*
 

iForest - Biogeosciences and Forestry

*

Comparison of wood stack volume determination between manual, photo-optical, iPad-LiDAR and handheld-LiDAR based measurement methods

Thomas Purfürst (1)   , Felipe De Miguel-Díez (1-2), Ferreol Berendt (2), Benjamin Engler (1), Tobias Cremer (2)

iForest - Biogeosciences and Forestry, Volume 16, Issue 4, Pages 243-252 (2023)
doi: https://doi.org/10.3832/ifor4153-016
Published: Aug 23, 2023 - Copyright © 2023 SISEF

Research Articles


The measurement of roadside wood stacks in the forest still plays an important role in many forestry operations. Traditional manual measuring methods can be laborious, inaccurate and error-prone. Therefore, the issue is whether 2.5D or 3D optical remote sensing measuring methods provide more precise or detailed results and advantages in further data processing. This study examined and partly developed nine different manual, photo-optical, iPad®-LiDAR and handheld laser scanner-LiDAR-based wood stack measurement methods. Forty-seven wood stacks, ranging from 8.9 to 209.3 m3 (totalling approximately 2700 m3), were measured and compared using these nine methods. All the methods give volume estimations, and none can be seen to give the real or true wood stack gross volume. Surprisingly, the results varied significantly within and between the individual methods, with up to a 9% mean relative deviation. The relative deviation is strongly dependent on the size of the wood stack. The 3D measurement methods using iPad® RGB and LiDAR recorded lower timber volumes than the other methods, in contrast to the method based on samples taken with handheld laser scanner-LiDAR, which overestimated the volume. Generally, optical- and laser-based surveying techniques could be more widely applied in measuring wood stacks in the future. However, such automatic wood stack gross volume determination approaches still face some challenges, regarding accuracy in the case of the 2.5D methods and the lack of automatisation in the case of 3D methods. Consequently, further research is required in the near future.

  Keywords


iPad LiDAR, Wood Stack Volume, 3D Volume, Photo-optical Measurement, Personal Laser Scanner, SLAM, RVR

Authors’ address

(2)
Felipe De Miguel-Díez 0000-0002-3800-7449
Ferreol Berendt 0000-0002-6285-7590
Tobias Cremer 0000-0001-7866-944x
Department of Forest Utilization and Timber Markets, Eberswalde University for Sustainable Development, Eberswalde (Germany)

Corresponding author

Citation

Purfürst T, De Miguel-Díez F, Berendt F, Engler B, Cremer T (2023). Comparison of wood stack volume determination between manual, photo-optical, iPad-LiDAR and handheld-LiDAR based measurement methods. iForest 16: 243-252. - doi: 10.3832/ifor4153-016

Academic Editor

Enrico Marchi

Paper history

Received: Jun 08, 2022
Accepted: Jul 12, 2023

First online: Aug 23, 2023
Publication Date: Aug 31, 2023
Publication Time: 1.40 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 16046
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 13065
Abstract Page Views: 1799
PDF Downloads: 1020
Citation/Reference Downloads: 2
XML Downloads: 160

Web Metrics
Days since publication: 456
Overall contacts: 16046
Avg. contacts per week: 246.32

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Apple Inc. (2021)
iPad Pro. Web site.
Online | Gscholar
(2)
Berendt F, Miguel-Diez F, Wallor E, Blasko L, Cremer T (2021a)
Comparison of different approaches to estimate bark volume of industrial wood at disc and log scale. Scientific Reports 11: 15630.
CrossRef | Gscholar
(3)
Berendt F, Pegel E, Blasko L, Cremer T (2021b)
Bark proportion of Scots pine industrial wood. European Journal of Wood and Wood Products 79: 749-752.
CrossRef | Gscholar
(4)
Berendt F, Wolfgramm F, Cremer T (2021c)
Reliability of photo-optical measurements of log stack gross volume. Silva Fennica 55: 1-13.
CrossRef | Gscholar
(5)
Boberg A, Lilja J (2016)
Precision vid travmätning av rundvirke med en fotoinventeringsteknik applicerat i smarta telefoner [Precision of pile-measurement of roundwood with photographic technology applied in smartphones]. Bachelor thesis in Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden. [in Swedish]
Gscholar
(6)
Christensen R (2021)
Innowacyjne metody pomiaru drewna w lesnicwie i przemysle drezwnym [Certified digital photo measurement of raw wood stacks]. In: Proceeding of the Conference “Innovative Timber Measurement Methods for Forestry and Wood Industry”. Poznan University of Life Sciences (Poznan, Poland) 17-19 Nov 2021, pp. 19. [in Polish]
Gscholar
(7)
Cremer T, Berendt F, Diez F, Wolfgramm F, Blasko L (2021)
Accuracy of photo-optical measurement of wood piles. Environmental Sciences Proceedings 3: 90.
CrossRef | Gscholar
(8)
Cremer T, Blasko L (2017)
Analyse der fotooptischen Vermessung von Kiefernstamm- und -industrieholz im Vergleich zum Sektionsraumaß. [Analysis of the fotooptical mensuration of pine stem wood and industrial wood in comparison to manual stack mensuration] Allgemeine Forst und Jagdzeitung 188: 127-139. [in German]
CrossRef | Gscholar
(9)
De Miguel-Díez F, Tolosana-Esteban E, Purfürst T, Cremer T (2021)
Analysis of the influence that parameters crookedness and taper have on stack volume by using a 3D-simulation model of wood stacks. Forests 12: 238.
CrossRef | Gscholar
(10)
De Miguel-Díez F, Pettenkofer T, Wallor E, Tolosana-Esteban E, Purfürst T, Cremer T (2022)
Influence of log and stack parameters on the conversion factors for Norway Spruce wood stacks using a 3D simulation model. International Journal of Forest Engineering 33 (2): 119-128.
CrossRef | Gscholar
(11)
Dralle (2022)
Rechtssicher, präzise und transparent: 3D-Stereo-Technologie für die zeitgemäße Holzwirtschaft [Legally compliant, precise and transparent: 3D stereo technology for the contemporary timber industry]. Dralle A/S, Hörsholm, Denmark, pp. 2. [in German]
Online | Gscholar
(12)
Fink F (2004)
Foto-optische Erfassung der Dimension von Nadelrundholzabschnitten unter Einsatz digitaler, bildverarbeitender Methoden [Photo-optical measurement of softwood log dimension using digital image processing methods]. PhD thesis, Albert-Ludwigs-Universität, Freibug, Germany, pp. 175. [in German]
Gscholar
(13)
Fonseca MA (2005)
The measurement of roundwood: methodologies and conversion ratios. CABI Publishing, Wallingford, UK, Cambridge, USA, pp. 287.
Gscholar
(14)
FOVEA (2022)
FOVEA Quick Start. Treeva GmbH - FOVEA, Uslar, Germany, pp. 14.
Online | Gscholar
(15)
GeoSLAM (2022)
HORIZON product specification. Web site.
Online | Gscholar
(16)
Gollob C, Ritter T, Kranitzer R, Tockner A, Nothdurft A (2021)
Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sensing 13: 3129.
CrossRef | Gscholar
(17)
GPL software (2022)
CloudCompare version 2.6.1 - user manual. Web site, pp. 181.
Online | Gscholar
(18)
Gutzeit E, Ohl S, Voskamp J, Kuijper A, Urban B (2011)
Automatic wood log segmentation using graph cuts. In: Proceedings of the International Joint Conference “VISIGRAPP 2010 - Computer Vision, Imaging and Computer Graphics: Theory and Applications” (Richard P ed). Angers (France) 17-21 May 2010. Springer, Berlin, Heidelberg, pp. 96-109.
Gscholar
(19)
Heinzmann B (2017)
Studies on the volume determination of industrial plywood of the wood species spruce with the aid of electronic and single-trunk 3D measurement. PhD thesis, University of Sopron, Hungary, pp. 98.
CrossRef | Gscholar
(20)
Heinzmann B, Barbu MC (2016)
Accuracy of photo-optical measurement of industrial timber using the example of FOVEA. Forstarchiv 87: 194-197.
Gscholar
(21)
Herbon C (2015)
Photogrammetric surveying of wood piles on handheld devices. PhD thesis, Otto von Guericke University Library, Magdeburg, Germany, pp. 195.
CrossRef | Gscholar
(22)
Hollerl H (2021)
LogStackPro - Im Vorbeigehen [LogStackPro - In passing]. Forst and Technik 33: 40-44. [in German]
Gscholar
(23)
Jodlowski K, Moskalik T, Tomusiak R, Sarzynski W (2016)
The use of photo-optical systems for measurement of stacked wood. In: Proceedings of the “49th FORMEC Symposium 2016”. Warsaw (Poland) 4-7 Sept 2016. Faculty of Forestry, University of Life Sciences, Warsaw, Poland, pp. 342.
Gscholar
(24)
Kärhä K, Nurmela S, Karvonen H, Kivinen V-P, Melkas T, Nieminen M (2019)
Estimating the accuracy and time consumption of a mobile machine vision application in measuring timber stacks. Computers and Electronics in Agriculture 158: 167-182.
CrossRef | Gscholar
(25)
Knyaz VA, Maksimov AA (2014)
Photogrammetric technique for timber stack volume control. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40 (3): 157-162.
CrossRef | Gscholar
(26)
Kruglov A, Shishko E (2017)
Log pile measurement through 3D modeling. In: Proceedings of the “40th International Conference on Telecommunications and Signal Processing (TSP)”. Barcelona (Spain) 5-7 July 2017. IEEE Xplore, pp. 263-266.
CrossRef | Gscholar
(27)
Laan Labs (2022)
3D Scanner App. Web site.
Online | Gscholar
(28)
Luetzenburg G, Kroon A, Bjørk AA (2021)
Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences. Scientific Reports 11: 22221.
CrossRef | Gscholar
(29)
Lummitsch S, Findeisen E, Haas M, Carl C (2019)
The perspective of optical measurement methods in forestry. In: Proceedings of the Conference “Photonics and Education in Measurement Science 2019”(Rosenberger M, Dittrich P-G, Zagar B eds). Jena (Germany) 17-19 Sept 2019. Jena, Germany 9 (17): 2019-9./19/2019. SPIE, pp. 52.
CrossRef | Gscholar
(30)
Meagher D (1980)
Octree encoding: a new technique for the representation, manipulation and display of arbitrary 3-D objects by computer. Report no. IPL-TR-80-111, Rensselaer Polytechnic Institute, Image Processing Laboratory, Troy, NY, USA, pp. 121.
Gscholar
(31)
Miguel-Díez F, Purfürst T, Acuna M, Tolosana-Esteban E, Cremer T (2023)
Estimation of conversion factors for wood stacks in landings and their influencing parameters: a comprehensive literature review for America and Europe. Silva Fennica 57 (1): 22018.
CrossRef | Gscholar
(32)
Müller M (2008)
Holzaufnahme im BaySF-Logistik-Prozess: sScale von Dralle sorgt für effiziente Kontrollstichproben [sScale from Dralle ensures efficient control sampling - Timber measurement SF logistics process]. LWF aktuell: 26-27. [in German]
Gscholar
(33)
Neumann LJ (2022)
Analyse und Bewertung von Rundholzvermessungsverfahren [Analysis and assessment of roundwood measurement methods]. Master thesis, University of Freiburg, Germany, pp. 99. [in German]
Gscholar
(34)
Pásztory Z, Heinzmann B, Barbu M-C (2019)
Comparison of different stack measuring methods. Siberian Forest Journal 3: 5-13.
CrossRef | Gscholar
(35)
Pix4D (2022a)
PIX4Dcatch: 3D scanner. Web site.
Online | Gscholar
(36)
Pix4D (2022b)
Processing steps. Web site.
Online | Gscholar
(37)
Praschl C, Zwettler G (2022)
Three-step approach for localization, instance segmentation and multi-facet classification of individual logs in wooden piles. In: Proceedings of the “11th International Conference on Pattern Recognition Applications and Methods - ICPRAM 2022”. Online streaming, 3-5 Feb 2022, vol. 1, pp. 683-688.
CrossRef | Gscholar
(38)
RVR (2021)
Rahmenvereinbarung für den Rohholzhandel in Deutschland (RVR) [Framework agreement for the raw timber trade in Germany]. Deutscher Forstwirtschaftsrat e.V., Berlin, Germany, pp. 62. [in German]
Online | Gscholar
(39)
Spreafico A, Chiabrando F, Teppati Losè L, Giulio Tonolo F (2021)
The iPad Pro built-in LIDAR sensor: 3D rapid mapping tests and quality assessment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 43: 63-69.
CrossRef | Gscholar
(40)
Stängle SM, Dormann CF (2018)
Modelling the variation of bark thickness within and between European silver fir (Abies alba Mill.) trees in southwest Germany. Forestry 91: 283-294.
CrossRef | Gscholar
(41)
Stängle SM, Weiskittel AR, Dormann CF, Brüchert F (2016)
Measurement and prediction of bark thickness in Picea abies: assessment of accuracy, precision, and sample size requirements. Canadian Journal of Forest Research 46: 39-47.
CrossRef | Gscholar
(42)
Stapel B, Ide M (2021)
Innowacyjne metody pomiaru drewna w lesnicwie i przemysle drezwnym [Innovative timber measurement methods for the forestry and wood industry]. University of Life Sciences, Poznan, Poland, pp. 85.
Gscholar
(43)
Ayari T, Hallereau S (2022)
Apple iPad Pro Lidar Module. System plus consulting, web site.
Online | Gscholar
(44)
Tarasena S, Tsahkna A-G (2021)
Rozwiazanie zapewniajace przejrzysta i zrównowazona gospodarke lesna [A solution that ensures transparent and sustainable forest management]. In: Proceeding of the Conference “Innovative Timber Measurement Methods For the Forestry and Wood Industry”. Poznan (Poland), 17-19 Nov 2021. [in Polish]
Gscholar
(45)
Tech FS (2021)
Apple LIDAR demystified: SPAD, VCSEL, and Fusion… For Sensing/AIoT Tech and More - Medium, web site.
Online | Gscholar
(46)
Vogt M, Rips A, Emmelmann C (2021)
Comparison of iPad Pro®’s LiDAR and TrueDepth capabilities with an industrial 3D scanning solution. Technologies 9: 25.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info