*
 

iForest - Biogeosciences and Forestry

*

Measured and simulated tree and stand water use of Douglas-fir along a climatic gradient across Germany

Armin Niessner (1)   , Stefan Ehekircher (1), Göran Spangenberg (1-2), Reiner Zimmermann (3), Alexander Land (3), Sebastian Hein (1)

iForest - Biogeosciences and Forestry, Volume 18, Issue 5, Pages 309-318 (2025)
doi: https://doi.org/10.3832/ifor4922-018
Published: Oct 30, 2025 - Copyright © 2025 SISEF

Research Articles


The frequency and severity of summer soil droughts in Central Europe have increased significantly over recent decades, leading to substantial damage in European forests, particularly to Norway spruce. Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco), a non-native tree species, is being explored as a potential alternative for enhancing forest drought resilience. This study focuses on quantifying and simulating the stand water use of Douglas-fir under future climate scenarios at four different sites in Germany that differ in seasonal precipitation distribution and soil characteristics. Sap flow and stem radial changes of up to ten trees per site were measured in combination with volumetric soil water content during the growing seasons of 2022 and 2023 (Apr 1-Sep 30). For each tree, we trained a Random Forest model to close any gaps in the time series due to power shortages. We estimated the stand water use of Douglas-fir at each site and trained the Random Forest model for each site to simulate stand water use under shifted temperature and soil moisture regimes. Mean growing season tree and stand water use was 23.7 ± 13.7 and 0.78 ± 0.23 mm day-1 (mm = kg m-2, ± standard deviation), respectively. The growing season sum of stand water use is linearly correlated to annual growing season precipitation and soil water depletion across all sites. While around 40%-50% of precipitation is used for transpiration, around 80%-90% of soil water in the upper 40 cm is used for plant uptake. Stand water use for 2022 and 2023 could be modeled using only relative soil water availability and the daily maximum in vapor pressure deficit, yielding an accuracy of ~80%. Simulations of stand water use under shifted temperature and soil moisture regimes reveal a strong reduction in water use when soils get drier under future climate conditions. The year 2022 already presented signs of significant water stress, characterized by low soil water availability and reduced stand water use. Looking ahead, climate projections indicate a continued decline in stand water use, which will likely lead to a corresponding reduction in tree growth, potentially impacting forest health and ecosystem resilience.

  Keywords


Soil Drought, Sap Flow, Random Forest Modeling, Forest Drought Resilience, Water Use Efficiency, Climate Change, Transpiration

Authors’ address

(1)
Armin Niessner 0000-0001-6906-7834
Stefan Ehekircher 0000-0002-4133-3173
Göran Spangenberg 0000-0003-2650-2132
Sebastian Hein 0000-0002-4009-9282
University of Applied Forest Sciences, Schadenweilerhof, 72108 Rottenburg am Neckar (Germany)
(2)
Göran Spangenberg 0000-0003-2650-2132
University of Applied Sciences Erfurt, Forestry and Ecosystem Management, Leipziger Straße 77, 99085 Erfurt (Germany)
(3)
Reiner Zimmermann 0000-0002-8724-941x
Alexander Land 0000-0002-8579-9880
University of Hohenheim, Institute of Biology (190a), Garbenstraße 30, 70599 Stuttgart (Germany)

Corresponding author

 
Armin Niessner
armin.niessner@gmail.com

Citation

Niessner A, Ehekircher S, Spangenberg G, Zimmermann R, Land A, Hein S (2025). Measured and simulated tree and stand water use of Douglas-fir along a climatic gradient across Germany. iForest 18: 309-318. - doi: 10.3832/ifor4922-018

Academic Editor

Marco Borghetti

Paper history

Received: Jun 08, 2025
Accepted: Sep 30, 2025

First online: Oct 30, 2025
Publication Date: Oct 31, 2025
Publication Time: 1.00 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 165
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 35
Abstract Page Views: 74
PDF Downloads: 49
Citation/Reference Downloads: 0
XML Downloads: 7

Web Metrics
Days since publication: 4
Overall contacts: 165
Avg. contacts per week: 288.75

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Mar 2025)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Ali J, Khan R, Ahmad N, Maqsood I (2012)
Random forests and decision trees. IJCSI International Journal of Computer Science Issue 9 (5): 272-278.
Gscholar
(2)
Aussenac G, Granier A (1988)
Effects of thinning on water stress and growth in Douglas-fir. Canadian Journal of Forest Research 18: 100-105.
CrossRef | Gscholar
(3)
Beedlow PA, Waschmann RS, Lee EH, Tingey DT (2017)
Seasonal patterns of bole water content in old growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Agricultural and Forest Meteorology 242: 109-119.
CrossRef | Gscholar
(4)
Berdanier AB, Miniat CF, Clark JS (2016)
Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. Tree Physiology 36: 932-941.
CrossRef | Gscholar
(5)
Brienen S, Früh B, Walter A, Trusilova K, Becker P (2016)
A Central European precipitation climatology - Part II: application of the high-resolution HYRAS data for COSMO-CLM evaluation. Meteorologische Zeitschrift 25: 195-214.
CrossRef | Gscholar
(6)
Brus R, Pötzelsberger E, Lapin K, Brundu G, Orazio C, Straigyte L, Hasenauer H (2019)
Extent, distribution and origin of non-native forest tree species in Europe. Scandinavian Journal of Forest Research 34: 533-544.
CrossRef | Gscholar
(7)
Cassel DK, Nielsen DR (2018)
Field capacity and available water capacity. In: “Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1” (Klute A ed). Soil Science Society of America, American Society of Agronomy, Madison, WI, USA, pp. 901-926.
CrossRef | Gscholar
(8)
Christidis N, Stott PA (2021)
The influence of anthropogenic climate change on wet and dry summers in Europe. Science Bulletin 66: 813-823.
CrossRef | Gscholar
(9)
Dawson TE, Burgess SSO, Tu KP, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR (2007)
Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology 27: 561-575.
CrossRef | Gscholar
(10)
Deslauriers A, Morin H, Urbinati C, Carrer M (2003)
Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17: 477-484.
CrossRef | Gscholar
(11)
Downes G, Beadle C, Worledge D (1999)
Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14: 102-111.
CrossRef | Gscholar
(12)
Drew DM, Downes GM (2009)
The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27: 159-172.
CrossRef | Gscholar
(13)
Eilmann B, Rigling A (2012)
Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiology 32: 178-187.
CrossRef | Gscholar
(14)
Felsche E, Böhnisch A, Poschlod B, Ludwig R (2024)
European hot and dry summers are projected to become more frequent and expand northwards. Communications Earth and Environment 5: 410.
CrossRef | Gscholar
(15)
Gavinet J, Ourcival J, Limousin J (2019)
Rainfall exclusion and thinning can alter the relationships between forest functioning and drought. New Phytologist 223: 1267-1279.
CrossRef | Gscholar
(16)
Goff JA, Gratch S (1946)
Low-pressure properties of water from -160 to 212 °F. In: Proceedings of the “52nd Annual Meeting of the American Society of Heating and Ventilating Engineers”. New York (NY, USA) 27-30 Jan 1946, pp. 95-122.
Gscholar
(17)
Granier A (1985)
A new method of sap flow measurement in tree stems. Annales des Sciences Forestières 42 (2): 193-200.
CrossRef | Gscholar
(18)
Granier A (1987)
Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology 3: 309-320.
CrossRef | Gscholar
(19)
Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020)
Array programming with NumPy. Nature 585: 357-362.
CrossRef | Gscholar
(20)
Hatfield JL, Dold C (2019)
Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science 10: 103.
CrossRef | Gscholar
(21)
IPCC (2023)
Climate change 2021 - The physical science basis: working group I contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
CrossRef | Gscholar
(22)
Keenan RJ (2015)
Climate change impacts and adaptation in forest management: a review. Annals of Forest Science 72: 145-167.
CrossRef | Gscholar
(23)
Köcher P, Gebauer T, Horna V, Leuschner C (2009)
Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Annals of Forest Science 66: 101-101.
CrossRef | Gscholar
(24)
Kohnle U (2007)
Douglasienanbau in Südwest-Deutschland: waldbauliche Erfolgsfaktoren [Douglas fir cultivation in southwest Germany: factors of silvicultural success]. BFW-Praxisinformation 16: 12-13. [in German]
Gscholar
(25)
Leuschner C, Meinzer FC (2024)
Drought resistance and drought adaptation of Douglas-fir (Pseudotsuga menziesii) - A review. Perspectives in Plant Ecology, Evolution and Systematics 65: 125829.
CrossRef | Gscholar
(26)
Lhotka O, Beštaková Z, Kysely J (2023)
Prolongation of compound dry-hot seasons over Europe under climate change scenarios. Earth’s Future 11: e2023EF003557.
CrossRef | Gscholar
(27)
McKinney W (2010)
Data structures for statistical computing in python. In: Proceedings of the “9th Python in Science Conference” (Austin, TX, USA), vol. 445, pp. 51-56.
CrossRef | Gscholar
(28)
Moore GW, Bond BJ, Jones JA, Phillips N, Meinzer FC (2004)
Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA. Tree Physiology 24: 481-491.
CrossRef | Gscholar
(29)
Nadezhdina N, Urban J, Cermák J, Nadezhdin V, Kantor P (2014)
Comparative study of long-term water uptake of Norway spruce and Douglas-fir in Moravian upland. Journal of Hydrology and Hydromechanics 62: 1-6.
CrossRef | Gscholar
(30)
Nicolescu V-N, Mason WL, Bastien J-C, Vor T, Petkova K, Podrázsky V, Dodan M, Perić S, La Porta N, Brus R, Andrašev S, Slávik M, Modransky J, Pástor M, Rédei K, Cvjetkovic B, Sivacioglu A, Lavnyy V, Buzatu-Goanta C, Mihailescu G (2023)
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in Europe: an overview of management practices. Journal of Forestry Research 34: 871-888.
CrossRef | Gscholar
(31)
Niessner A, Ehekircher S, Zimmermann R, Horna V, Reichle D, Land A, Spangenberg G, Hein S (2024)
Soil drought sets site-specific limits to stem radial growth and sap flow of Douglas-fir across Germany. Frontiers in Plant Science 15: 1401833.
CrossRef | Gscholar
(32)
Niessner A (2025)
Loguino. Open source hardware, GitHub, website.
Online | Gscholar
(33)
Nnyamah JU, Black TA (1977)
Rates and patterns of water uptake in a Douglas-fir forest. Soil Science Society of America Journal 41: 972-979.
CrossRef | Gscholar
(34)
Noack M (2021)
Waldwachstum im Nordostdeutschen Tiefland: Wachstum, Entwicklung und Standort forstwirtschaftlich bedeutsamer Baumarten [Forest growth in the Northeast German lowlands: growth, development and location of forestry-important tree species]. Kessel, Norbert, Germany, pp. 129-142. [in German]
Gscholar
(35)
O’Brien JJ, Oberbauer SF, Clark DB (2004)
Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant, Cell and Environment 27: 551-567.
CrossRef | Gscholar
(36)
Paligi SS, Link RM, Hackmann CA, Coners H, Leuschner C (2025)
Water consumption of beech, spruce and Douglas fir in pure and mixed stands in a wet and a dry year - Testing predictions of the iso/anisohydry concept. Science of The Total Environment 970: 178948.
CrossRef | Gscholar
(37)
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011)
Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research 12: 2825-2830.
Online | Gscholar
(38)
Pfautsch S, Bleby TM, Rennenberg H, Adams MA (2010)
Sap flow measurements reveal influence of temperature and stand structure on water use of Eucalyptus regnans forests. Forest Ecology and Management 259: 1190-1199.
CrossRef | Gscholar
(39)
Rauthe M, Steiner H, Riediger U, Mazurkiewicz A, Gratzki A (2013)
A Central European precipitation climatology - Part I: generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift 22: 235-256.
CrossRef | Gscholar
(40)
Sevanto S, Nikinmaa E, Riikonen A, Daley M, Pettijohn JC, Mikkelsen TN, Phillips N, Holbrook NM (2008)
Linking xylem diameter variations with sap flow measurements. Plant and Soil 305: 77-90.
CrossRef | Gscholar
(41)
Simpson DG (2000)
Water use of interior Douglas-fir. Canadian Journal of Forest Research 30: 534-547.
CrossRef | Gscholar
(42)
Spangenberg G, Zimmermann R, Küppers M, Hein S (2024)
High-resolution dendrometer measurements reveal different responses of Douglas-fir to extreme drought in 2018 depending on soil and rooting characteristics. Frontiers in Plant Science 15: 1485440.
CrossRef | Gscholar
(43)
Thom D, Buras A, Heym M, Klemmt H-J, Wauer A (2023)
Varying growth response of Central European tree species to the extraordinary drought period of 2018-2020. Agricultural and Forest Meteorology 338: 109506.
CrossRef | Gscholar
(44)
Thomas F, Bögelein R, Werner W (2015)
Interaction between Douglas fir and European beech-investigations in pure and mixed stands. Forstarchiv 86 (4): 83-91.
CrossRef | Gscholar
(45)
Thomas FM, Rzepecki A, Werner W (2022)
Non-native Douglas fir (Pseudotsuga menziesii) in Central Europe: ecology, performance and nature conservation. Forest Ecology and Management. 506: 119956.
CrossRef | Gscholar
(46)
Tiktak A, Bouten W (1994)
Soil water dynamics and long-term water balances of a Douglas fir stand in the Netherlands. Journal of Hydrology 156: 265-283.
CrossRef | Gscholar
(47)
Van Rossum G, Drake FL (2009)
Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, USA, pp. 242.
Gscholar
(48)
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, Van Der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, Van Mulbregt P, Vijaykumar A, Bardelli AP, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C, Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA, Ingold G-L, Allen GE, Lee GR, Audren H, Probst I, Dietrich JP, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, De Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ, Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO, Vázquez-Baeza Y (2020)
SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17: 261-272.
CrossRef | Gscholar
(49)
Vitali V, Büntgen U, Bauhus J (2017)
Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Global Change Biology 23: 5108-5119.
CrossRef | Gscholar
(50)
Waring RH, Whitehead D, Jarvis PG (1979)
The contribution of stored water to transpiration in Scots pine. Plant, Cell and Environment 2: 309-317.
CrossRef | Gscholar
(51)
Warren JM, Meinzer FC, Brooks JR, Domec JC (2005)
Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests. Agricultural and Forest Meteorology 130: 39-58.
CrossRef | Gscholar
(52)
WDCC (2025)
Database of the World Data Center for Climate. DKRZ, Hamburg, Germany, website.
Online | Gscholar
(53)
Zavadilová I, Szatniewska J, Petrík P, Mauer O, Pokorny R, Stojanović M (2023)
Sap flow and growth response of Norway spruce under long-term partial rainfall exclusion at low altitude. Frontiers in Plant Science. 14: 1089706.
CrossRef | Gscholar
(54)
Zweifel R, Item H, Häsler R (2000)
Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees 15: 50-57.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info