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Artificial intelligence associated with satellite data in predicting energy 
potential in the Brazilian savanna woodland area
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The use of artificial intelligence to generate information of the savanna’s en-
ergy  capacity  may support  sustainable  management  of those  areas.  We as-
sessed the efficacy of artificial neural networks (ANNs) combined with satellite
data to estimate the energy potential (Pe) for cerradão, a dense savannah-like
vegetation type in Brazil. We conducted a forest inventory for measuring den-
drometric variables and sampling woody materials  and barks in a  cerradão
area in the state of Tocantins, Brazil. The  Pe of  cerradão  biomass was esti-
mated based on the observed higher calorific power and drier biomass values.
Six vegetation indices were retrieved from a RapidEye image and tested for
correlation to choose the optimum vegetation index for biomass modeling. The
basal area and the Normalized Difference Vegetation Index were used as pre-
dictors in the  Pe modeling. We estimated an average of 19.234 ± 0.411 GJ
ton-1 and 19.878 ± 1.090 GJ ton-1 for higher heating values of the wood species
and barks, respectively, and an average Pe of 1022.660 GJ ha-1. The best ANN
showed an error of 11.3% by using a structure of two, eight, and one neurons
in the input layer, in the hidden layer, and in the output layer, respectively, as
well as activation functions of the tangential and sigmoidal types. The valida-
tion tests showed no significant difference between the observed and ANN-
predicted values.  Based on our results,  we concluded that  Pe can be effi-
ciently predicted by combining ANNs and remotely sensed data, which ulti-
mately is a promising tool for forest sustainable management of the  cerrado
ecosystems.
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Introduction
The  Brazilian  savanna  (locally  known  as

Cerrado)  encompasses  approximately  24%
of  Brazilian  territory.  It  is  the  second
largest biome in South America, and is rec-
ognized  as  the  savanna  with  the  highest
species-diversity on the planet. Its vegeta-
tion is characterized by a mosaic of differ-
ent  physiognomies:  savannas,  fields,  and
forests,  which include the savanna wood-
lands (also known as  cerradão – Miguel et
al. 2016).

Cerradão has a complex physiognomy and
presents  species  from  other  formations
and physiognomies  of  the  Cerrado,  being

highly associated with regions of  interflu-
vial flat areas (Solórzano et al. 2012). It is a
great challenge to acquire dendrometric in-
formation  in  Cerradão region  due  to  its
complexity  and  heterogeneity  of  vegeta-
tional  structure;  indeed,  data  collection
aimed to assess productive aspects of the
Cerrado is a time and money consuming ac-
tivity,  making  this  research  topic  rather
scarce in the literature (Miguel et al. 2017).

The Cerrado vegetation has an important
timber  potential  to  provide  raw  material
for  both  sawmills  and  energy  purposes
(López et al. 2013, Lima et al. 2016). Several
studies  have  emphasized  the  productive

potential of forest areas commonly focus-
ing on the estimation of above-ground bio-
mass and stored wood volume (Miguel et
al. 2015, Benítez et al. 2016, Dalponte et al.
2018); however, more research efforts are
required to assess the energy potential of
those areas for economic and environmen-
tal purposes.

Energy density represents the amount of
energy to be released after the complete
combustion of a given volume of biomass
fuel (Protásio et al. 2015). It is a very impor-
tant parameter in species selection for en-
ergy production, since it is directly related
to the higher heating value  – a mostly im-
portant variable for wood selection (Araújo
et al. 2018). Additionally, energy density is
an  indicator  of  energy  potential  (Pe)  per
area unit.

Wood and energy production data are es-
sential  for improving sustainable manage-
ment  and conservation  policies  and  plan-
ning in the Cerrado region. This information
may be used, for example, in the definition
of conservation areas like legal reserves by
determining poorly  productive areas  with
relevant  environmental  and  conservative
values. However, to ensure the implemen-
tation and improvement of such practices,
accurate estimates of productive and ener-
getic  potential  are  needed  (López  et  al.
2013).
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Remotely sensed data and geoprocessing
techniques have been used to provide in-
formation  of  land  use  and  land  cover
changes with good accuracy that may de-
crease time and financial costs of data col-
lection in tropical  regions.  More recently,
the advances in remote sensing and geo-
processing  technology  allowed  to  better
characterize  forest  structure,  biomass,
stored carbon, and other variables (Groot
et al. 2015). Several studies using remotely
sensed data showed satisfactory results in
the  indirect  estimation  of  the  above-
ground biomass in several types of forest
(Miguel  et  al.  2015,  Benítez  et  al.  2016,
Dalponte et al. 2018).

Associating remote sensing data with ar-
tificial  neural networks (ANNs) may result
in increasing the predictive power and cor-
recting the estimation errors of these tech-
niques. The ANNs can be defined as paral-
lel  distributed  processors  composed  of
simple  processing  units,  which  present  a
natural capacity of learning and storing ex-
perimental  knowledge,  thus  making  their
model  simulation  similar  to  the  human
brain (Haykin 2001).

The use of ANNs to predict above-ground
biomass has shown a higher accuracy com-
pared to the traditional regression models
(Miguel et al. 2015). Studies using remotely
sensed data and artificial intelligence tools
such as ANNs to predict energy density in
tropical regions are fairly uncommon. This
study intended to assess the efficiency of

ANNs associated with remote sensing data
in estimating the timber  energy potential
for  a  Cerradão in  the  central  region  of
Brazil.

Materials and methods

Study area
This study was based on a dataset from a

forest  inventory  conducted  in  2012  in  a
study site of 10.15 hectares of cerradão (sa-
vanna  wood  land)  located  within  the  La-
jeado State Park in the state of Tocantins,
Brazil (Fig. 1).

According  to  Köppen  classification,  the
study region is characterized by the Aw cli-
mate type (Alvares et al. 2014), with a wet
season  of  an  average  monthly  rainfall  of
250 mm between December and February,
and a dry  season between May and Sep-
tember. The dryer peak period occurs be-
tween June and August.  The study site is
characterized  predominantly  by  deep  or
very  deep  alic  dystrophic  Dark-Red  Lato-
sols,  with  the presence of  horizons  A,  B,
and C. The vegetation is composed by 82
tree species of 34 different families.

Data collection
The  forest  inventory  was  carried  out  in

eight transects of 20 m width and variable
lengths. The transects were spaced 60 m
each other. Each transect was subdivided
into sample plots of 20 × 20 m (400 m²) di-
mensions. A total of fifty-four sample plots

were measured in a sampled area of  2.16
ha.

All  living and dead standing trees show-
ing diameters at breast height (DBH) equal
to or greater than 5 cm were identified and
their DBH and total height (Ht) were mea-
sured within each sample plot. The DBH of
each tree was measured using a diameter
caliper – these measure and tool were cho-
sen due to their accuracy considering the
windingness of trees’ stems –, while the Ht
was measured using a telescopic ruler of 15
m.  The  heights  of  trees  taller  than  15  m
height  were  eye-estimated  by  an  experi-
enced  forester  and  the  DBH  were  esti-
mated based on a mean value of two per-
pendicular  DBH  measures.  Trees  showing
trunk  bifurcations  below  the  DBH  height
were separately measured for  the diame-
ter, height, and cross-sectional area.

Wood sampling
A total of 80 individual trees belonging to

34 of the 82 identified tree species in the
study area were cut down and used in the
lab tests. The reduced number of species in
the  sampled  transects  was  due  to  their
sparse distribution and to the environmen-
tal law that prohibits cutting individuals of
protected tree species. The number of indi-
viduals of each tree species to be cut was
estimated based  on  the  forest  inventory.
Approximately  3%  of  trees  showing  DBH
greater than 5 cm and at least one sampled
individual  of  each  tree  species  were  cut
down and used in the lab tests under a le-
gal  permit  issued  by  the  Environmental
Agency of  the State  of  Tocantins  (NATU-
RATINS). The DBH of cut trees varied from
5.3 cm to 49 cm.

Three 5-cm thick, disk-shaped samples of
each cut tree were collected from different
longitudinal positions of each trunk (base,
middle  and  top),  as  previously  described
(Oliveira  et  al.  2018),  to  better  represent
wood  properties.  Additionally,  different
branch diameters (thick branch: diameter >
10 cm; medium branch: diameter 3-10 cm;
thin branch: diameter < 3 cm) were sepa-
rated from the bark portion and individu-
ally analyzed in the lab.

The  34  tree  species  that  were  sampled
(cut down) in the field represented approx-
imately 95% of the total individuals sampled
in the forest inventory, which was consid-
ered a significant sample size reflecting the
quantitative characteristic of the tree com-
munity  (Pakeman  &  Quested  2007).  It  is
worth to point out that those tree species
represent approximately 83% of the Impor-
tance Value Index (IVI) in the study area.

Higher heating value
The  Higher  Heating  Value  (HHV)  of  the

bark of each tree species sampled was esti-
mated according to the Brazilian regulation
NBR  8633.  The  bark  samples  were
chopped, ground, and then classified using
60  mesh  sieves,  and  the  retained  frag-
ments were used for composite sampling
of each tree species. Those composite sam-
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Fig. 1 - Study area location and layout.
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ples were dried out in an oven of air circu-
lation at 103 ± 2 °C until reaching constant
mass values, and subsequently used as fuel
in an adiabatic calorimeter. The wood HHV
has been reported by a previous study (Sil-
va 2014) conducted in our study area by ap-
plying the same methodology used in this
analysis.

Biomass and energy potential
The dry biomass values of wood and bark

were estimated for each individual tree us-
ing the model of Schumacher & Hall, which
was adjusted and validated as described by
Miguel et al.  (2017 – Tab. 1). The adjusted
equation refer to each total  tree biomass
using  the  average  percentage  of  wood
biomass (71.7%) and bark biomass (21.0%) as
estimated by  Miguel  et al.  (2017) for indi-
vidual trees from the Cerrado.

The  energy  potential  (Pe)  of  wood  and
bark of each sampled tree was separately
estimated by the eqn. 1, which is based on
the  HHV  observed  in  the  laboratory  for
each individual species (eqn. 1):

(1)

where  Pe is the energetic potential of the
individual’s wood or bark (GJ); HHV is the
higher heating value of the wood or bark
of  the  species  (kcal  kg-1);  Bm  is  the  dry
biomass  at  0%  moisture of  wood or  bark
for each tree (kg); and 238,845.9 is a con-
version constant from kcal to GJ.  For the
dead and non-sampled individual trees, the
mean value of HHV observed in the lab test
was properly considered. The total energy
potential  of  each trees was estimated by
adding the wood Pe and bark Pe.

The  Pe per hectare was estimated based
on the results of each sample plot, as the
sum of individual Pe of each tree observed
in  the  plot,  properly  extrapolated  to  a
hectare (eqn. 2):

(2)

where  Pei is  the energy potential  per unit
area of sample plot i (GJ ha-1); Peji is the en-
ergy potential of tree  j observed in a sam-
ple plot i (GJ).

Remote sensing data
A RapidEye image acquired in 2012 cover-

ing the study area was geometrically  and
atmospherically  corrected.  Subsequently,
six  vegetation  indices  were  derived  from
the  corrected  image  using  the  ERDAS
Imagine 2011 software (ERDAS 2011), which
allowed to estimate an average vegetation
index value  for  each sample plot  used in
this analysis. The RapidEye image was cho-
sen based on its high spatial resolution (5
m) and spectral resolution, which features
a red edge band in addition to visible and
near infrared bands. Located between the
red and near-infrared ranges (690-730 nm),
the red edge band enhances RapidEye’s ca-
pabilities  for  vegetation  aspects  assess-
ment (Benítez et al. 2016).

We applied  the  following  vegetation in-
dices in this study: (i) NDVI, the normalized
difference  vegetation  index (Rouse  et  al.
1974 – eqn. 3); (ii) NDRE, the red edge in-
dex of normalized difference, which is con-
sidered a NDVI variation for red edge band
inclusion that increases sensitivity to chlo-
rophyll  (Gitelson  & Merzlyak  1994 – eqn.
4);  (iii)  CIGREEN,  the  chlorophyll  index  with
the GREEN band, which shows high corre-
lation with the chlorophyll content and leaf
area index (Gitelson et al. 2003 – eqn. 5);
(iv) CIRED EDGE, the red edge index of chloro-
phyll, CIGREEN variation for red edge band in-
clusion (Gitelson et al.  2003 – eqn. 6);  (v)
Savi,  soil-adjusted  vegetation  index,  used
to correct the influence of soil exposed to
vegetation (Huete 1988 – eqn. 7); and (vi)
EVI2,  a  modified  vegetation  index  devel-
oped  as  an  improvement  for  NDVI  in  its
sensitivity to photosynthetic activity (Jiang
et al. 2008 – eqn. 8):

(3)

(4)

(5)

(6)

(7)

(8)

where NIR is the reflectance in the near in-
frared  band,  RED  is  the  red  band  re-
flectance, RED EDGE is the reflectance of
the  red  edge  band,  GREEN  is  the  re-
flectance in the green band, L is the soil ad-
justment constant (0.5), 2.5 is the gain fac-
tor, while 2.4 and 1 are constants.

Modeling: independent variable 
selection

The energy potential prediction was con-
ducted  by  using  two  independent  vari-
ables: (i) the basal area (G – eqn. 9), as it is
ease to be measured in the field and shows
high correlation with biomass, tree growth
and local production (Husch et al. 1982); (ii)
the  vegetation  index  retrieved  from  re-
motely  sensed data.  The  selection of  the

optimum vegetation index was conducted
by  applying  a  correlation  analysis  among
the  six  estimated  vegetation  indices  and
the Pe. Such analysis was preceded by the
Shapiro-Wilk  normality  test,  which  indi-
cated the correlation method to be subse-
quently used (parametric or non-paramet-
ric). 

The basal area Gi of plot i (m2) was calcu-
lated as (eqn. 9):

(9)

where gij is  the sectional area of  tree  j in
plot i (m2), obtained as follows (eqn. 10):

(10)

where π is  the constant equal to 3.14159,
DBH (cm) is the diameter at breast height
(1.30 m above the ground), and 40.000 is a
constant.

The statistical analysis was carried out us-
ing the software RStudio ver. 1.0.143 (RStu-
dio 2016). 

Modeling: training of neural networks
To select the input and output variables

for the network,  we applied a supervised
training of one thousand neural networks
using the Intelligent Problem Solver  (IPS)
tool available in the software package Sta-
tistica® ver. 7.0 (Statsoft Inc. 2007). The top
five networks were retained at the end of
processing.  This  tool  allows  for  the  opti-
mization of the ANN architecture by defin-
ing the best number of neurons in the hid-
den layer and the best activation functions
of the hidden and output layers (Vale et al.
2017).

We  used  the  quasi-Newton  algorithm
developed  by  Broyden-Fletcher-Goldfarb-
Shanno for processing the neural networks
in the IPS (BFGS), which has great resolu-
tion power for optimization problems and
predictions and is the most popular quasi-
Newton method (Guerrout et al. 2018).

The  trained  networks  use  a  Multilayer
Perceptron (MLP) architecture with an in-
put layer consisting of two neurons (G and
VI), a hidden layer consisting of n neurons,
and an output layer consisting of one neu-
ron, the energy potential (Pe). A multilayer
network was used because of its non-linear
characteristics, and because it is more suit-
able  for  the  resolution  of  real  problems
and  situations  when  compared  to  single
layer  networks  with  linear  characteristics
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Tab. 1 - Models for determination of dry biomass (Miguel et al. 2017). (Bmw): wood dry
biomass; (Bmb): bark dry biomass; (DBH): diameter at breast height; (Ht): total height;
(0.717): constant referring to the average percentage of wood biomass in a Cerrado
tree; (0.210): constant referring to the average percentage of bark biomass in a Cer-
rado tree.

Model Equation

Schumacher & Hall - Wood Bmw = 0.0123307·DBH1.79593 · Ht1.54701 · 0.717

Schumacher & Hall - Bark Bmb = 0.0123307·DBH1.79593 · Ht1.54701 · 0.210
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Pe=
HHV⋅Bm
238,845.9

Pe i=∑ Pe ji

NDVI=
(NIR−RED)

(NIR+RED)

NDRE=
(NIR−REDEDGE )

(NIR+RED EDGE )

CI GREEN=
NIR

GREEN
−1

CI RED EDGE=
NIR

REDEDGE
−1

Savi=
(1+L)⋅(NIR−RED)

NIR+RED+L

EVI 2=
2.5⋅(NIR−RED )

(NIR+2.4⋅RED+1)

G i=∑ g ji

g=
π⋅DBH 2

40.000
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(Braga et al. 2014).
The  neuron is  the  fundamental  element

of the ANN structure and is responsible for
processing data and information when re-
ceiving input values (G and VI) until the re-
sult of interest (Pe) is achieved. The func-
tionality  of  the  neurons  of  ANNs  is  esti-
mated  by  combining  and  reproducing  in-
formation  based  on  the  connections  be-
tween the n possible inputs xn and the out-
put  y.  For  each input a  weight  wn is  de-
fined, which represents the brain synapses
and the  MLP networks  store the  learned
knowledge  (Gorunescu  &  Belciug  2016).
The artificial neuron is mathematically giv-
en by (eqn. 11):

(11)

where Yk is the output of the neuron, φ is
the activation function, and Vk is the linear
combinator  of  the output,  given by (eqn.
12):

(12)

where Vk is the linear combiner, xm is the in-
put m, and wm is the m-synaptic weight.

Statistical analysis
The  ANN  training  was  conducted  using

data from 40 out of 54 randomly selected
sample plots, corresponding to 75% of the
total  plots.  The  remaining plots  were ex-
cluded from the training dataset and used
later  to  validate  the  results,  being  these

sample plots within the range of 10% to 30%
of  the  total,  as  suggested  by  Gujarati  &
Porter (2011). The estimated quality of the
trained  neural  networks  was  statistically
analyzed  by  using  the  following  criteria:
correlation between the predicted and ob-
served values (R); graphical residue analy-
sis (Draper & Smith 1998); and standard er-
ror of the estimate in percentage (RMSE%),
calculated as (eqn. 13):

(13)

where  Ȳ is the mean of the observed val-
ues of ρe, Yi is the observed value of ρe in
plot i, and Ŷi is the estimated value of ρe by
ANN for plot i.

Finally, the ANN that showed the best re-
sults was submitted to the validation proc-
ess using the  t-test and, subsequently, an
aggregate difference in percentage (AD%),
a statistical value used as indicator of un-
der- or overestimation (Miguel et al. 2015,
Vale et al. 2017). These analyses were con-
ducted using the software Microsoft Excel
2013® (Microsoft  Corp.,  Redmond,  CA,
USA).

Results

Higher heating value
Based  on the  tree  species  sampled  and

measured in our study area, we estimated
that the HHV of the woody material (tree
stem and branches) is  between 18.282 GJ

ton-1 and 20.121 GJ ton-1, with an average of
19.234  GJ ton-1.  The  tree  species  showing
the  highest  HHV  were  Pouteria  ramiflora
(20.121  GJ  ton-1),  Tachigali  vulgaris  (20.105
GJ ton-1),  and  Mezilaurus itauba (19.923 GJ
ton-1), while those having the lowest values
were  Parkia platycephala (18.282 GJ ton-1),
Bowdichia virgilioides (18.434 GJ   ton-1), and
Connarus perrottetti (18.478 GJ ton-1 – Silva
2014).

The  estimated  HHVs  for  the  tree’s  bark
were between 16.805 GJ ton-1 and 21.587 GJ
ton-1,  with  an  average of  19.878  GJ  ton-1.
The tree species showing the highest HHV
values  were  Bowdichia  virgilioides (21.587
GJ  ton-1),  Xylopia  aromatica (21.290  GJ
ton-1),  and  Connarus  suberosus (21.232  GJ
ton-1), while those having the lowest values
were Miconia albicans (16.805 GJ ton-1),  Mi-
conia cuspidata (16.857 GJ ton-1),  and  Qua-
lea parviflora (17.997 GJ ton-1).

Energy potential
The estimated energy potential  per area

unit  of  the  cerradão (a forest-like vegeta-
tion type) were in the range of 391.39 GJ
ha-1 and 2719.18 GJ ha-1, and the average en-
ergy density per hectare estimated for the
studied area was 1022.66 GJ ha-1  ± 560.89
GJ ha-1.

Modeling: selection of independent 
variables

The Shapiro-Wilk test showed significant
departures from normality for the indepen-
dent variables and, consequently, we calcu-
lated the non-parametric  Spearman’s  cor-
relation (Tab. 2). The results indicated that
pairwise correlation coefficients among all
vegetation indices (VIs) are moderate and
fairly similar, while basal area (G) was high-
ly correlated (ρ > 0.8) with the variable of
interest (Pe).  Despite the high similarity of
correlation coefficients among the VIs, the
NDVI showed the highest correlation (ρ =
0.5987) and, therefore, it was selected as
the optimum VI to be used as predictor in
the  network  training.  The  NDVI  is  widely
applied and used in studies on forest envi-
ronment. Notably, the lack of normality in
the data did not hinder the modeling, since
the ANN does not require assumptions on
normality, linearity, and homoscedasticity,
in  contrast  to  more  conventional  regres-
sion models (Egrioglu et al. 2015).

Modeling: training of neural networks
The  five  best  performing  networks

among the 1000 trained ANNs showed sat-
isfactory  adjustment  and  accuracy  statis-
tics,  correlation  coefficient  (R)  greater
than 0.95,  and errors of  estimates  below
15%. However, based on the RMSE% and R
values (Tab. 3),  the neural network 3 had
the best predictive capacity.

The selected network showed an accept-
able residue distribution pattern (Fig. 2A),
accurate predictions of the variable of in-
terest  (Fig.  2B) and,  according to the his-
togram of error classes, it had the largest
concentration  of  residues  in  the  central
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Tab.  2 -  Spearman’s  correlation  matrix  among  the  studied  variables.  (Pe):  energy
potential per area unit (GJ ha-1); (G): basal area (m2); (NDVI): normalized difference
vegetation index; (NDRE): red edge normalized difference vegetation index; (CIgreen):
clorophyll  index;  (CIred  edge):  red  edge clorophyll  index;  (Savi):  vegetation index ad-
justed to soil; (EVI2): enhanced vegetation index; (*): p<0.05; (**): p<0.01

Variable Pe G NDVI NDRE CIgreen CIred edge SAVI EVI2
Pe (GJ ha-1) 1 - - - - - - -

G (m²) 0.8709** 1 - - - - - -

NDVI 0.5987** 0.3269* 1 - - - - -

NDRE 0.5767** 0.2977* 0.9852** 1 - - - -

CIgreen 0.5922** 0.3160* 0.9893** 0.9813** 1 - - -

CIred edge 0.5788** 0.2996* 0.9854** 0.9998** 0.9812** 1 - -

SAVI 0.5979** 0.3390* 0.9908** 0.9719** 0.9921** 0.9724** 1 -

EVI2 0.5979** 0.3390* 0.9908** 0.9719** 0.9921** 0.9724** 1.0000** 1

Tab.  3 -  Characteristics  and precision analysis  of  trained artificial  neural  networks.
(ANN): artificial  neural network; (MLP): Multilayer Perceptron; (Hidden Activation):
hidden layer activation function; (Output Activation): output layer activation function;
(RMSE): Root-Mean-Square Error; (R): correlation coefficient between observed and
predicted values.

ANN Architecture No.
of cycles

Hidden
Activation

Output
Activation

RMSE
(GJ ha-1)

RMSE% R

1 MLP 2-8-1 583 Sigmoidal Sine 147.91 14.24 0.96

2 MLP 2-7-1 272 Tangent Sigmoidal 125.96 12.12 0.97

3 MLP 2-8-1 330 Tangent Sigmoidal 117.05 11.27 0.98

4 MLP 2-9-1 267 Sigmoidal Sigmoidal 141.60 13.63 0.97

5 MLP 2-8-1 10000 Exponential Exponential 142.54 13.72 0.97
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classes of  the graph,  which indicates  low
(<20%)  under-  or  overestimation  errors
(Fig. 2C). We observed that eight neurons
in the hidden layer were activated by a tan-
gent function, whereas the output layer is
activated by a sigmoidal function (Fig. 3).
Both the above functions have similar be-
havior, being suitable for biological studies
and widely used in ANNs (Haykin 2001, Ven-
druscolo et al. 2015).

Statistical analysis
Based  on  the  Student’s  t-test  (t Stat  =

-0.358;  t Critical two-tails = 2.160), we esti-
mated a p-value far greater than 0.05 (p =
0.726) for the selected network, which in-
dicates that there were no statistically sig-
nificant differences between the predicted
values by the neural network and the ob-
served  values  from  the  forest  inventory
(validation plots).  Additionally,  the aggre-
gate  difference  showed  a  slight  overesti-
mation (AD% = -4.63%), which indicates that
the  neural  network  training  had  a  good
predicting precision.

Discussion

Higher heating value and energy 
potential

The  forest  biomass  HHV  of  the  present
study (Silva 2014) was between 18.282 GJ
ton-1 and 20.121 GJ ton-1, as corroborated by
Quirino et al. (2004), which estimated HHV
between 16.040 GJ ton-1 and 22.291 GJ ton-1,
with an average of 19.812 GJ ton -1 in a study
conducted  with  approximately  200  tree
species.  In  addition,  studies  conducted in
specific formations of other forest types in
the  Cerrado reported  HHVs  ranging  from
18.807 GJ ton-1 to 22.713 GJ ton-1 (Vale et al.
2002,  Machado Neto et al.  2015). Tropical
forests  in  countries  such  as  Ecuador,  Su-
riname,  Cameroon,  Côte  d’Ivoire,  Gabon,
and  Indonesia  showed  HHVs  between
18.045  GJ  ton-1 and  21.646  GJ  ton-1 (Doat
1977).  Finally,  European  tree  species
showed HHVs ranging between 18.290 GJ
ton-1 and 20.370 GJ ton-1 (Strandberg et al.
2015, Yildiz et al. 2015). Therefore, the aver-
age HHV of wood for forest species is ap-
proximately 19.00 GJ ton-1 ± 4.00 GJ ton-1.

It is known that there is a low significant
variation in HHV among forest species (Ma-
chado Neto et al. 2015), which suggests a
small  confidence  interval,  as  observed  in

the above-mentioned studies. Accordingly,
we  use  the  mean  values  of  HHV  (both
wood and bark) for non-sampled tree spe-
cies and dead trees (Pakeman & Quested
2007).

The variation in the energetic properties
of forest biomass are also possibly due to
differences in physical,  chemical, and ana-
tomical  properties  among  species,  within
the  same  species,  and  even  within  each
tree. According to Zobel & Jett (1995), the
amplitude of  wood variations reflects ge-
netic and environmental  factors and their
interaction.

In this study, the estimated HHV for bark
ranged across species from 16.805 GJ ton-1

to 21.587 GJ ton-1, which was the energy po-
tential  expected for this  type of  material.
Tree species of the Cerrado and temperate
forests in North America show similar vari-
ation of bark HHV, ranging from 17.530 GJ
ton-1 to 24.024 GJ ton-1, and 17.254 GJ ton-1

to  24.242  GJ  ton-1,  respectively  (Corder
1976,  Vale et  al.  2002).  All  tree species in
this  study  showed  HHV  within  the  limits
observed in the literature.

We observed that 75% of the studied tree
species showed higher HHV for bark than
for wood. This may be explained by the dif-
ferences  in  the  carbon  content  between
wood  and  bark  of  individual  trees  (aver-
age: 20.73% vs. 25.19%, respectively – Vale et
al.  2002),  as well  as  by differences in the
lignin content, which can reach 28% in stem
wood and 36% in the bark (Telmo & Lou-
sada 2011).

The  Pe value per unit  area estimated in
this study is approximately 25% lower than

the value of 1378.54 GJ ha-1 reported by Sil-
va & Vale (2018) for the same area. This dis-
crepancy may be related to  the different
models applied, which may have affected
the  results  and  errors  in  the  estimation.
However,  it  is  important  to mention that
the  Pe value  per  unit  area  represent  the
maximum  energy  potential  of  the  area,
which takes into account the dry biomass
at 0% moisture (lab condition), which is not
actually observable in the field. Therefore,
the energy gain does not pay off the ener-
gy necessary to dry out biomass up to the
0% moisture point (Brand et al. 2011). Fur-
ther, the presence of water in the biomass
will  reduce  its  heating  values,  which  de-
creases 2 MJ kg-1 for every 10% moisture in-
crease in the biomass (Górnicki et al. 2016).

Modeling: selection of independent 
variables

In  this  study,  the  estimated  correlation
coefficients between vegetation index and
energy potential  (Pe) were moderate but
significant  (Tab.  2).  Similar  results  have
been reported by several  studies focused
on the relationship among VIs  and differ-
ent  field  variables  from  the  forest  inven-
tory,  such  as  trunk  circumference,  wood
volume,  and  biomass  (Miguel  et  al.  2015,
Zhu & Liu 2015, Machado et al. 2017). None-
theless, the observed correlations between
the  VIs  and  forest  variables  may  be  af-
fected  by  remote  sensing  externalities,
such as the effects of the atmosphere, radi-
ation sources, and soil effects, as well as in-
herent  vegetation  characteristics  such  as
architecture and conformation of the tree
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Fig. 2 - Residuals dispersal (A), observed and predicted values (B) e distribution of error classes (C) of energy density estimation.

Fig. 3 - Architec-
ture of the se-
lected ANN for 
prediction of 
energy density per
unit area in cer-
radão: 2-8-1.
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top and canopy (Miguel et al. 2015, Macha-
do et al. 2017).

The  positive  and  significant  correlation
between  the  VIs  and  Pe (Tab.  2)  reflects
the correlation of vegetation indices with
radial stem growth and leaf area, which are
directly related to the accumulation of bio-
mass,  carbon  sequestration  and,  conse-
quently,  carbon content of  the wood (Vi-
cente-Serrano et al.  2016), while core and
summer wood of  the stem are character-
ized by a larger presence of lignin (Klitzke
et al. 2008).

The presence and content of lignin is one
of the determinants of vegetation reflect-
ance for wavelengths in the infrared region
(Padolfi et al. 2018), which was used to es-
timate most of the VIs applied in our analy-
sis. This may have affected our results be-
cause carbon and lignin  content shows a
strong  positive  correlation  with  the  HHV
and, consequently, with the energy density
of the wood (Telmo & Lousada 2011).

Modeling: training of neural networks
All trained ANNs in our study showed ac-

ceptable  adjustment  and  precision  statis-
tics,  with high correlation coefficient (R ≥
0.96)  and errors  of  estimation below 15%
(Tab. 3). More specifically, the chosen net-
work showed very satisfactory results (R =
0.98,  RMSE%  =  11.27%)  when  considering
the complexity of the studied variables and
the great  variability  observed in the sam-
pled area, which may increase the limit of
error up to 20% acceptable.

Several studies demonstrated the superi-
ority of neural networks against the classic
regression models in the estimation of sev-
eral forest attributes and proved the great
potential  of  their  use  associated  with  re-
mote sensing data (Miguel et al. 2015, Vac-
chiano et al. 2018). The results obtained in
this study also confirmed that the associa-
tion  of  artificial  intelligence  and  remote
sensing  techniques  allowed  the  ANNs  to
accurately model the great complexity and
variety  of  vegetation  and  other  environ-
mental aspects (Felfili et al. 2007).

Neural  networks  have  also  been  shown
to efficiently predict wood intrinsic charac-
teristics such as moisture content (Ozsahin
& Murat 2018), basic wood density (Silva et
al. 2018), higher heating value (Estiati et al.
2016), and energy density (Vale et al. 2017),
for which the aforementioned authors ob-
tained better  results  than those reported
in this study (RMSE% = 1.45%, R = 0.98, AD%
= 0.14). However, those authors used basic
wood density as a predictive variable. The
predictive  power  of  the  ANNs  was  also
tested for the estimation of the quality of
products  such  as  medium  density  fiber
(MDF) boards and their different bonding
strength processes (Tiryaki et al. 2016).

The graphical  analysis  of  the residues  is
fundamental to corroborate the results of
precision statistics (Draper & Smith 1998),
as  it  can reveal  trends  in  the errors  that
may  not  be  detected  by  such  statistics.
Moreover,  errors  of  interpretation  could

be due to  the  occurrence  of  overlapping
points in the graphs. In this study the resid-
ual dispersion graph (Fig. 2A) showed ade-
quate  distribution  of  errors,  no  visible
trends,  compact  and  well  distributed
points along the regression line, and maxi-
mum errors limited to ± 30%. The relation
between the observed and predicted val-
ues (Fig. 2B) reflects the adherence of the
selected neural  network to the real  data.
The  frequency  of  errors  was  mostly  con-
centrated between -10% and 10% (Fig. 2C),
with few errors greater than ± 20%.

Statistical analysis
We  found  no  significant  difference  be-

tween the observed values of  energy po-
tential  and  their  predictions  obtained  by
ANN, as the use of network allows for con-
sistent  adjustment and adaptation to the
observed  data.  Therefore,  we  conclude
that the ANN is a suitable tool for the esti-
mation of energy potential  for the phyto-
physiognomy under  study.  Similar  conclu-
sions  were  reported  by  Serpen  &  Gao
(2014), who stated that ANNs have a great
ability  to learn and extract  patterns from
one set of data, generalize and apply them
to other data sets without losing accuracy.

Due  to  the  variability  of  species,  struc-
ture,  canopy architecture, canopy format,
and the physical and chemical characteris-
tics of different species’ wood in the  Cer-
rado, further studies are needed to investi-
gate  the  relationships  among  forest  field
variables and VIs.  Different configurations
and  network  architectures  should  be
tested  to  improve  the  accuracy  of  esti-
mates for different biomes with different
phytophysiognomies, which may strength-
en and validate the ANNs application in the
prediction of energy density per unit area
by using remotely sensed data.

Conclusion
The cerradão showed a maximum energy

potential of 1022.66 ± 560.89 GJ ha-1 at 0%
moisture dry biomass 

Artificial  neural  networks  of  the  Multi-
layer Perceptron type were generated us-
ing  tangential  and  sigmoidal  activation
functions and the BFGS training algorithm.
They were implemented using vegetation
indices derived from remote sensing data
and basal area as input variables, and pro-
vided accurate and efficient estimations of
the energy potential of forest biomass per
area unit of cerradão.

The result of this study can help identify-
ing areas with greater energy content, de-
creasing the  time and  cost  of  forest  sur-
veys aimed to estimate the energy poten-
tial (Pe). Based on our results, we conclude
that it is possible to accurately estimate en-
ergy potential by using NDVI derived from
remotely sensed data and the basal area as
variable input of an ANNs.
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