*
 

iForest - Biogeosciences and Forestry

*

Climate impacts on tree growth in a Neotropical high mountain forest of the Peruvian Andes

Clara Rodríguez-Morata (1)   , Jaime Madrigal-González (1), Markus Stoffel (1-2-3), Juan Antonio Ballesteros-Cánovas (1-2)

iForest - Biogeosciences and Forestry, Volume 13, Issue 3, Pages 194-201 (2020)
doi: https://doi.org/10.3832/ifor3124-013
Published: May 19, 2020 - Copyright © 2020 SISEF

Research Articles


Global warming can jeopardize important ecosystem functions and services in sensitive Neotropical mountain areas. However, untangling the relative roles of natural climate variability pattern from current global warming trends still represent a major challenge. Here, we propose a novel analytical approach based on Structural Equation Models to evaluate the relative roles of different sources of climate variability on tree growth. Specifically, we investigate direct and indirect linkages between Basal Area Increments (BAI) and a set of different climatic sources of variability, such as: (i) large-scale atmospheric oscillation patterns (i.e., the El Niño Southern Oscillation, ENSO and the Pacific Decadal Oscillation, PDO); and (ii) local meteorology in terms of temperature and precipitation. Additionally, we included in the SEM framework other important variables such as: (iii) calendar year (representative of temporal linear trends); and (iv) tree size (representative of main biological trends). Results indicate that the ENSO and PDO modulate minimum temperatures (Tmin) in the study area. These indices describe the oscillating behavior of the climatic modes (i.e., South Oscillation Index and PDO index) and are negatively correlated with Tmin. As such, they also influence tree growth (represented here by BAI) indirectly. Furthermore, through its direct impact on Tmin increase, ongoing climate warming has an indirect negative effect on BAI, thereby implying that the ongoing temperature rise could exert control on productivity in high mountain forests of the Andes, and that this influence could become more important with continued temperature increase.

  Keywords


Global Warming, Tree Growth Variability, Podocarpus glomeratus Don., Andean Forest, Peru, Structural Equation Model (SEM)

Authors’ address

(1)
Clara Rodríguez-Morata 0000-0002-7397-1794
Jaime Madrigal-González 0000-0002-9522-5493
Markus Stoffel 0000-0003-0816-1303
Juan Antonio Ballesteros-Cánovas 0000-0003-4439-397X
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva (Switzerland)
(2)
Markus Stoffel 0000-0003-0816-1303
Juan Antonio Ballesteros-Cánovas 0000-0003-4439-397X
Dendrolab.ch, Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, CH-1205 Geneva (Switzerland)
(3)
Markus Stoffel 0000-0003-0816-1303
Department F.-A. Forel for Aquatic and Environmental Research, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva (Switzerland)

Corresponding author

 
Clara Rodríguez-Morata
clara.rodriguez@unige.ch

Citation

Rodríguez-Morata C, Madrigal-González J, Stoffel M, Ballesteros-Cánovas JA (2020). Climate impacts on tree growth in a Neotropical high mountain forest of the Peruvian Andes. iForest 13: 194-201. - doi: 10.3832/ifor3124-013

Academic Editor

Emanuele Lingua

Paper history

Received: Apr 11, 2019
Accepted: Mar 22, 2020

First online: May 19, 2020
Publication Date: Jun 30, 2020
Publication Time: 1.93 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 3565
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 2752
Abstract Page Views: 328
PDF Downloads: 422
Citation/Reference Downloads: 3
XML Downloads: 60

Web Metrics
Days since publication: 128
Overall contacts: 3565
Avg. contacts per week: 194.96

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Jun 2020)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Aceituno P (1988)
On the functioning of the Southern Oscillation in the South American sector. Part 1: surface climate. Monthly Weather Review 116: 505-524.
CrossRef | Gscholar
(2)
Ayma-Romay AI, Lovera P, Soto-Rojas G (2017)
Sobrevivencia y crecimiento de plántulas reforestadas de Podocarpus glomeratus (Podocarpaceae) en diferentes altitudes y micrositios en ecosistemas de pastizales de los Andes bolivianos después de cuatro años. [Survival and growth of reforested seedlings of Podocarpus glomeratus (Podocarpaceae) at different altitudes and microsites in grassland ecosystems of the Bolivian Andes after four years]. Ecología Austral 27 (1): 63-71. [in Spanish]
Gscholar
(3)
Biondi F, Myers DE, Avery CC (1994)
Geostatistically modeling stem size and increment in an old-growth forest. Canadian Journal of Forest Research 24: 1354-1368.
CrossRef | Gscholar
(4)
Bonan GB (2008)
Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320 (5882): 1444-1449.
CrossRef | Gscholar
(5)
Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D, Ferrero ME, Lara A, Le Quesne C, Luckman BH, Masiokas M, Morales M, Oliveira JM, Roig F, Srur A, Villalba R (2009)
Dendroclimatological reconstructions in South America: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 281 (3-4): 210-228.
CrossRef | Gscholar
(6)
Brienen RJW, Zuidema PA (2005)
Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146: 1-12.
CrossRef | Gscholar
(7)
Cavieres LA, Rada F, Azócar A, García-Núnez C, Cabrera HM (2000)
Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes. Acta Oecologica 21: 203-211.
CrossRef | Gscholar
(8)
Clark-Carter D (2014)
z Scores. In: “Wiley StatsRef: Statistics Reference Online” (Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL eds). John Wiley and Sons, New York, NY, USA.
CrossRef | Gscholar
(9)
Coomes DA, Allen RB (2007)
Effects of size, competition and altitude on tree growth. Journal of Ecology 95: 1084-1097.
CrossRef | Gscholar
(10)
Dalling JW, Barkan P, Bellingham PJ, Healey JR, Tanner EVJ (2011)
Ecology and distribution of Neotropical Podocarpaceae. In: “Ecology of the Podocarpaceae in Tropical Forests” (Turner BL, Cemusak LA eds). Smithsonian Contributions to Botany 95: 43-56.
CrossRef | Gscholar
(11)
Dusenge M, Wallin G, Gårdesten J, Niyonzima F, Adolfsson L, Nsabimana D, Uddling J (2015)
Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature. Oecologia 177: 1183-1194.
CrossRef | Gscholar
(12)
Gardner M (2013)
Podocarpus glomeratus. The IUCN Red List of Threatened Species 2013: e.T42504A2983439.
CrossRef | Gscholar
(13)
Garreaud RD, Vuille M, Compagnucci RH, Marengo J (2009)
Present-day South American climate. Palaeogeography Palaeoclimatology Palaeoecology 281: 180-195.
CrossRef | Gscholar
(14)
Grace JB, Keeley JE (2006)
A structural equation model analysis of postfire plant diversity in California shrublands. Ecological Applications 16: 503-514.
CrossRef | Gscholar
(15)
Grace JB, Schoolmaster Jr DR, Guntenspergen GR, Little AM, Mitchell BR, Miller KM, Schweiger EW (2012)
Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3 (8): art73.
CrossRef | Gscholar
(16)
Halpert MS, Ropelewski CF (1992)
Temperature patterns associated with the Southern Oscillation. Journal of Climate 5: 577- 593.
CrossRef | Gscholar
(17)
Hankin LE, Higuera PE, Davis KT, Dobrowski SZ (2019)
Impacts of growing-season climate on treegrowth and post-fire regeneration in ponderosa pine and Douglas-fir forests. Ecosphere 10 (4): e02679.
CrossRef | Gscholar
(18)
Hostettler S (2002)
Tropical montane cloud forests: a challenge for conservation. Bois et Forêts des Tropiques 274 (4): 19-31.
Gscholar
(19)
Hostnig R, Palomino C (1997)
El santuario Nacional Ampay: refugio de la Intimpa en Apurímac, Perú [The Ampay National Shrine: Intimpa refuge in Apurímac, Peru]. Litografia Foto Publicaciones, Lima, Peru, pp. 153. [in Spanish]
Gscholar
(20)
Jump AS, Mátyás C, Peñuelas J (2009)
The altitude-for-latititude disparity in the range retractions of woody species. Trends in Ecology and Evolution 24: 694-701.
CrossRef | Gscholar
(21)
Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011)
Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25 (1): 59-70.
CrossRef | Gscholar
(22)
Lavado-Casimiro WS, Labat D, Ronchail J, Espinoza JC, Guyot JL (2013)
Trends in rainfall and temperature in the Peruvian Amazon-Andes basin over the last 40 years (1965-2007). Hydrological Processes 27 (20): 2944-2957.
CrossRef | Gscholar
(23)
Lefcheck JS (2015)
piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution 7: 573-579.
CrossRef | Gscholar
(24)
Lenoir J, Gegout JC, Marquet PA, De Ruffray P, Brisse H (2008)
A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 1768-1771.
CrossRef | Gscholar
(25)
Liu G, Piao S, Janssens I, Fu Y, Peng S, Lian X, Ciais P, Myneni RB, Penuelas J, Wang T (2018)
Extension of the growing season increases vegetation exposure to frost. Nature Communications 9: 426.
CrossRef | Gscholar
(26)
López-Moreno JI, Morán-Tejeda E, Vicente-Serrano SM, Bazo J, Azorin-Molina C, Revuelto J, Sánchez-Lorenzo A, Navarro-Serrano F, Aguilar E, Chura O (2015)
Recent temperature variability and change in the Altiplano of Bolivia and Peru. International Journal of Climatology 36 (4): 1773-1796.
CrossRef | Gscholar
(27)
Madrigal-González J, Ballesteros-Cánovas JA, Herrero A, Ruiz-Benito P, Stoffel M, Lucas-Borja ME, Andivia E, Sancho-García C, Zavala MA (2017)
Forest productivity in southwestern Europe is controlled by coupled North Atlantic and Atlantic multidecadal Oscillations. Nature Communications 8: 2222.
CrossRef | Gscholar
(28)
Madrigal-González J, Andivia E, Zabala MA, Stoffel M, Calatayud J, Sánchez-Salguero R, Ballesteros-Canovas JA (2018)
Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment. Science of Total Environment 642: 619-628.
CrossRef | Gscholar
(29)
Malaeb ZA, Summers JK, Pugesek BH (2000)
Using structural equation modelling to investigate relationships among ecological variables. Environmental Ecology Statistic 7: 93-111.
CrossRef | Gscholar
(30)
Mantua NJ, Hare SR (2002)
The Pacific decadal oscillation. Journal of Oceanography 58: 35-44.
CrossRef | Gscholar
(31)
Mundo IA, Roig FA, Villalba R, Kitzberger T, Barrera MD (2012)
Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees 26: 443-458.
CrossRef | Gscholar
(32)
Ogle K, Barber JJ, Barron-Gafford GA, Bently LP, Young JM, Huxman TE, Loik ME, Tissue DT (2015)
Quantifying ecological memory in plant and ecosystem processes. Ecology Letters 18: 221-235.
CrossRef | Gscholar
(33)
Paccini L, Espinoza JC, Ronchail J, Segura H (2018)
Intra-seasonal rainfall variability in the Amazon basin related to large-scale circulation patterns: a focus on western Amazon-Andes transition region. International Journal of Climatology 38: 2386-2399.
CrossRef | Gscholar
(34)
Pearl J (2012)
The causal foundations of structural equation modeling. In: “Handbook of Structural Equation Modelling” (Hoyle RH ed). Guilford Press, New York, NY, USA, pp. 68-91.
Online | Gscholar
(35)
Peel MC, Finlayson BL, McMahon TA (2007)
Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633-1644.
CrossRef | Gscholar
(36)
Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014)
Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications 5 (1): 1065.
CrossRef | Gscholar
(37)
Pugesek B, Tomer A, Von Eye A (2003)
Structural equation modeling: applications in ecological and evolutionary biology research. Cambridge University Press, Cambridge, UK, pp. 410.
Online | Gscholar
(38)
Ropelewski CF, Jones PD (1987)
An extension of the Tahiti-Darwin Southern Oscillation Index. Monthly Weather Review 115: 2161-2165.
CrossRef | Gscholar
(39)
Schneider C, Gies D (2004)
Effects of El Niño-Southern Oscillation on southernmost South America precipitation at 53 °S revealed from NCEP-NCAR reanalyses and weather station data. International Journal of Climatology 24: 1057-1076.
CrossRef | Gscholar
(40)
SENAMHI (2005)
Pronóstico de sequías a nivel de cuencas para programas de prevención. Cuenca del río Pampas-Apurimac [Droughts forecast at the basin level for prevention programs. Pampas-Apurimac River Basin]. Informe técnico, Servicio Nacional de Meteorología e Hidrología, Ministerio del Ambiente, Peru. [in Spanish]
Gscholar
(41)
SENAMHI (2012)
Caracterización climática de las regiones Apurímac y Cusco [Climatic characterization of Apurímac and Cuzco regions]. Serie de investigación regional #1, Programa de Adaptación al Cambio Climático - PACC, Ministerio del Ambiente, Peru. [in Spanish]
Gscholar
(42)
Shipley B (2000)
Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference with R. Cambridge University Press, Cambridge, UK, pp. 314.
Gscholar
(43)
Speer JH (2010)
Fundamentals of tree-ring research. University of Arizona Press, Arizona, USA, pp. 333.
Online | Gscholar
(44)
Trasmonte G, Silva Y, Chávez R, Segura B (2006)
Trends and maximum and minimum temperature in the Central Andes of Peru (Mantaro River Basin). In: Proceedings of the International Conference on “Southern Hemisphere Meteorology and Oceanography” (ICSHMO). Foz do Iguaçu (PR, Brazil) 24-28 Apr 2006. INPE, Brazil, pp. 463-468.
Online | Gscholar
(45)
Trenberth KE, Stepaniak DP (2001)
Indices of El Niño evolution. Journal of Climate 14: 1697-1701.
CrossRef | Gscholar
(46)
Ukhvatkina O, Omelko AM, Zhmerenetsky AA, Petrenko T (2018)
Autumn-winter minimum temperature changes in the southern Sikhote-Alin mountain range of northeastern Asia since 1529 AD. Climate of the Past 14: 57-71.
CrossRef | Gscholar
(47)
Villalba R, Boninsegna JA, Veblen TT, Schmelter A, Rubulis S (1997)
Recent trends in tree ring records from high elevation sites in the Andes of northern Patagonia. Climatic Change 36: 425-454.
CrossRef | Gscholar
(48)
Villalba R, Grau HR, Boninsegna JA, Jacoby GC, Ripalta A (1998)
Tree-ring evidence for long-term precipitation changes in subtropical South America. International Journal of Climatology 18: 1463-1478.
CrossRef | Gscholar
(49)
Vuille M, Bradley RS, Werner M, Keimig F (2003)
20th century climate change in the tropical Andes: observations and model results. In: “Climate Variability and Change in High Elevation Regions: Past, Present and Future” (Beniston M, Diaz HF eds). Advances in Global Change Research, vol. 15, Springer Netherlands, Dordrecht, Netherlands, pp. 75-99.
CrossRef | Gscholar
(50)
Vuille M, Franquist E, Garreaud R, Lavado Casimiro WS, Cáceres B (2015)
Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research: Atmospheres 120: 3745-57.
CrossRef | Gscholar
(51)
Worbes M (2002)
One hundred years of tree-ring research in the tropics: a brief history and an outlook to future challenges. Dendrochronologia 20: 217-231.
CrossRef | Gscholar
(52)
Wyckoff PH, Clark JS (2005)
Tree growth prediction using size and exposed crown area. Canadian Journal of Forest Research 35 (1): 13-20.
CrossRef | Gscholar
(53)
Yamaguchi DK (1991)
A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 21 (3): 414-416.
CrossRef | Gscholar
(54)
Zanoni TA (1999)
World checklist and bibliography of conifers. By Aljos Farjon. Brittonia 51: 76.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info