Suitability of Fagus orientalis Lipsky at marginal Fagus sylvatica L. forest sites in Southern Germany
iForest - Biogeosciences and Forestry, Volume 15, Issue 5, Pages 417-423 (2022)
doi: https://doi.org/10.3832/ifor4077-015
Published: Oct 19, 2022 - Copyright © 2022 SISEF
Research Articles
Abstract
European beech (Fagus sylvatica L.) is the most important tree species in Central Europe and is considered to be relatively resistant to climate warming. However, dry summers in the last five years led to considerable damage in beech stands in Southern Germany (SG). Assisted migration of drought resistant beech provenances including those of Oriental beech (Fagus orientalis Lipsky) may help to stabilise Central European beech forests under climate change. The focus of this study is to compare the climatic ranges of F. sylvatica and F. orientalis using quantile distribution of climatic variables based on WorldClim data at forest sites within their natural distribution area. Temperature, precipitation, and aridity quantile ranges showed that F. orientalis is better adapted to warmer and drier climate compared to F. sylvatica. The quantile distribution method was applied to the whole range of the species to map the habitat suitability for both species at marginal sites in the target region (SG) in the current climatic scenario (1970-2000) and in a warmer scenario (+2°C) using the climate marginality index (CMI), i.e., the distance of sites to the xeric edge at low-latitude and low-altitude distribution limits for the species. To this purpose we applied the simple BIOCLIM algorithm using annual temperature and precipitation as climatic variables. According to our results, F. orientalis seems a promising species with a high potential for future afforestation activities in Southern Germany, especially at marginal sites of European beech forests. However, before introducing F. orientalis on a larger scale in the study area, further research on the species ecology and genetics are needed. For further application of the quantile range method, we produced tables of the vigintiles of the climatic range for both species, which can be used for estimating CMI based on WorldClim data in other regions.
Keywords
BIOCLIM, Climate Change, Climatic Marginality Index, Climatic Range, Ellenberg Quotient, Macroecology, Quantile Distribution, Species Distribution
Authors’ Info
Authors’ address
Muhidin Šeho 0000-0001-9926-4564
Bavarian Office for Forest Genetics / Bayerisches Amt für Waldgenetik, Forstamtsplatz 1, 83317 Teisendorf (Germany)
Corresponding author
Paper Info
Citation
Mellert KH, Šeho M (2022). Suitability of Fagus orientalis Lipsky at marginal Fagus sylvatica L. forest sites in Southern Germany. iForest 15: 417-423. - doi: 10.3832/ifor4077-015
Academic Editor
Maurizio Marchi
Paper history
Received: Feb 15, 2022
Accepted: Aug 08, 2022
First online: Oct 19, 2022
Publication Date: Oct 31, 2022
Publication Time: 2.40 months
Copyright Information
© SISEF - The Italian Society of Silviculture and Forest Ecology 2022
Open Access
This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Web Metrics
Breakdown by View Type
Article Usage
Total Article Views: 19767
(from publication date up to now)
Breakdown by View Type
HTML Page Views: 17517
Abstract Page Views: 1135
PDF Downloads: 938
Citation/Reference Downloads: 3
XML Downloads: 174
Web Metrics
Days since publication: 692
Overall contacts: 19767
Avg. contacts per week: 199.96
Citation Metrics
Article Citations
Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)
(No citations were found up to date. Please come back later)
Publication Metrics
by Dimensions ©
Articles citing this article
List of the papers citing this article based on CrossRef Cited-by.
References
Aridity conditions in the Iberian Peninsula during the XX century. International Journal of Education and Learning Systems 1: 52-58.
Gscholar
Karte der natürlichen Vegetation Europas. Maßstab 1: 2.500.000) [Map of the Natural Vegetation of Europe]. Landwirtschaftsverlag, Münster, Germany, pp. 655. [in German]
Gscholar
BIOCLIM - A bioclimate analysis and prediction system. Plant Protection Quarterly 6: 8-9.
Gscholar
Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Global Change Biology 25 (4): 1296-1314.
CrossRef | Gscholar
Forest vegetation in western Romania in relation to climate variables: does community composition reflect modelled tree species distribution? Annals of Forest Research 59 (2): 219-236.
CrossRef | Gscholar
Local characteristics of the standing genetic diversity of European beech with high within-region differentiation at the eastern part of the range. Canadian Journal of Forest Research 51 (12): 1791-1798.
CrossRef | Gscholar
Fagus sylvatica in Europe: distribution, habitat, usage and threats. In: “European Atlas of Forest Tree Species” (San-Miguel-Ayanz J, De Rigo D, Caudullo G, Houston Durrant T, Mauri A eds). Publication Office of the European Union, Luxembourg, pp. 94-95.
Online | Gscholar
EUFORGEN technical guidelines for genetic conservation and use of Oriental beech (Fagus orientalis). Bioversity International, Rome, Italy, pp. 6.
Gscholar
Climatic marginality: a new metric for the susceptibility of tree species to warming exemplified by Fagus sylvatica (L.) and Ellenberg’s quotient. European Journal of Forest Research 135 (1): 137-152.
CrossRef | Gscholar
Wo finden wir Alternativherkünfte der Buche für den Klimawandel? [Where can we find alternative sources of beech for climate change?]. Allgemeine Forstzeitung/Der Wald 24: 16-20. [in German]
Gscholar
Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution. European Journal of Forest Research 137 (1): 79-92.
CrossRef | Gscholar
Genetic signatures of divergent selection in European beech (Fagus sylvatica L.) are associated with the variation in temperature and precipitation across its distribution range. Molecular Ecology 30 (20): 5029-5047.
CrossRef | Gscholar
Forest tree species and their stands. SZN Publishing, Prague, Czech Republic, pp. 411.
Gscholar
EUFORGEN technical guidelines for genetic conservation and use for European beech (Fagus sylvatica). Bioversity International, Rome, Italy, pp. 6.
Gscholar
Current state of European beech (Fagus sylvatica L.) forests in Germany. Communicationes Instituti Forestalis Bohemicae 25: 113-121.
Gscholar
Nemoral deciduous forests under climatic extremes - Phytosociological studies along climatic gradients in SW Romania. Forest and sustainable development. Transilvania University Press, Brasov, Romania, pp. 139-148.
Gscholar