koptur S, Cooley, HC (2006)
Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests. International Journal of Wildland Fire 15: 463-478
CrossRef | Gscholar
SAS Institute Inc. (2004)
SAS/STAT User’s Guide (version 8 edition). SAS Institute Inc., Cary, NC, USA.
Schmidt KM, Menakis JP, Hardy CC, Hann WlJ, Bunnell DL (2002)
Development of coarse-scale spatial data for wildland fire and fuel management. General Technical Report RMRS-GTR-87, Rocky Mountain Research Station, USDA Forest Service, Fort Collins, CO, USA, pp. 41.
Shapiro JH (1999)
Bounds on the area under the ROC curve. Journal of the Optical Society of America A 16: 53-57.
CrossRef | Gscholar
Silva JS, Moreira F, Vaz P, Catry F, Godinho-Ferreira P (2009)
Assessing the relative fire proneness of different forest types in Portugal. Plant Biosystems 173 (3): 597-608.
CrossRef | Gscholar
Soares P, Tomé M (2001)
A tree crown ratio prediction equation for eucalypt plantations. Annals of Forest Science 58: 193-202.
CrossRef | Gscholar
Tomé M, Oliveira T, Soares P (2006)
O modelo GLOBULUS 3.0. Dados e equações. Relatórios Técnico-Científicos do GIMREF, nº2/2006, Dep. Engenharia Florestal, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal. [in Portuguese]
Tomé M, Meyer A, Ramos T, Barreiro S, Faias SP, Cortiçada A (2007)
Relações hipsométricas e equações de di’metro da copa desenvolvidas no ’mbito do tratamento dos dados do Inventário Florestal Nacional 2005-2006, Publicações GIMREF, RT 3/2007, Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Centro de Estudos Florestais, Lisboa, Portugal. [in Portuguese]
Van Wagner CE (1977)
Conditions for the start and spread of crown fire. Canadian Journal of Forest Research 7: 23-34.
CrossRef | Gscholar
Vasconcelos M, Meyer MJ, Silva S, Tomé M, Alvim M, Pereira JMC (2001)
Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogrammetric Engineering and Remote Sensing 67 (1): 73-81.

This website uses cookies to ensure you get the best experience on our website