iForest - Biogeosciences and Forestry


Effective woody biomass estimation in poplar short-rotation coppices - Populus nigra × P. maximowiczii

Martin Šrámek (1)   , Jan Weger (2), Jaroslav Bubeník (2), Marie Matoušková (1), Klára Lengálová (1), Radim Matula (3)

iForest - Biogeosciences and Forestry, Volume 16, Issue 4, Pages 202-209 (2023)
doi: https://doi.org/10.3832/ifor4200-016
Published: Jul 25, 2023 - Copyright © 2023 SISEF

Research Articles

Knowledge of the quantity of woody biomass of poplar short-rotation coppice (SRC) on agricultural land is a basic tool for management decisions like rotation length, volume production and the financial balance sheet of economic activities. The expansion of SRC requires a fast, reliable, easily applicable and cheap method for estimating the biomass yield, but existing methods are based on labour-demanding and lengthy measurements of all shoots per tree. The objective of this study was to verify a novel rapid biomass estimation method that uses averaged attributes of only a few largest shoots as a predictor variable for woody biomass in a poplar SRC, hybrid clone J-105 (Populus nigra × P. maximowiczii). Using data from 39 sample stumps with 187 shoots in total, we modelled shoot biomass as a function of an increasing number of shoots in interaction with different shoot parameters at two poplar SRC plantations. Results showed that the DBH of only three of the largest shoots per stump proved to be accurate estimators of the total shoot biomass of the individual stump. Comparison of biomass estimates at the stand level with a real amount of biomass indicated differences between 6-14%, depending on the site.


Poplar Hybrid Clone J-105, SRC, Allometric Equations, Biomass Estimation

Authors’ address

Martin Šrámek 0000-0003-0259-9902
Marie Matoušková 0000-0003-4780-4674
Klára Lengálová 0000-0001-8255-9729
Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemedelská 3, 61300 Brno (Czech Republic)
Jan Weger
Jaroslav Bubeník
Department of Phytoenergy, Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Kvetnové nám. 391, Pruhonice, 252 43 (Czech Republic)
Radim Matula 0000-0002-7460-0100
Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague (Czech Republic)

Corresponding author

Martin Šrámek


Šrámek M, Weger J, Bubeník J, Matoušková M, Lengálová K, Matula R (2023). Effective woody biomass estimation in poplar short-rotation coppices - Populus nigra × P. maximowiczii. iForest 16: 202-209. - doi: 10.3832/ifor4200-016

Academic Editor

Petar Antov

Paper history

Received: Aug 10, 2022
Accepted: May 11, 2023

First online: Jul 25, 2023
Publication Date: Aug 31, 2023
Publication Time: 2.50 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 10418
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 8793
Abstract Page Views: 901
PDF Downloads: 631
Citation/Reference Downloads: 1
XML Downloads: 92

Web Metrics
Days since publication: 357
Overall contacts: 10418
Avg. contacts per week: 204.27

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Afas NA, Marron N, Van Dongen S, Laureysens I, Ceulemans R (2008)
Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). Forest Ecology and Management 255: 1883-1891.
CrossRef | Gscholar
Baldantoni D, Bellino A, Cicatelli A, Castiglione S (2011)
Artificial mycorrhization does not influence the effects of iron availability on Fe, Zn, Cu, Pb and Cd accumulation in leaves of a heavy metal tolerant white poplar clone. Plant Biosystems 145: 236-240.
CrossRef | Gscholar
Burnham KP, Anderson DR (2003)
Model selection and multimodel inference: a practical information-theoretic approach (2nd edn) (Kenneth DRA, Burnham P eds). Springer, New York, USA, pp. 488.
Chirici G, Giannetti F, Mazza E, Francini S, Travaglini D, Pegna R, White JC (2020)
Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series. Annals of Forest Science 77 (2): 453.
CrossRef | Gscholar
Dillen SY, Marron N, Bastien C, Ricciotti L, Salani F, Sabatti M, Pinel MPC, Rae AM, Taylor G, Ceulemans R (2007)
Effects of environment and progeny on biomass estimations of five hybrid poplar families grown at three contrasting sites across Europe. Forest Ecology and Management 252: 12-23.
CrossRef | Gscholar
Fatemi FR, Yanai RD, Hamburg SP, Vadeboncoeur MA, Arthur MA, Briggs RD, Levine CR (2011)
Allometric equations for young northern hardwoods: the importance of age-specific equations for estimating aboveground biomass. Canadian Journal of Forest Research 41: 881-891.
CrossRef | Gscholar
Feller S, Webenau B, Weixler H (1999)
Teilmechanisierte Waldhackschnitzel-Bereitstellung [Partially mechanized forest woodchip provision]. Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising, Germany, pp. 103. [in German]
Gamalero E, Cesaro P, Cicatelli A, Todeschini V, Musso C, Castiglione S, Fabiani A, Lingua G (2012)
Poplar clones of different sizes, grown on a heavy metal polluted site, are associated with microbial populations of varying composition. Science of the Total Environment 425: 262-270.
CrossRef | Gscholar
Huber JA, May K, Hülsbergen KJ (2017)
Allometric tree biomass models of various species grown in short-rotation agroforestry systems. European Journal of Forest Research 136: 75-89.
CrossRef | Gscholar
Isebrand JG, Richardson J (2014)
Poplars and willows: trees for society and the environment. The Food and Agriculture Organisation of the United Nations, Rome, Italy, and CABI, UK, pp. 619.
Koerper GJ, Richardson CJ (1980)
Biomass and net annual primary production regressions for Populus grandidentata on three sites in northern lower Michigan. Canadian Journal of Forest Research 10: 92-101.
CrossRef | Gscholar
Kohn J, Lamersdorf N, Leinweber P, Aronsson P, Weih M, Berndes G, Bolte A (2011)
Quantifying environmental effects of Short Rotation Coppice (SRC) on biodiversity, soil and water. International Energy Agency, Bioenergy Task, Braunschweig, Germany, pp. 34.
Lasserre B, Chirici G, Chiavetta U, Garfì V, Tognetti R, Drigo R, DiMartino P, Marchetti M (2011)
Assessment of potential bioenergy from coppice forests trough the integration of remote sensing and field surveys. Biomass and Bioenergy 35: 716-724.
CrossRef | Gscholar
Lemus R, Lal R (2005)
Bioenergy crops and carbon sequestration. Critical Reviews in Plant Sciences 24: 1-21.
CrossRef | Gscholar
Macpharson G (1995)
Home-grown energy from short-rotation coppice. Farming Press Ltd., Ipswich, UK, pp. 214.
Magee L (1990)
R2 measures based on wald and likelihood ratio joint significance tests. The American Statistician 44: 250-253.
Matula R, Damborská L, Nečasová M, Geršl M, Srámek M (2015)
Measuring biomass and carbon stock in resprouting woody plants. PLoS One 10 (2): e0118388.
CrossRef | Gscholar
Mosseler A, Major JE, Labrecque M, Larocque GR (2014)
Allometric relationships in coppice biomass production for two North American willows (Salix spp.) across three different sites. Forest Ecology and Management 320: 190-196.
CrossRef | Gscholar
Mosseler A, Major JE, Larocque GR (2016)
Allometric relationships from coppice structure of seven North American willow (Salix) species. Biomass and Bioenergy 88: 97-105.
CrossRef | Gscholar
Mottl J (1989)
Topoly a jejich uplatnení v zeleni [Poplars and their use in greenery]. Mezinárodní Organizace Novináru, Prague, Czech Republic, pp. 204. [in Czech]
Mottl J, Spalek V (1961)
Pestujeme topoly [We grow poplars]. SZN - Státní zemedelské nakladatelství, Prague, Czech Republic, pp. 309. [in Czech]
Nagelkerke NJD (2008)
A note on a general definition of the coefficient of determination. Biometrika 78: 691-692.
CrossRef | Gscholar
Norby RJ, Todd DE, Fults J, Johnson DW (2001)
Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist 150: 477-487.
CrossRef | Gscholar
Oliveira N, Rodríguez-Soalleiro R, Hernández MJ, Cañellas I, Sixto H, Pérez-Cruzado C (2017)
Improving biomass estimation in a Populus short rotation coppice plantation. Forest Ecology and Management 391: 194-206.
CrossRef | Gscholar
Oliveira N, Rodríguez-Soalleiro R, Pérez-Cruzado C, Cañellas I, Sixto H, Ceulemans R (2018)
Above- and below-ground carbon accumulation and biomass allocation in poplar short rotation plantations under Mediterranean conditions. Forest Ecology and Management 428: 57-65.
CrossRef | Gscholar
Paine CET, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA (2012)
How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution 3: 245-256.
CrossRef | Gscholar
Paul KI, Roxburgh SH, Ritson P, Brooksbank K, England JR, Larmour JS, John Raison R, Peck A, Wildy DT, Sudmeyer RA, Giles R, Carter J, Bennett R, Mendham DS, Huxtable D, Bartle JR (2013)
Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern Australia. Forest Ecology and Management 310: 1005-1015.
CrossRef | Gscholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2016)
nlme: linear and nonlinear mixed effects models. R Package Version 3, web site.
Online | Gscholar
Ríos-Saucedo JC, Acuña-Carmona E, Cancino-Cancino J, Rubilar-Pons R, Navar-Chaidez JDJ, Rosales-Serna R (2016)
Allometric equations commonly used for estimating shoot biomass in short rotation wood energy species: a review. Revista Chapingo, Serie Ciencias Forestales y del Ambiente 22: 193-202.
CrossRef | Gscholar
Ritz C, Spiess A-N (2008)
qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics 24: 1549-1551.
CrossRef | Gscholar
Roe AM, Robinson KM, Street NR, Taylor G (2004)
Morphological and physiological traits influencing biomass productivity in short-rotation coppice poplar. Canadian Journal of Forest Research 34: 1488-1498.
CrossRef | Gscholar
Rytter RM, Rytter L, Högbom L (2015)
Carbon sequestration in willow (Salix spp.) plantations on former arable land estimated by repeated field sampling and C budget calculation. Biomass and Bioenergy 83: 483-492.
CrossRef | Gscholar
Scholz V, Idler C (2000)
Loss reduced and human hygienic storage of field wood chips. In: Proceedings of the Conference “1st World Conference on Biomass for Energy and Industry”. Sevilla (Spain) 5-9 June 2000. NERF, Petten, Netherlands, pp. 536-539.
Scholz V, Idler C, Daries W, Egert J (2005)
Schimmelpilzentwicklung und verluste bei der lagerung von holzhackschnitzeln [Mold growth and losses in the storage of wood chips. ]. Holz Als Roh - und Werkstoff 63: 449-455. [in German]
CrossRef | Gscholar
Schweier J, Becker G (2013)
Economics of poplar short rotation coppice plantations on marginal land in Germany. Biomass and Bioenergy 59: 494-502.
CrossRef | Gscholar
Sebastiani L, Scebba F, Tognetti R (2004)
Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environmental and Experimental Botany 52: 79-88.
CrossRef | Gscholar
Sixto H, Hernández MJ, Barrio M, Carrasco J, Cañellas I (2007)
Plantaciones del género Populus para la producción de biomasa con fines energéticos: revisión [Populus genus for the biomass production for energy use: a review]. Investigación Agraria: Sistemas y Recursos Forestales 16: 277-294. [in Spanish]
CrossRef | Gscholar
Šrámek M, Matoušková M, Lengálová K, Kruttová M, Zlatanov T, Uradníček L, Ehrenbergerová L, Matula R (2020)
Effective determination of biomass in oak coppices. Trees - Structure and Function 34: 1335-1345.
CrossRef | Gscholar
Stícha V, MacKu J, Nuhlíček O (2016)
Effect of permanent waterlogging on the growth of poplar clones MAX 4, MAX 5 (J-104, J-105) (Populus maximowiczii A. Henry × P. nigra Linnaeus) and evaluation of wood moisture content in different stem parts. Journal of Forest Science 62: 186-190.
CrossRef | Gscholar
Suchomel C, Pyttel P, Becker G, Bauhus J (2012)
Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. Biomass and Bioenergy 46: 722-730.
CrossRef | Gscholar
R Core Team (2013)
R: a language and environment for statistical computing. The R Foundation of Statistical Computing, Vienna, Austria.
Online | Gscholar
Van Breugel M, Ransijn J, Craven D, Bongers F, Hall JS (2011)
Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management 262: 1648-1657.
CrossRef | Gscholar
Verlinden MS, Broeckx LS, Ceulemans R (2015)
First vs. second rotation of a poplar short rotation coppice: above-ground biomass productivity and shoot dynamics. Biomass and Bioenergy 73: 174-185.
CrossRef | Gscholar
Weger J, Bubeník J (2010)
První výsledky hodnocení smíšené výmladkové plantáže topolu a vrb [First results of evaluation of mixed poplar and willow short rotation coppice]. Acta Pruhoniciana 96: 27-36. [in Czech]
Weger J, Vávrová K, Kašparová L, Bubeník J, Komárek A (2013)
The influence of rotation length on the biomass production and diversity of ground beetles (Carabidae) in poplar short rotation coppice. Biomass and Bioenergy 54: 284-292.
CrossRef | Gscholar
West GB, Brown JH, Enquist BJ (1999)
A general model for the structure and allometry of plant vascular systems. Nature 400: 664-667.
CrossRef | Gscholar
Wickham MH (2014)
Package “ggplot2”. R package v. 2.14, web site.
Online | Gscholar
Wihersaari M (2005)
Evaluation of greenhouse gas emission risks from storage of wood residue. Biomass and Bioenergy 28: 444-453.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info