Comparison of wood stack volume determination between manual, photo-optical, iPad-LiDAR and handheld-LiDAR based measurement methods
Thomas Purfürst (1) , Felipe De Miguel-Díez (1-2), Ferreol Berendt (2), Benjamin Engler (1), Tobias Cremer (2)
iForest - Biogeosciences and Forestry, Volume 16, Issue 4, Pages 243-252 (2023)
doi: https://doi.org/10.3832/ifor4153-016
Published: Aug 23, 2023 - Copyright © 2023 SISEF
Research Articles
Abstract
The measurement of roadside wood stacks in the forest still plays an important role in many forestry operations. Traditional manual measuring methods can be laborious, inaccurate and error-prone. Therefore, the issue is whether 2.5D or 3D optical remote sensing measuring methods provide more precise or detailed results and advantages in further data processing. This study examined and partly developed nine different manual, photo-optical, iPad®-LiDAR and handheld laser scanner-LiDAR-based wood stack measurement methods. Forty-seven wood stacks, ranging from 8.9 to 209.3 m3 (totalling approximately 2700 m3), were measured and compared using these nine methods. All the methods give volume estimations, and none can be seen to give the real or true wood stack gross volume. Surprisingly, the results varied significantly within and between the individual methods, with up to a 9% mean relative deviation. The relative deviation is strongly dependent on the size of the wood stack. The 3D measurement methods using iPad® RGB and LiDAR recorded lower timber volumes than the other methods, in contrast to the method based on samples taken with handheld laser scanner-LiDAR, which overestimated the volume. Generally, optical- and laser-based surveying techniques could be more widely applied in measuring wood stacks in the future. However, such automatic wood stack gross volume determination approaches still face some challenges, regarding accuracy in the case of the 2.5D methods and the lack of automatisation in the case of 3D methods. Consequently, further research is required in the near future.
Keywords
iPad LiDAR, Wood Stack Volume, 3D Volume, Photo-optical Measurement, Personal Laser Scanner, SLAM, RVR
Authors’ Info
Authors’ address
Felipe De Miguel-Díez 0000-0002-3800-7449
Benjamin Engler 0000-0003-2104-8209
Chair of Forest Operations, University Freiburg (Germany)
Ferreol Berendt 0000-0002-6285-7590
Tobias Cremer 0000-0001-7866-944x
Department of Forest Utilization and Timber Markets, Eberswalde University for Sustainable Development, Eberswalde (Germany)
Corresponding author
Paper Info
Citation
Purfürst T, De Miguel-Díez F, Berendt F, Engler B, Cremer T (2023). Comparison of wood stack volume determination between manual, photo-optical, iPad-LiDAR and handheld-LiDAR based measurement methods. iForest 16: 243-252. - doi: 10.3832/ifor4153-016
Academic Editor
Enrico Marchi
Paper history
Received: Jun 08, 2022
Accepted: Jul 12, 2023
First online: Aug 23, 2023
Publication Date: Aug 31, 2023
Publication Time: 1.40 months
Copyright Information
© SISEF - The Italian Society of Silviculture and Forest Ecology 2023
Open Access
This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Web Metrics
Breakdown by View Type
Article Usage
Total Article Views: 16046
(from publication date up to now)
Breakdown by View Type
HTML Page Views: 13065
Abstract Page Views: 1799
PDF Downloads: 1020
Citation/Reference Downloads: 2
XML Downloads: 160
Web Metrics
Days since publication: 456
Overall contacts: 16046
Avg. contacts per week: 246.32
Citation Metrics
Article Citations
Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)
(No citations were found up to date. Please come back later)
Publication Metrics
by Dimensions ©
Articles citing this article
List of the papers citing this article based on CrossRef Cited-by.
References
Precision vid travmätning av rundvirke med en fotoinventeringsteknik applicerat i smarta telefoner [Precision of pile-measurement of roundwood with photographic technology applied in smartphones]. Bachelor thesis in Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden. [in Swedish]
Gscholar
Innowacyjne metody pomiaru drewna w lesnicwie i przemysle drezwnym [Certified digital photo measurement of raw wood stacks]. In: Proceeding of the Conference “Innovative Timber Measurement Methods for Forestry and Wood Industry”. Poznan University of Life Sciences (Poznan, Poland) 17-19 Nov 2021, pp. 19. [in Polish]
Gscholar
Analyse der fotooptischen Vermessung von Kiefernstamm- und -industrieholz im Vergleich zum Sektionsraumaß. [Analysis of the fotooptical mensuration of pine stem wood and industrial wood in comparison to manual stack mensuration] Allgemeine Forst und Jagdzeitung 188: 127-139. [in German]
CrossRef | Gscholar
Foto-optische Erfassung der Dimension von Nadelrundholzabschnitten unter Einsatz digitaler, bildverarbeitender Methoden [Photo-optical measurement of softwood log dimension using digital image processing methods]. PhD thesis, Albert-Ludwigs-Universität, Freibug, Germany, pp. 175. [in German]
Gscholar
The measurement of roundwood: methodologies and conversion ratios. CABI Publishing, Wallingford, UK, Cambridge, USA, pp. 287.
Gscholar
Automatic wood log segmentation using graph cuts. In: Proceedings of the International Joint Conference “VISIGRAPP 2010 - Computer Vision, Imaging and Computer Graphics: Theory and Applications” (Richard P ed). Angers (France) 17-21 May 2010. Springer, Berlin, Heidelberg, pp. 96-109.
Gscholar
Accuracy of photo-optical measurement of industrial timber using the example of FOVEA. Forstarchiv 87: 194-197.
Gscholar
LogStackPro - Im Vorbeigehen [LogStackPro - In passing]. Forst and Technik 33: 40-44. [in German]
Gscholar
The use of photo-optical systems for measurement of stacked wood. In: Proceedings of the “49th FORMEC Symposium 2016”. Warsaw (Poland) 4-7 Sept 2016. Faculty of Forestry, University of Life Sciences, Warsaw, Poland, pp. 342.
Gscholar
The perspective of optical measurement methods in forestry. In: Proceedings of the Conference “Photonics and Education in Measurement Science 2019”(Rosenberger M, Dittrich P-G, Zagar B eds). Jena (Germany) 17-19 Sept 2019. Jena, Germany 9 (17): 2019-9./19/2019. SPIE, pp. 52.
CrossRef | Gscholar
Octree encoding: a new technique for the representation, manipulation and display of arbitrary 3-D objects by computer. Report no. IPL-TR-80-111, Rensselaer Polytechnic Institute, Image Processing Laboratory, Troy, NY, USA, pp. 121.
Gscholar
Holzaufnahme im BaySF-Logistik-Prozess: sScale von Dralle sorgt für effiziente Kontrollstichproben [sScale from Dralle ensures efficient control sampling - Timber measurement SF logistics process]. LWF aktuell: 26-27. [in German]
Gscholar
Analyse und Bewertung von Rundholzvermessungsverfahren [Analysis and assessment of roundwood measurement methods]. Master thesis, University of Freiburg, Germany, pp. 99. [in German]
Gscholar
Three-step approach for localization, instance segmentation and multi-facet classification of individual logs in wooden piles. In: Proceedings of the “11th International Conference on Pattern Recognition Applications and Methods - ICPRAM 2022”. Online streaming, 3-5 Feb 2022, vol. 1, pp. 683-688.
CrossRef | Gscholar
Innowacyjne metody pomiaru drewna w lesnicwie i przemysle drezwnym [Innovative timber measurement methods for the forestry and wood industry]. University of Life Sciences, Poznan, Poland, pp. 85.
Gscholar
Rozwiazanie zapewniajace przejrzysta i zrównowazona gospodarke lesna [A solution that ensures transparent and sustainable forest management]. In: Proceeding of the Conference “Innovative Timber Measurement Methods For the Forestry and Wood Industry”. Poznan (Poland), 17-19 Nov 2021. [in Polish]
Gscholar