*
 

iForest - Biogeosciences and Forestry

*

Artificial intelligence associated with satellite data in predicting energy potential in the Brazilian savanna woodland area

João Victor Nobre Carrijo (1)   , Eder Pereira Miguel (1), Ailton Teixeira Do Vale (1), Eraldo Aparecido Trondoli Matricardi (1), Thiago Campos Monteiro (2), Alba Valéria Rezende (1), Jonas Inkotte (1)

iForest - Biogeosciences and Forestry, Volume 13, Issue 1, Pages 48-55 (2020)
doi: https://doi.org/10.3832/ifor3209-012
Published: Feb 05, 2020 - Copyright © 2020 SISEF

Research Articles


The use of artificial intelligence to generate information of the savanna’s energy capacity may support sustainable management of those areas. We assessed the efficacy of artificial neural networks (ANNs) combined with satellite data to estimate the energy potential (Pe) for cerradão, a dense savannah-like vegetation type in Brazil. We conducted a forest inventory for measuring dendrometric variables and sampling woody materials and barks in a cerradão area in the state of Tocantins, Brazil. The Pe of cerradão biomass was estimated based on the observed higher calorific power and drier biomass values. Six vegetation indices were retrieved from a RapidEye image and tested for correlation to choose the optimum vegetation index for biomass modeling. The basal area and the Normalized Difference Vegetation Index were used as predictors in the Pe modeling. We estimated an average of 19.234 ± 0.411 GJ ton-1 and 19.878 ± 1.090 GJ ton-1 for higher heating values of the wood species and barks, respectively, and an average Pe of 1022.660 GJ ha-1. The best ANN showed an error of 11.3% by using a structure of two, eight, and one neurons in the input layer, in the hidden layer, and in the output layer, respectively, as well as activation functions of the tangential and sigmoidal types. The validation tests showed no significant difference between the observed and ANN-predicted values. Based on our results, we concluded that Pe can be efficiently predicted by combining ANNs and remotely sensed data, which ultimately is a promising tool for forest sustainable management of the cerrado ecosystems.

  Keywords


Artificial Neural Networks, Cerrado, Higher Heating Value, Biomass, Modelling, Forestry

Authors’ address

(2)
Thiago Campos Monteiro
Department of Forestry and Forest Technology, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632 - Jardim Botnico, Curitiba, 80210-170 (Brazil)

Corresponding author

 
João Victor Nobre Carrijo
joao.ncarrijo@gmail.com

Citation

Carrijo JVN, Miguel EP, Teixeira Do Vale A, Matricardi EAT, Monteiro TC, Rezende AV, Inkotte J (2020). Artificial intelligence associated with satellite data in predicting energy potential in the Brazilian savanna woodland area. iForest 13: 48-55. - doi: 10.3832/ifor3209-012

Academic Editor

Carlotta Ferrara

Paper history

Received: Aug 05, 2019
Accepted: Nov 26, 2019

First online: Feb 05, 2020
Publication Date: Feb 29, 2020
Publication Time: 2.37 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 35835
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 30971
Abstract Page Views: 1977
PDF Downloads: 2362
Citation/Reference Downloads: 1
XML Downloads: 524

Web Metrics
Days since publication: 1704
Overall contacts: 35835
Avg. contacts per week: 147.21

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2020): 2
Average cites per year: 0.50

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014)
Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22 (6): 711-728.
CrossRef | Gscholar
(2)
Araújo ACC, Costa LJ, Braga PPC, Guimarães Neto RM, Rocha MFV, Trugilho PF (2018)
Propriedades energéticas da madeira e do carvão vegetal de Cenostigma macrophyllum: subsídios ao uso sustentável [Wood and charcoal energy properties of Cenostigma macrophyllum: subsidies to sustainable use]. Pesquisa Florestal Brasileira 38: 1-9. [in Portuguese]
CrossRef | Gscholar
(3)
Benítez FL, Anderson LO, Formaggio AR (2016)
Evaluation of geostatistical techniques to estimate the spatial distribution of aboveground biomass in the Amazon rainforest using high-resolution remote sensing data. Acta Amazonica 46: 151-160.
CrossRef | Gscholar
(4)
Braga AP, Carvalho APLF, Ludemir TB (2014)
Redes neurais artificiais: teoria e aplicações [Artificial neural network: theory and applications] (2nd edn). LTC, Rio de Janeiro, Brazil, pp. 226. [in Portuguese]
Gscholar
(5)
Brand MA, Muñiz GIB, Quirino WF, Brito JO (2011)
Storage as a tool to improve wood fuel quality. Biomass and Bioenergy 35: 2581-2588.
CrossRef | Gscholar
(6)
Corder SE (1976)
Properties and uses of bark as an energy source. Research Paper 31, Forest Research Laboratory, School of Forestry, Oregon State University, Corvallis, OR, USA, pp. 21.
Online | Gscholar
(7)
Dalponte M, Frizzera L, Orka HO, Gobakken T, Gianelle D (2018)
Predicting stem diameters and aboveground biomass of individual trees using remote sensing data. Ecological Indicators 85: 367-376.
CrossRef | Gscholar
(8)
Doat J (1977)
Le pouvoir calorifique des bois tropicaux [The calorific value of tropical woods]. Revue Bois et Forêts Tropicaux 172: 33-48. [in French]
Online | Gscholar
(9)
Draper NR, Smith H (1998)
Applied regression analysis (3rd edn). John Wiley and Sons, New York, USA, pp. 407.
Gscholar
(10)
Egrioglu E, Yolcu U, Aladag CH, Bas E (2015)
Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Processing Letters 41: 249-258.
CrossRef | Gscholar
(11)
ERDAS (2011)
ERDAS Imagine 2011. Hexagon Geospatial, Madison, AL, USA.
Gscholar
(12)
Estiati I, Freire FB, Freire JT, Aguado R, Olazar M (2016)
Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass. Fuel 180: 377-383.
CrossRef | Gscholar
(13)
Felfili JM, Rezende AV, Silva MCJ, Silva PEN, Walter BMT, Encinas JI, Silva MA (2007)
Fitossociologia da vegetação arbórea [Phytosociology of tree vegetation]. In: “Biogeografia do bioma Cerrado: vegetação e solos da Chapada dos Veadeiros” [Cerrado biome biogeography: vegetation and soils of Chapada dos Veadeiros] (Felfili JM, Rezende AV, da Silva Jr. MC eds). Editora Universidade de Brasília, Finatec, Brasília, Brazil, pp. 45-96. [in Portuguese]
Gscholar
(14)
Gitelson AA, Merzlyak MN (1994)
Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology 22: 247-252.
CrossRef | Gscholar
(15)
Gitelson AA, Gritz Y, Merzlyak MN (2003)
Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160: 271-282.
CrossRef | Gscholar
(16)
Górnicki K, Kaleta A, BryA, Winiczenko R (2016)
Thin-layer drying of sawdust mixture. Polish Journal of Chemical Technology 18: 65-70.
CrossRef | Gscholar
(17)
Gorunescu F, Belciug S (2016)
Boosting backpropagation algorithm by stimulus-sampling: application in computer-aided medical diagnosis. Journal of Biomedical Informatics 63: 74-81.
CrossRef | Gscholar
(18)
Groot A, Cortini F, Wulder MA (2015)
Crown-fibre attribute relationships for enhanced forest inventory: progress and prospects. The Forestry Chronicle 91: 266-279.
CrossRef | Gscholar
(19)
Guerrout EH, Ait-Aoudia S, Michelucci D, Mahiou R (2018)
Hidden Markov random field model and Broyden-Fletcher-Goldfarb-Shanno algorithm for brain image segmentation. Journal of Experimental and Theoretical Artificial Intelligence 30: 415-427.
CrossRef | Gscholar
(20)
Gujarati DN, Porter DC (2011)
Econometria básica [Basic econometrics] (5th edn). AMGH, New York, USA, pp. 924. [in Portuguese]
Gscholar
(21)
Haykin S (2001)
Redes neurais: princípios e prática [Neural networks: principles and practice] (2nd edn). Bookman, Porto Alegre, Brazil, pp. 900. [in Portuguese]
Gscholar
(22)
Huete A (1988)
A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25 (3): 295-309.
CrossRef | Gscholar
(23)
Husch B, Miller CL, Beers TW (1982)
Forest mensuration (3rd edn). John Wiley, New York, USA, pp. 402.
Gscholar
(24)
Jiang Z, Huete AR, Didan K, Miura T (2008)
Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 112: 3833-3845.
CrossRef | Gscholar
(25)
Klitzke RJ, Savioli DL, Muñiz GIB, Batista DC (2008)
Caracterização dos lenhos de cerne, alburno e transição de jatobá (Hymenaea sp.) visando ao agrupamento para fins de secagem convencional [Characterization of heartwood, sapwood and transition wood of jatoba wood (Hymenaea sp.) aiming at its grouping in conventional kiln drying]. Scientia Forestalis 36: 279-284. [in Portuguese]
Gscholar
(26)
Lima AS, Santos KPP, Castro AAJF (2016)
Aspectos socioambientais da produção de carvão vegetal de origem nativa em uma área de cerrado em Jerumenha, Piauí/Brasil [Social and environmental aspects of the charcoal production of native origin in an area of savannah in Jerumenha, Piauí, Brazil]. Espacios 37: 18. [in Portuguese]
Gscholar
(27)
López L, Villalba R, Bravo F (2013)
Cumulative diameter growth and biological rotation age for seven tree species in the Cerrado biogeographical province of Bolivia. Forest Ecology and Management 292: 49-55.
CrossRef | Gscholar
(28)
Machado IES, Santos MM, Giongo M, Carvalho EV, Ganassoli Neto E (2017)
Modelos para estimativa de variáveis florestais com a utilização de imagens multiespectrais [Models of forest variables estimation using multispectral images]. Pesquisa Florestal Brasileira 37: 171-181. [in Portuguese]
CrossRef | Gscholar
(29)
Machado Neto AP, Brandão CFLS, Duarte B, Almir J, Marangon LC, Feliciano ALP (2015)
Densidade e poder calorífico como base para prevenção de incêndios florestais sob linhas de transmissão [Density and calorific power as a basis for forest fires prevention under transmission lines]. Nativa 3: 10-15. [in Portuguese]
CrossRef | Gscholar
(30)
Miguel EP, Rezende AV, Leal FA, Matricardi EAT, Vale AT, Pereira RS (2015)
Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite [Artificial neural network for modeling wood volume and aboveground biomass of tall Cerrado using satellite data]. Pesquisa Agropecuaria Brasileira 50: 829-839. [in Portuguese]
CrossRef | Gscholar
(31)
Miguel EP, Rezende AV, Leal FA, Pereira RS, Melo RR (2016)
Floristic-structural characterization and successional group of tree species in the Cerrado biome of Tocantins state, Brazil. Revista Caatinga 29: 393-404.
CrossRef | Gscholar
(32)
Miguel EP, Rezende AV, Pereira RS, De Azevedo GB, Mota FCM, De Souza AN, Joaquim MS (2017)
Modeling and prediction of volume and aereal biomass of the tree vegetation in a Cerradão area of central Brazil. Interciencia 42: 21-27.
Online | Gscholar
(33)
Oliveira GMV, Mello JM, Scalon JD, Scolforo JRS, Monteiro TC (2018)
Amostragem de discos e uso de equações para estimar a densidade básica da madeira em diversas fitofisionomias [Disc sampling and use of equations for estimate the basic wood density in several phytophysiognomies]. Ciência Florestal 28: 1615-1626. [in Portuguese]
CrossRef | Gscholar
(34)
Ozsahin S, Murat M (2018)
Prediction of equilibrium moisture content and specific gravity of heat treated wood by artificial neural networks. European Journal of Wood and Wood Products 76: 563-572.
CrossRef | Gscholar
(35)
Padolfi AS, Ramaldes GP, Dos Santos OL (2018)
Análise de índice de vegetação através de imagens obtidas por VANT [Vegetation index analysis through UAV obtained images]. Revista Científica da FAESA 14: 145-165. [in Portuguese]
CrossRef | Gscholar
(36)
Pakeman RJ, Quested HM (2007)
Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science 10: 91-96.
CrossRef | Gscholar
(37)
Protásio TP, Trugilho PF, De Siqueira HF, De Melo ICNA, Andrade CR, Guimarães JBJ (2015)
Caracterização energética de pellets in natura e torrificados produzidos com madeira residual de Pinus [Energy characterization of fresh and torrified pellets produced from Pinus waste wood]. Pesquisa Florestal Brasileira 35: 435. [in Portuguese]
CrossRef | Gscholar
(38)
Quirino WF, Do Vale AT, De Andrade APA, Abreu VLS, Azevedo ACS (2004)
Poder calorífico da madeira e de resíduos lignocelulósicos [Calorific value of wood and wood residues]. Biomassa & Energia 1: 173-182. [in Portuguese]
Gscholar
(39)
Rouse JW, Haas RH, Schell JA, Deering DW (1974)
Monitoring vegetation systems in the great plains with ERTS. In: Proceedings of “3rd ERTS-1 Symposium”. Washington (DC, USA) Dec 1973. NASA, Washington, DC, USA, pp. 309-317.
Online | Gscholar
(40)
RStudio (2016)
RStudio: integrated development for R 1.0.143. RStudio Inc., Boston, MA, USA.
Online | Gscholar
(41)
Serpen G, Gao Z (2014)
Complexity analysis of multilayer perceptron neural network embedded into a wireless sensor network. Procedia Computer Science 36: 192-197.
CrossRef | Gscholar
(42)
Silva CJ (2014)
Densidade básica e potencial energético de espécies lenhosas do Cerrado do estado de Tocantins [Basic density and energy potential of woody species of the Cerrado of Tocantins state]. Doctoral thesis, Forestry Department, Universidade de Brasília, Brasília, Brazil, pp. 66. [in Portuguese]
Gscholar
(43)
Silva CJ, Vale AT (2018)
Energy density model for forest species from cerrado. Revista Caatinga 31: 396-404.
CrossRef | Gscholar
(44)
Silva JPM, Cabacinha CD, Assis AL, Monteiro TC, Araújo Júnior CA, Maia RD (2018)
Redes neurais artificiais para estimar a densidade básica de madeiras do cerrado [Artificial neural network to estimate the basic density of cerrado wood]. Pesquisa Florestal Brasileira 38: 1-10. [in Portuguese]
CrossRef | Gscholar
(45)
Solórzano A, Pinto JR, Felfili JM, Hay JD (2012)
Perfil florístico e estrutural do componente lenhoso em seis áreas de cerradão ao longo do bioma Cerrado [Structural and floristic profile of the woody component of six cerradão areas]. Acta Botanica Brasilica 26: 328-341. [in Portuguese]
CrossRef | Gscholar
(46)
Statsoft Inc. (2007)
Statistica (data analysis software system) release 7. Statsoft Inc., Tulsa, OK, USA.
Online | Gscholar
(47)
Strandberg M, Olofsson I, Pommer L, Wiklund-Lindström S, Aberg K, Nordin A (2015)
Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Processing Technology 134: 387-398.
CrossRef | Gscholar
(48)
Telmo C, Lousada J (2011)
The explained variation by lignin and extractive contents on higher heating value of wood. Biomass and Bioenergy 35: 1663-1667.
CrossRef | Gscholar
(49)
Tiryaki S, Bardak S, Aydin A, Nemli G (2016)
Analysis of volumetric swelling and shrinkage of heat treated woods: experimental and artificial neural network modeling approach. Maderas. Ciencia y Tecnología 18: 477-492.
CrossRef | Gscholar
(50)
Vacchiano G, Berreti R, Motta R, Mondino EB (2018)
Assessing the availability of forest biomass for bioenergy by publicly available satellite imagery. iForest 11: 459-468.
CrossRef | Gscholar
(51)
Vale AT, Brasil MAM, Leão AL (2002)
Quantificação e caracterização energética da madeira e casca de espécies do cerrado [Energetic quantification and caracterization of wood and bark of species of cerrado]. Ciência Florestal 12 (1): 71-80. [in Portuguese]
CrossRef | Gscholar
(52)
Vale AT, Miguel EP, Moreira ACO, Lima CM, Orellana BBMA, Fortes MM, Machado MPO, Gonçalez JC, Martins IS (2017)
Artificial neural networks in predicting energy density of Bambusa vulgaris in Brazil. African Journal of Agricultural Research 12: 856-862.
CrossRef | Gscholar
(53)
Vendruscolo DGS, Drescher R, Souza HS, Moura JPVM, Mamoré FMD, Siqueira TAS (2015)
Estimativa da altura de eucalipto por meio de regressão não linear e redes neurais artificiais [Eucalyptus height estimation by nonlinear regression and artificial neural networks]. Revista Brasileira de Biometria 33: 556-569. [in Portuguese]
CrossRef | Gscholar
(54)
Vicente-Serrano SM, Camarero JJ, Olano JM, Martín-Hernández N, Peña-Gallardo M, Tomás-Burguera M, Gazol A, Azorin-Molina C, Bhuyan U, El Kenawy A (2016)
Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment 187: 14-29.
CrossRef | Gscholar
(55)
Yildiz G, Ronsse F, Venderbosch R, Van Duren R, Kersten SRA, Prins W (2015)
Effect of biomass ash in catalytic fast pyrolysis of pine wood. Applied Catalysis B: Environmental 168: 203-211.
CrossRef | Gscholar
(56)
Zhu X, Liu D (2015)
Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing 102: 222-231.
CrossRef | Gscholar
(57)
Zobel BJ, Jett JB (1995)
Genetics of wood production. Springer-Verlag, Berlin, Germany, pp. 337.
Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info