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Introduction 
Fire is a major disturbance impacting the 

Mediterranean landscape (Rundel 1998). In 
recent  decades  its  incidence  has  increased 
dramatically in southern Europe (Rego 1992, 
Moreno 1999, Pereira et al. 2006,  Pausas et 
al. 2008). The Portuguese territory is charac-
terized  by  a  Mediterranean  climate  and  a 
rugged topography. Moreover, the Portugue-
se vegetation cover is mostly evergreen and 
drought resistant. The country is thus prone 
to vegetation fires. Recent demographic, so-
cio-economic and climatic trends (e.g.,  Ma-
ther  &  Pereira  2006,  Pereira  et  al.  2002) 
have further contributed to the country’s vul-
nerability to wildfires.  In  Portugal,  wildfire 

is  the  most  important  agent  of  land  cover 
change (Pereira & Santos 2003). In fact, in 
the period extending from 1975 to 2007 the 
total burned area approximated 3.8 · 106 hec-
tares, representing 40% of the country’s area 
(Marques et al. 2011a).

In Portugal, around 90% of the total forest 
land  is  managed  by  private  landowners 
(DGRF 2006) and most stands are monospe-
cific or dominated by one species. Eucalypt 
is the most important forest species in terms 
of area as it extends over 8.12 · 103 ha, corre-
sponding to 26% of the country’s forestland 
(ICNF 2013).  Further,  it  provides  key raw 
material to the export driven pulp and paper 
industry (about 5.75 million m3 of pulpwood 

per year -  DGRF 2007). Wildfires constrain 
the economic  viability of eucalypt  in  com-
mercial  forestry and the competitiveness  of 
this industry (Nogueira 1990,  Moreira et al. 
2001). The development of forest plans that 
may mitigate wildfire impacts on the profita-
bility of eucalypt management scheduling is 
thus a key factor to the sustainability of this 
forestry  sub-sector.  This  prompted  the  re-
search  of  models  to  assess  wildfire  occur-
rence probability in eucalypt plantations as a 
function of variables that may be controlled 
by forest managers.

The  forestry  literature  has  associated  the 
term risk with the probability of occurrence 
of  a  natural  hazard  (González  et  al.  2006, 
Jactel et al.  2009,  Marques et al.  2012). In 
this  research,  we  will  refer  to  risk  as  the 
probability  of  a  stand  to  be  affected  by a 
wildfire  (i.e.,  probability  of  burning)  if  an 
ignition exists (Marques et al. 2012). Thus, 
rather  than  modeling  fire  ignition  probabi-
lity, the focus of this research is on modeling 
at stand level the probability of wildfire oc-
currence at stand level. This is understood as 
a spatial process related to forest structure as 
potential fire spread is impacted by fuel pre-
sence/composition (Fernandes 2009).

In Portugal, former studies have focused on 
the characterization of wildfire ignition or of 
wildfire risk as a function of environmental 
or socioeconomic variables (Vasconcelos et 
al. 2001, Pereira & Santos 2003, Nunes et al. 
2005,  Carreiras & Pereira 2006,  Catry et al. 
2008,  2009,  Marques  et  al.  2011a).  It  was 
demonstrated that in general wildfire impacts 
depend on the forest cover types where they 
occur (Moreira et al. 2001,  Godinho-Ferrei-
ra et al. 2005, Nunes et al. 2005, Moreira et 
al. 2009, Silva et al. 2009, Garcia-Gonzalo et 
al. 2011a). The characterization of these im-
pacts on eucalypt plantations was addressed 
recently by Fernandes et al. (2011) and Mar-
ques et al. (2011b). Nevertheless, no models 
to  assess the impact of changes in control-
lable biometric variables on fire occurrence 
in  eucalypt  plantations  were  available  in 
Portugal. This lack of information was a ma-
jor obstacle to effective eucalypt forest ma-
nagement planning in Portuguese fire-prone 
regions.

The forest  cover  type  and  the  understory 
fuel  load  have  a  substantial  impact  on  the 
probability of wildfire occurrence (Cumming 
2001, Ceccato et al. 2002, Castro et al. 2003, 
Silva  et  al.  2009,  Marques  et  al.  2011a, 
Marques  et  al.  2012)  and  may be manipu-
lated by management planning to minimize 
risk. Some authors have analyzed the impact 
of tree species composition  and of fuel re-
duction  activities  on  wildfire  occurrence 
(Agee  &  Skinner  2005,  Fernandes  et  al. 
2005,  Fernandes & Rigolot 2007). Fire ha-
zard and spread do depend on both the tree 
species composition and the understory fuel 
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This paper presents a model to predict annual wildfire risk in pure and even-
aged  eucalypt  stands  in  Portugal.  Emphasis  was  in  developing  a  manage-
ment-oriented model, i.e., a model that might both: (a) help assess wildfire oc-
currence probability as a function of readily available forest inventory data; 
and  (b)  help  predict  the  effects  of  management  options  (e.g.,  silvicultural 
treatments)  on  the  risk  of  fire  in  eucalypt  stands.  Data  from  both  the 
1995/1998 and the 2005/2006 Portuguese National Forest Inventories as well 
as wildfire perimeters’ data were used for modeling purposes. Specifically, this 
research considered 1122 inventory plots with approximately 1.2 million trees 
and 85 wildfire perimeters. The model to predict the probability of wildfire oc-
currence is a logistic function of measurable and controllable biometric and en-
vironmental variables. Results showed that wildfire occurrence probability in a 
stand increases with the ratio basal area/quadratic mean diameter and with 
the shrubs biomass load, while it decreases with stand dominant height. They 
further showed that the probability of wildfire occurrence is higher in stands 
that are over 1 Km distant from roads. These results are instrumental for as-
sessing the impact of forest management options on wildfire risk levels thus 
helping forest managers develop plans that may mitigate wildfire impacts.
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structure  (e.g.,  Rothermel 1983,  Graham et 
al. 2004,  Peterson et al. 2005,  Fernandes et 
al.  2006,  Silva et  al.  2009).  They thus de-
pend too on forest and fuel management re-
gimes (Graham et al. 1999,  Omi & Martin-
son  2004,  Jactel  et  al.  2009,  Crecente- 
Campo et al. 2009). In fact, the relationship 
between fuel load, rate of spread, and fire in-
tensity has provided a simple but  powerful 
argument to support fuel reduction in euca-
lypt  forests  (McArthur  1962,  1967,  Peet 
1965).  The effectiveness  of  forest  manage-
ment  under  wildfire  risk  depends  on  the 
availability of information about the impact 
of  management-controllable  variables,  i.e., 

understory  fuel  load  and  stand  biometric 
characteristics  on  wildfire  occurrence  pro-
bability  (Cumming  2001,  Finney  2005, 
González et al. 2006).

The modeling approach to wildfire occur-
rence in eucalypt stands presented in this pa-
per builds from research targeting the deve-
lopment  of  wildfire  occurrence  models  in 
other forest cover types that might take into 
account  the  impact  of  changes  in  control-
lable  biometric  variables  (e.g.,  González et 
al.  2006,  Marques  et  al.  2012,  Garcia- 
Gonzalo et al. 2012). These models quantify 
the  impact  of  silvicultural  treatments  and 
management options on wildfire occurrence 

probability in the corresponding forest cover 
type.  Their usefulness  has been further  de-
monstrated in the framework of the develop-
ment  of  optimal  management  plans  under 
wildfire  risk  (González  et  al.  2008,  Gar-
cia-Gonzalo  et  al.  2011a,  Ferreira  et  al. 
2011, Ferreira et al. 2012).

The objective of this research was thus to 
develop  a  management-oriented  model  to 
predict annual wildfire risk in pure and even-
aged eucalypt stands in Portugal,  i.e., a mo-
del that might both: (a) help assess wildfire 
occurrence probability as a function of rea-
dily available forest inventory data; and (b) 
help predict  the effects of management  op-
tions  (e.g.,  silvicultural  treatments)  on  the 
risk of fire in eucalypt stands. After descri-
bing the modeling approach, results are dis-
cussed to highlight  the contribution  of this 
research  to  address  eucalypt  wildfire  and 
forest  management concerns and help miti-
gate catastrophic damage to eucalypt planta-
tions.

Materials and methods

Materials

Wildfire perimeters and inventory plots
The assessment of wildfire risk probability 

in  eucalypt  stands  was  based  on  historical 
fire information from 1998 to 2007. The fire 
data consisted of all perimeters of wildfires 
larger  than  5  hectares.  Burned  area  maps 
were produced at the Remote Sensing Labo-
ratory of Instituto Superior de Agronomia by 
semi-automated classification of medium-re-
solution  remote  sensing  data  (i.e.,  Landsat 
Multi-Spectral Scanner - MSS, Landsat The-
matic Mapper -TM, and Landsat Enhanced - 
TM+). In this period, wildfires burned over 
1.5 · 105 hectares distributed over 12 273 pe-
rimeters larger than 5 hectares.

This  research  was  further  based  on  data 
from the 4th and 5th Portuguese National In-
ventories (NFIs) carried out in two different 
and  discontinuous  periods  (1995-1998  and 
2005-2006, respectively). Each NFI used its 
own grid  to  layout  the plots.  Therefore  no 
permanents  plots  were  available.  Additio-
nally, the number of measured plots has not 
been constant across NFI. In total, 615 and 
1 351  pure  and  even-aged  eucalypt  plots 
were inventoried out of the 2 336 and 12 258 
total  plots  measured  in  the  4th and  the  5th 

NFI,  respectively.  This  research considered 
plots that were classified by the NFI as pro-
ductive  even-aged pure  eucalypt  forest  and 
that included the measurement of biometric 
variables  as  well  as  information  about  the 
fuel load understory (very young plots where 
trees  are  no  measured  were  not  included). 
Thus all plots considered for modeling pur-
poses  did  include  biometric  and  environ-
mental  data  relevant  for  management  plan-
ning purposes such as tree height,  tree dia-
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Fig. 1 - Distribution of forest fires occurred in Portugal during the period 1998-2007, over-
laid with the pure/even-aged eucalyptus plots. Boxes on the right represent: (A) selection of 
unburned plots (example for the year 2005) based on their distance from ignition points; (B) 
a part of the National Forest Inventory plots used in the study.
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meter at breast height (d) - for trees holding 
a  d greater or equal to 7.5 cm -, stand age, 
stump diameter  (e.g.,  the  mean stump dia-
meter of trees that died as a consequence of a 
wildfire),  condition of the tree (dead, alive, 
cut), number of trees, shrubs species, mean 
shrubs height, aspect and slope.

An altitude map obtained from the Coun-
try’s  Digital  Terrain  Model  (DTM) with  a 
30 m pixel  accuracy was overlaid with the 
NFI plots layers to get the altitude of each 
plot. The latter were further overlaid with a 
GIS layer that classifies the territory into two 
road proximity classes (the threshold being 1 
kilometer - Marques et al. 2011a) to classify 
each  plot  according  to  its  distance  to  the 
closest  road.  A similar procedure was used 
to classify each plot according to the popula-
tion density (number of inhabitants living in 
each parish - Marques et al. 2011a), precipi-
tation (average of number of days per year 
with  precipitation  ≥ 1.0 mm) and tempera-
ture  (yearly  average  air  temperature).  The 
historical  weather  records  used  were  de-
veloped by Tomé et al. (2006), based on the 
climatological  normal  of  reference  (period 
1931-1960 in 334 different places in Portu-
gal) from the Atlas do Ambiente.

Analyzing the status of eucalypt plots
Wildfire  perimeters  and  NFI  maps  were 

overlaid using ArcGIS® 9.2 to check whether 
the eucalypt plots were burned or not within 
sub-periods extending up to six years (1998-
2004) after the first inventory and up to two 
years (2005-2007) after the second one (data 
from 2008 were not  available).  This provi-
ded the status (burnt/unburnt) of each euca-
lypt plot. The definition of these time frames 
balanced  the  benefits  of  having  a  larger 
sample size and the costs associated with po-
tential land cover changes in the period ran-
ging from the inventory and the wildfire oc-
currence. Over the two sub-periods, 109 (59 
plots from 4th NFI and 50 from 5th NFI) pure 
and even-aged eucalypt plots were burned at 
least one time, while 446 were left unburned 
(117 plots from 4th NFI and 329 plots from 
the 5th NFI, respectively - Fig. 1).

Reverse engineering to rebuild the tree 
characteristics

The  sample  size  was  constrained  by  the 
low number of even-aged and pure eucalypt 
stands and by the fact  that  most  of the 5 th 

NFI plots had been burned before the inven-
tory in 2005. In fact, 47 out of the 50 plots 
selected by the 5th NFI,  burned months be-
fore  the  inventory  took  place.  In  order  to 
overcome this  problem and  take advantage 
of available inventory data,  a reverse engi-
neering methodology (McClure 1968,  Bylin 
1982,  Diéguez-Aranda  et  al.  2003,  Garcia- 
Gonzalo et al.  2011b) was used to re-build 
the forest plot before the wildfire occurrence 
(Fig. 2). Firstly, these plots were further in-

ventoried to get the diameter of stumps from 
trees  that  burned  and  had  been  harvested. 
Secondly,  this  diameter  was  input  to  an 
equation  developed  by  Marques  et  al. 
(2011b) to estimate the pre-fire tree diameter 
at breast height. Thirdly, the latter was input 
to  an  equation  developed  for  eucalypt  by 
Tomé et al. (2007) to estimate the tree height 
(eqn. 1):

where  h is the tree height (m),  d is the dia-
meter of the breast height (cm),  β0  = 0.6733 
and β1 = 0.0130.

In  the case of plots  with standing burned 
trees, pre-fire diameter at breast height was 
assumed  to  be  unaffected  by  fire  and  tree 
height was estimated by eqn. 1.

Simulating vegetation growth
The development  of  a  model  to  estimate 

the annual probability of wildfire occurrence 
as a function of biometric variables required 
the simulation of vegetation growth. Both a 
stand-level growth and yield model (Barreiro 
& Tomé 2011)  and  a  shrub  growth  model 
(Botequim et al. 2009) - previously used by 
Marques et al. (2012) to estimate understory 
growth in Portuguese forests - were used to 
estimate the annual values of biometric va-
riables  of  each  plot  in  the  period  ranging 
from  the  inventory  date  to  either  the  fire 
event date or the date of the next inventory. 
The  simulation  thus  provided  n temporal 
snapshots of each plot, where  n is the num-
ber  of  years  of  this  projection  period.  For 
modeling purposes,  a dichotomous variable 
was assigned to each snapshot of each plot. 
This categorical variable takes the value “1” 
if  a  wildfire  occurred  in  that  year  or  the 
value  “0”  if  the  plot  did  not  burn  in  that 
year.  The  former  thus  corresponded  to  the 
first  simulation  stopping criteria.  If  no  fire 
events occurred, projections in the case of 4 th 

NFI plots  stopped  in  year  2004 as another 
inventory was available for year 2005, thus 
meeting the second simulation stopping cri-
teria.

In order to strengthen to snapshot assump-
tion by the simulation, satellite images were 
processed using  IDRISI  3.2  to  check whe-
ther  there  had  been  any harvest  and  forest 
cover change both in plots where the euca-
lypt age was over 9 years at the time of the 
wildfire event and in plots where the forest 
growth was projected over more than 6 years 
(Fig.  2).  Specifically,  Landsat  5TM images 
were used to check the cover type in 76 4th 

NFI unburned plots in each year in the pe-
riod from 1998 to the year of wildfire occur-
rence or to 2004. MOS - Modular Optoelec-
tronic  Scanner  and SPOT Satellite  imagery 
were used to check the cover type in 101 5th 

NFI unburned plots in each year of the pe-
riod from 2005 to the year of wildfire occur-

rence or to 2007. This check provided a list 
of 103 plots where no harvests and no cover 
type changes did occur (38 plots from the 4th 

NFI and 65 from 5th NFI).

Selecting unburned plots: proximity of 
fire ignition data

The official database from the Portuguese 
Forest Service (AFN) that stores the starting 
coordinates (ignition) of wildfires was used 
to  further  select  plots  to  be considered  for 
modeling purposes. For each year, a 2 kilo-
meters buffer around each ignition was cre-
ated to  cover all  burned plots  in  that  year.  
This procedure eliminated from the analysis 
unburned plots  that  were not  affected by a 
wildfire because there was no ignition point 
nearby rather  than because of its biometric 
and  environmental  characteristics  (Fig.  1, 
Fig. 2). In total, 319 unburned observations 
(plot yearly simulation snapshots) from 1998 
to 2004 and 694 unburned observations (plot 
yearly simulation  snapshots)  from 2005  to 
2007  were  used  to  fit  the  model  (Tab.  1). 
Thus the model was fit considering a total of 
1 122  observations  (1 013  unburned  obser-
vations and 109 burned observations).

Methods

Annual wildfire occurrence probability 
model

The occurrence of wildfire in a stand is a 
binomial  outcome that may be modeled by 
logistic  regression.  Actually,  this  is  one  of 
the most popular mathematical modeling ap-
proaches  to  describe  the  relationships  of  a 
set of variables with a dichotomous depen-
dent variable (Hosmer & Lemeshow 2000). 
The logistic function in eqn. 2 is mathema-
tically flexible, easy to use, and has a mean-
ingful  interpretation  (Hosmer & Lemeshow 
2000). The logistic regression model can be 
presented as (eqn. 2):

where  Y is the dependent  variable,  i.e.,  the 
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Tab. 1 - Number of observations recorded as 
burnt and unburnt areas in the studied period 
(1998-2007).

Year Unburnt Burnt Total
1998 14 1 15
1999 6 2 8
2000 45 2 47
2001 67 3 70
2002 74 2 76
2003 62 46 108
2004 51 3 54
2005 266 46 312
2006 222 1 223
2007 206 3 209
Total 1013 109 1122

h= d
β 0+β 1 d

Y= 1
1+e−(β 0 +β 1 X 1+...+β p Xp )
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annual probability of wildfire occurrence in 
a pure even-aged eucalypt stand,  x1 to xp are 
independent variables and β0 to βp, are para-
meters to be estimated.

For modeling purposes, this research con-
sidered  the  plot-level  dichotomous  catego-
rical  variable  that  takes  the  value  “1”  if  a 
wildfire did occur (burnt plot) and “0” other-
wise (unburnt  plot).  It  further  considered a 
large set  of explanatory variables including 
biometric  (e.g.,  stand  basal  area,  age,  qua-
dratic mean diameter of trees in the stand), 
environmental (e.g., altitude, aspect, number 
of  precipitation  days)  and  socioeconomic 
variables  (e.g.,  distance  to  roads,  popula-
tion). In total, 14 independent variables, 12 
of which are continuous (Tab. 2) and two are 
categorical (Tab. 3) were considered. In the 
case of the variable  distance to  the closest 
road a dummy variable was created indica-
ting the plot accessibility. This variable was 
assigned  the  value  “1”  when  the  distance 
from the road network was more than 1 kilo-
meter (Road distance > 1km) and “0” if the 
distance was less than 1 kilometer (Road dis-
tance < 1km).

The annual wildfire occurrence probability 
model was developed using maximum likeli-
hood methods (Monserud & Sterba 1999) as 
implemented in the PROC LOGISTIC rou-
tine of the SAS 9.1 package (SAS Institute 
Inc. 2004). The selection of predictors out of 
the  proposed  set  of  explanatory  variables 
was based on the test of the models corres-
ponding to all possible combinations of va-
riables x1 to xp (Freire 2009). Model building 
further  took advantage of an understanding 
of  the  process  of  wildfire  occurrence.  All 
predictors  had to be logical  and significant 
(α=0.05, as from Wald χ2 statistics). The pre-
sence of collinearity was assessed by adding 
new variables to the model and observing its 
impact on the slope coefficients and the es-
timated  standard  errors  (Hosmer  &  Leme-
show 2000).  Alternative models were com-
pared  using  the  Akaike  Information  Cri-
terion  (AIC -  Burnham & Anderson  2003, 
Silva et al. 2009) and further considering the 
ecological  consistency  of  predictors  (i.e., 
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Fig. 2 - Methodology applied to develop an annual wildfire risk probability model for euca-
lypt stands in Portugal.

Tab. 2 - Statistics for the fitting dataset. (U): Unburnt; (B): Burnt.

Variables Description
Min Mean Max

U B U B U B
Age (years) Stand age 1 2 10.09 11.42 27 30
Altitude 
(m)

Terrain altitude 15 48 217.43 257.88 1015 688

Bshrubs 
(Mg ha-1)

Shrubs biomass load 0 0.44 5.81 11.3 15.2 15

dg (cm) Quadratic mean 
diameter

0.8 2.52 12.32 13.2 31.39 23.69

hdom (m) Stand dominant height 1.58 4.35 17.66 17.93 33.89 33.65
G (m2 ha-1) Stand basal area 0.1 0.09 12.5 12.09 52.64 36.16
G/dg Stand structure 0.01 0.01 1 1.03 3.73 13.19
Ntrees 
(N/ha)

Stand density 20 20 1113.88 980.44 5334 5007

Precipita 
(days/year)

Precipitation days in 
the area

55.8 55.2 105.1 100.64 145 145

Pop 
(hab/m2)

Population per parish 8.22 0.68 151.27 142.91 2325.43 1239.6

Slope (º) Terrain slope 0 0 11.5 12.47 45 35
Temp (ºC) Yearly main 

temperature in the area
8.75 8.75 14.39 14.44 21.3 16.75

Tab. 3 - Statistics for the categorical fitting 
dataset. (U): Unburnt; (B): Burnt.

Variables Description U B
Sunny 
aspect

East (E) 146 13
Flat (F) 49 3
North (N) 148 14
Northeast (NE) 181 25
Northwest (NW) 111 8

Shady 
aspect

South (S) 92 18
Southeast (SE) 66 5
Southwest (SW) 96 4
West (W) 124 19

Road 
Distance

< 1km 464 42
> 1km 549 67
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signs  of  coefficients  that  are  biologically 
reasonable) as well as management relevance 
(i.e., the model includes variables easy to ob-
tain by a forest inventory). Model goodness-
of-fit was assessed using Hosmer-Lemeshow 
goodness-of-fit statistics.

The validation of the models encompassed 
the analysis  of the functional  relations.  No 
specific  validation  data  sets  were  set  aside 
and  later  used  for  that  purpose.  Two main 
reasons justify this decision. Firstly, the re-
latively small number of observations in the 
dataset used. Secondly, the emphasis of this 
research was in obtaining the best possible 
parameter estimates.  The authors  are aware 
of the advantages and disadvantages of split-
ting  the data  set  for  model  validation  pur-
poses (well discussed for instance in  Myers 
1990 and  Kozak & Kozak 2003). However, 
they concluded that cross validation by data 
splitting and double cross validation would 
provide little, if any, additional information 
to the evaluation of the regression models.

The  Receiver  Operating  Characteristic 
(ROC) curve (SAS Institute, Cary, NC) was 
used to assess the functional relations in the 
wildfire  occurrence  model  (Shapiro  1999, 
Hosmer  &  Lemeshow  2000).  The  ROC 
curve relies on the false/true - positive/nega-
tive proportion, where sensitivity is the pro-
portion of wildfire occurrence responses that 
are correctly predicted and specificity is the 
proportion  of  no  wildfire  occurrence  -  re-
sponses that are also correctly predicted.  A 
model with a ROC curve of 0.5 suggests no 
discrimination,  0.7-0.8  suggests  having  an 
acceptable discrimination, and 0.8-0.9 provi-
des an excellent  discrimination  (Hosmer & 
Lemeshow 2000). The concordance analysis 
procedure was further used to support the in-
terpretation of model outcomes (Kleinbaum 
1996, Hosmer & Lemeshow 2000).

The odds ratio was further used to help in-
terpret the role of each independent variable 
in explaining the probability of wildfire oc-
currence, as it estimated the net increase in 
the event probability caused by a unit change 
in  the  independent  variable  (Kleinbaum 
1996,  Hosmer  &  Lemeshow  2000).  How-
ever, the change in the odds ratio resulting 
from non-marginal changes in the indepen-
dent variable is often of greater interest and 
was  further  considered.  Exponentiation  of 
the  parameter  estimate  for  the  independent 
variables  in  the  model  by the  number  “c” 
yields  the  odds  ratio,  where  “c” is  the in-
crease  in  the  corresponding  independent 
variable.

The logistic model predicts the probability 
of  an  occurrence  ranging  continuously 
between  0  and  1.  In  order  to  convert  an 
event probability (wildfire risk) to a dicho-
tomous (e.g., burnt/unburnt) data an optimal 
cut-point  must be defined and compared to 
each estimated probability (Hosmer & Leme-
show  2000).  Different  methods  have  been 

proposed  to  select  the  cut-point/threshold 
(Monserud & Sterba 1999, Crecente-Campo 
et al. 2009). The optimal cut-point value can 
be defined according to data specificities or 
risk perception/needs of the users, and some-
times  classification  between  burnt/unburnt 
stands is not even necessary in forest plan-
ning.  Although  we  do  not  need  this  cut-
point, we calculated it as an indicative value 
for users who just want to use the model to 
predict if a stand may burn or not. For this 
purpose,  three different methods were used 
to  define  the  cut-point:  (1)  the  value  that 
maximizes  the  index  of  concordance  and 
correct classification rate (CCR -  e.g.,  Ryan 
1997);  (2)  the  value  where  the  sensitivity 
curve  and  the  specificity  curve  cross  each 
other (Hosmer & Lemeshow 2000); (3) the 
average observed percentage of event occur-
rence in the original data (Monserud & Ster-
ba 1999). In order to select optimal values, 
tables with classification error rates associa-
ted  with  the  different  methods  were  con-
structed.

Eucalypt coppice stand management 
scheduling

The annual wildfire risk model was used to 
help assess the impact of potential manage-
ment actions in a typical eucalypt stand. In 
Portugal, a typical eucalypt prescription en-
compasses a plantation of about 1 250 seed-
lings ha-1. A full rotation may include up to 2 
or 3 coppice cuts,  each cut being followed 
by a stool thinning that may leave an average 
number of shoots per stool ranging from 1 to 
2. Harvest ages typically range from 10 to 12 
(Soares & Tomé 2001). Prescriptions further 
include several shrub cleanings over a rota-
tion (i.e., 1 to 3 fuel treatments per cycle - 
Duncker et al. 2012).

For  demonstration  purposes,  it  was  assu-
med that  the eucalypt  stand was located at 
more  than  1  kilometer  from the  road  net-
work. It was further assumed that the terrain 
altitude was 217 meters, the slope was 11.5º, 

the mean annual precipitation was 650 mm 
and  that  the  understory  shrub  vegetative 
community  had  a  re-sprouting  ability  of 
50%.  The  prescription  included  a  cutting 
cycle of 10 years, 3 coppice cuts and 1 or 
more shrub cleanings per cycle. It was also 
assumed that the stand was within the range 
of ignition points every year of the planning 
horizon.  Stand and understory growth were 
estimated using the simulators developed by 
Barreiro & Tomé (2011) and Botequim et al. 
(2009), respectively.

Results 

Annual wildfire occurrence probability  
model

The logistic model selected to predict  the 
annual  wildfire  occurrence  in  a  pure  and 
even-aged eucalypt stand is as follows (eqn. 
3):

where Bshrubs is the total biomass of shrubs 
(Mg ha-1), hdom is the stand dominant height 
(m), G /dg is a predictor combining informa-
tion about density and tree sizes where G is 
the basal area (m2 ha-1) and dg is the quadra-
tic mean diameter of trees in the stand (cm) 
and RoadDist is a dummy variable indicating 
the proximity to the road network. Specific-
ally,  if  the  distance  to  the  network  is  less 
than 1 kilometer,  RoadDist takes the value 
“0” otherwise it takes the value “1”.

According to the model, stands with higher 
density are  in  general  more  prone  to  burn 
(Fig. 3). Yet this further depends on the tree 
sizes. For the same basal area, the value of 
predictor  G/dg decreases with the quadratic 
mean  diameter,  thus  highlighting  that  the 
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Fig. 3 - Values of 
the variable G/dg 
for different com-
binations of basal 
area (G) and qua-
dratic mean diame-
ter (dg).

PburnEC= 1

1+e
−(−5.4005−0.054⋅hdom+0.3166⋅G /dg

+0.3959⋅Bshrubs+0.5372⋅RoadDist )

{RoadDist=0 if (RoadDistance<1 km)
RoadDist=1 if (RoadDistance>1 km)}
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wildfire  occurrence probability is higher  in 
stands with prevailing smaller trees (Fig. 3, 
Fig.  4a).  As expected  from biological  rea-
sons, the model indicates that shrub biomass 
was the most important variable affecting the 
probability of wildfire occurrence (p<0.0001 
-  Tab. 4). Further, higher shrub biomass in-
creases  the  probability  of  a  stand  to  burn 
(Fig. 4b e  Fig. 4c). On the contrary, the in-
crease of stand dominant height (hdom) de-
creases  this  probability.  Finally,  the  model 
indicates  that  larger  distances  to  the  road 

network lead to an increase of the probabi-
lity of fire occurrence (Fig. 4d).

All  parameters  estimates  in  eqn.  3  were 
found significantly different from zero at the 
0.05  level  as  from  the  Wald  χ2 statistics 
(Hosmer & Lemeshow 2000 -  Tab. 4). The 
model was successful in predicting whether 
fire did occur in 83.5% of stands (i.e., per-
centage of concordant pairs). The adequacy 
of the model was further assessed by the ana-
lysis  of  the  ROC  curve  from  the  logistic 
model. The area under the ROC curve (0.838 

-  Fig.  5)  indicates  an excellent  discrimina-
tion  (Hosmer  &  Lemeshow  2000),  thus 
showing  that  the  selected  model  performs 
adequately.  Collinearity assessment  showed 
no collinearity among variables included in 
the model.

The odds ratio further helped the interpre-
tation  of  results  as  it  provides  an intuitive 
and easily understood assessment of the con-
tribution  of  an  independent  variable  to  the 
occurrence  of  an  event  (Kleinbaum  1996, 
Hosmer & Lemeshow 2000). The odds ratio 
analysis  highlighted  that  the  chance  of  a 
stand  to  burn  increases  1.486  times  if  the 
total  biomass of shrubs (Bshrubs) increases 
one Mg per ha. Similarly, an eucalypt stand 
that is more than 1 km distant from the road 
network is 1.711 times more prone to burn 
than a stand that is closer to this network. On 
the other hand, an increase in 1 meter of eu-
calypt stand dominant height (hdom) would 
decrease  0.947  times  the  fire  occurrence 

iForest (2013) 6: 217-227 222  © SISEF http://www.sisef.it/iforest/ 

Fig. 4 - Effects of independent variables on the annual wildfire probability (PburnEc) obtained using eqn. 3 for an example eucalypt stand. 
(A) Effect of shrubs (Bshrubs, Mg ha-1) and G/dg (basal area over quadratic mean diameter); (B) effect of shrub biomass and stand dominant  
height (with G/dg = 1 m2 ha-1 cm-1); (C) effect of shrub biomass and stand dominant height (with G/dg = 10 m2 ha-1 cm-1); (D) effect of road 
distance and shrub biomass. Fixed values are the mean values of the whole dataset (Bshrubs =5 Mg ha-1, hdom = 17 m, RoadDist > 1km).

Tab. 4 - Logistic regression parameter estimates and fit statistics for the model predicting the  
annual wildfire occurrence probability (eqn. 3).

Variable Parameter Estimate SE Wald > χ2 Pr > χ2

Intercept β0 -5.4005 0.5561 94.3193 <0.0001
hdom β1 -0.054 0.0232 5.4292 0.0198
G/dg β2 0.3166 0.1319 5.7635 0.0164
Bshrubs β3 0.3959 0.0375 111.1485 <0.0001
RoadDist > 1km β4 0.5372 0.232 5.3601 0.0206
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probability, whereas an increase in 5 meters 
would  decrease  that  probability  by  0.763 
times.

The  most  appropriate  cut-point  for  the 
model was 0.11 as both sensitivity and spe-
cificity reach the same proportion is recom-
mended  this,  enabling  a  better  match 
between the stands where higher wildfire oc-
currence  probability  is  predicted  and  the 
stands where a wildfire  did  actually occur. 
Using  this  value  led  to  a  CCR  of  73.7% 
(Tab. 5).

Eucalypt  coppice  stand  management  
scheduling- application example

The  model  highlighted  that  coppice  cuts 
and  periodic  removal  of  the  fuel  load  do 

contribute  to  decrease  fire  occurrence  pro-
bability.  The annual  fire  occurrence proba-
bility ranged from 0 to 0.2% in a pure even-
aged eucalypt stand if cleaned once in every 
cutting cycle,  and from 0 to  0.04% if fuel 
treatments  are  prescribed  to  occur  twice 
every cutting cycle (Fig. 6).

Discussion and conclusions
The development  of a forest  management 

plan should not  ignore the probability of a 
wildfire occurrence as this may lead to poor 
decisions and gross miscalculations  of out-
put  flows.  Wildfire  occurrence  models  are 
needed to help foresters assess the impact of 
forest  management  options on wildfire  risk 
levels and thus design plans that may target 

effectively production, conservation and pro-
tection objectives. Traditional approaches to 
fire behavior simulation taking into account 
the fuel type (e.g., amount, size, and humid-
ity of dead fuels - Finney 2005), the value of 
environmental  variables  (e.g.,  topography 
and climate), as well  as the ignition occur-
rence, can hardly be used in a typical forest 
management planning context. They rely on 
very specific data (e.g.,  ignition occurrence 
20 years from now in the planning horizon, 
prevailing  weather  conditions  before  and 
during a wildfire  occurrence 10 years from 
now in the planning horizon) that cannot be 
predicted  to  support  the  development  of  a 
forest management plan. Fire behavior simu-
lation  is  a  very important  tool  to  enhance 
policy-making  and  management  planning 
processes as well as to support strategic zo-
ning and regeneration  decisions.  Yet  forest 
management  planning  requires  further  in-
formation to address effectively wildfire risk.

Forest  managers  need  information  about 
the impact of controllable variables (e.g., un-
derstory fuel availability,  tree species com-
position, structure and stand density) on the 
probability of wildfire occurrence (Cumming 
2001, Finney 2005, Mercer et al. 2008). This 
information is influential to design and plan 
management  options aimed to reduce wild-
fire risk (e.g.,  González et al. 2006,  Garcia- 
Gonzalo et al.  2011a,  Ferreira et al.  2012). 
Nevertheless, such information was not avai-
lable to support eucalypt forest management 
planning.

Several authors have addressed the effects 
of  fire  on  eucalypt  stands  (Curtin  1966, 
Guinto et  al.  1999,  Marques et  al.  2011b). 
Fire modeling indicated that wildfire control 
operations in eucalypt plantations are effec-
tive even under extreme weather conditions 
(Fernandes et al. 2011). Frequent fuel treat-
ments have been demonstrated to reduce fire 
risk in these ecosystems (Agee et al.  1973, 
Cheney & Richmond 1980), thus suggesting 
the importance of a proactive stand and fuel 
management strategy (Fernandes 2009). Ne-
vertheless,  no  quantitative  information  was 
available to support  the development  of an 
eucalypt forest management plan under wild-
fire risk.

A logistic modeling approach using simple 
input  variables  that  are  measurable  and/or 
predictable, as well as controllable by forest 
managers (e.g.,  shrub fuel load,  basal area, 
dominant height and quadratic mean diame-
ter) was developed to address this shortco-
ming. Contrarily to former approaches (Gon-
zález et al. 2006), this research took into ac-
count  vegetation  growth dynamics.  Our re-
search further confirmed the potential of the 
logistic model to assess the annual fire oc-
currence probability in  pure and even-aged 
eucalypt stands in Portugal. In our model, all 
parameters  were  significant  based  on  the 
Wald  χ2 statistic  test.  The  area  under  the 
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Fig. 5 - ROC curve 
for eucalypt fire 

occurrence proba-
bility from cross 
validation data.

Tab. 5 - Overall prediction rates for the annual wildfire occurrence probability model (eqn. 
3). The observed burnt plots percentage was 9.71%. (a): the sensitivity and specificity curves 
cross (Hosmer & Lemeshow 2000); (b): average observed survival rate (Monserud & Sterba 
1999); (c) value that maximizes the CCR (Ryan 1997).

Approach 
(cut-point)

CCR
(%)

Sensitivity 
(%)

Specificity 
(%)

False burnt 
(%)

Predicted as 
burnt (%)

0.11a 73.7 73.7 73.4 76.9 30.87
0.28b 89.9 47.7 94.5 51.9 10.52
0.42c 93.4 38.5 99.3 14.3 6.59

Fig. 6 - Eucalypt 
coppice stand ma-
nagement schedu-
ling followed by 2 

coppiced stands, 
with an average 

cutting cycle of 10 
years and 1 or 2 
shrub cleanings 

during each cutting 
cycle.
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ROC curve (0.838)  indicated excellent dis-
crimination between wildfire occurrence and 
non-occurrence  (Hosmer  &  Lemeshow 
2000).

According to the proposed model, wildfire 
risk (i.e.,  annual  burn  probability)  strongly 
increases  with  the  shrubs’  biomass  load. 
This  is  in  concordance  with  findings  from 
previous  investigations  (e.g.,  Gould  et  al. 
2011,  Godinho-Ferreira et al. 2005).  Castro 
et  al.  (2003) showed  that  the  amount  of 
forest  fuels,  namely  shrubs  biomass,  may 
further increase fire severity. Higher amount 
of  shrubs  dry  biomass  determines  higher 
flammability and lower capability to prevent 
the  advance  of  fire  (Schmidt  et  al.  2002, 
Castro et al. 2003). Generally, the fuel load 
generated by eucalypts increases with stand 
basal area (Gould et al. 2011). The impact of 
fuel management on wildfire occurrence has 
been underlined by the relation between fire 
risk and shrubs’ age (Sah et al. 2006, Gould 
et al. 2011, Kazanis et al. 2012). The rate of 
fuel accumulation after a wildfire in a euca-
lypt forest is relatively high,  declining pro-
gressively after 5-8 years and stabilizing at a 
level that depends on the prevailing environ-
mental  conditions  (Gould  et  al.  2011). 
Moreover,  the abundance  of shrubs  contri-
butes to an easier spread of surface fires and 
facilitate the starting of crown fires because 
of the vertical fuel continuity (Rothermel & 
Philpot  1983,  Finney  1999,  Cruz  et  al. 
2004).  From a  fire  suppression  viewpoint, 
the  effectiveness  of  silvicultural  treatments 
can  be  gauged  by  their  ability  to  prevent 
crown  fires  (Keeley & Zedler  2009).  In  a 
study carried out in Australia by  Bradstock 
& Williams (2009) crown fires are unlikely 
in  1  to  5-year  old  fuels  in  eucalypt  forest 
even under extreme weather.

Wildfire  occurrence  in  eucalypt  stands  is 
also  impacted  by  both  tree  size  indicators 
(i.e.,  quadratic  mean  diameter  and  stand 
dominant  height)  and  density  indicators 
(basal area) that may be controlled by mana-
gement planning. Wildfire occurrence proba-
bility  increases  with  higher  densities  espe-
cially in stands with low quadratic mean dia-
meter (i.e., higher  G/dg). This is in concor-
dance with other studies, where similar pre-
dicting variables have also been used as an 
indicator  of  stand-level  competition  and 
have been shown to influence fire risk pro-
bability  (González  et  al.  2006).  Denser 
stands comprised of smaller trees are more 
prone  to  high-intensity  crown  fire  due  to 
high vertical and horizontal continuity (Van 
Wagner 1977, Cruz et al. 2004). Wildfire oc-
currence  probability  also  decreases  with 
stand dominant height (hdom). The literature 
also provides evidence that such stands are 
less  vulnerable  to  fire  (Fernandes  2009, 
Fernandes et al. 2010, 2011).

According to the proposed model, eucalypt 
stands located less than 1 km from the road 

network  are  less  prone  to  burn.  This  is  in 
concordance  with  other  studies  reporting 
that the proportion of burned areas increases 
with  the  distance  from  roads  as  a  con-
sequence  of  the  lower  accessibility  by fire 
fighters (Cardille et al. 2001, Vasconcelos et 
al. 2001, Badia-Perpinya & Pallares-Barbera 
2006).  Other  studies  in  Portugal  demon-
strated  that  larger  distances  impacted  the 
proportion  of  area  burned  (Marques  et  al. 
2011a) or that ignitions that resulted in large 
fires occur further away from roads (Rome-
ro-Calcerrada et al. 2010).

In this research, the climate variables used 
(i.e.,  number of days of precipitation  equal 
or greater than 1.0 mm per year and yearly 
average temperature)  express  the long-term 
weather  conditions  that  influence the stand 
vegetation features (e.g., fuel types). There-
fore they characterize the site rather than the 
weather  during  a  specific  fire  event.  The 
weather before and/or during a specific wild-
fire can hardly be predicted within a long-
term  forest  management  planning  context. 
According to other studies (e.g., González et 
al. 2006,  Marques et al. 2012), we used cli-
mate variables to model wildfire occurrence 
over long timespans rather than to characte-
rize weather conditions for specific wildfire 
occurrences.

Our  results  underlined  the  importance  of 
fuel treatments to decrease burn probability, 
and provide indications on which stands are 
more  vulnerable  or  resistant  to  fire.  Typi-
cally,  eucalypt stands in Portugal are even-
aged  plantations  with  high  densities  and 
flammability  (Marques  et  al.  2011b).  This 
research highlighted that emphasis has to be 
placed on managing the forest structure (i.e., 
stand density and height) and the fuel loads. 
This is in concordance with findings by Fer-
nandes  et  al.  (2006) and  Fernandes  (2009) 
who showed that stand structure is a major 
determinant of fire vulnerability.

The  modeling  approach  adopted  in  this 
study provide valuable  information to  inte-
grate risk considerations in both operational 
and  strategic  eucalypt  forest  management 
planning. It helps quantify the impact of sil-
viculture  treatments  (e.g.,  coppice cuts  and 
fuel treatments) on wildfire risk and provides 
an important tool to define management op-
tions  aimed  to  reduce  wildfire  occurrence 
and develop effective fires prevention strate-
gies.

The  proposed  model  may  be  integrated 
with  a  growth  and  yield  model  (following 
the approach suggested by Hanewinkel et al. 
2010) to predict the probability of a wildfire 
to  occur  upon ignition.  To this  purpose,  it 
may take advantage of wildfire ignition mo-
dels, such as the ones developed by Vascon-
celos  et  al.  (2001) or  Catry  et  al.  (2008, 
2009), or else consider a stochastic ignition 
(González et al. 2006). Additionally, the pro-
posed wildfire occurrence probability model 

can easily be implemented in decision sup-
port  systems to address wildfire risk in de-
veloping  management  plans  either  at  stand 
level (e.g.,  González et al. 2008,  Pasalodos-
Tato  et  al.  2010,  Garcia-Gonzalo  et  al. 
2011a, Ferreira et al. 2011, 2012) or at land-
scape level (González-Olabarria & Pukkala 
2011). 

The presented model may be applied in dif-
ferent contexts thus contributing to integrate 
effectively fire risk into forest  management 
planning, and supporting forest managers in 
the  design  of  prescriptions  to  manipulate 
stand endogenous variables  that  impact the 
probability  of  wildfire  occurrence.  Further 
research may extend current model with the 
aim of  including landscape structure  varia-
bles (e.g., neighboring stands biometric va-
riables).
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