This paper presents an analysis of the climatic factors affecting tree-ring growth in pedunculate oak (Quercus robur L.), one of the most important species of Hungarian forests. A 221-year oak chronology was elaborated, covering the period 1789 to 2009 AD. The daily climate data for a ~110 year stretch offered a detailed insight into the climate-growth relations. The correlation function reached a maximum (r > 0.4) in the case of precipitation in May-August, providing evidence that water availability is the main factor driving the oak growth in the eastern part of the Great Hungarian Plain. Although there was no significant linear relation with temperature in the long term, moving window correlation analysis revealed that temperature response changed substantially over the course of the 20th century. While positive correlation with winter temperature was characteristic in the first decades, later the response to summer temperature strengthened remarkably, reaching r = -0.569 by the end of the analysed period (years 1978-2007). While the vulnerability of oak to drought stress is common across Europe, in southern and central Europe high summer temperatures impair tree growth. The enhanced sensitivity of pedunculate oaks to the water balance in the eastern part of the Great Hungarian Plain allows to surmise the presence of an evolving tendency towards drought risk and vulnerability in the case of these oak stands.
Keywords
, , , ,
Citation
Árvai M, Morgós A, Kern Z (2018). Growth-climate relations and the enhancement of drought signals in pedunculate oak (Quercus robur L.) tree-ring chronology in Eastern Hungary. iForest 11: 267-274. - doi: 10.3832/ifor2348-011
Academic Editor
Jesus Julio Camarero
Paper history
Received: Jan 05, 2017
Accepted: Jan 30, 2018
First online: Mar 29, 2018
Publication Date: Apr 30, 2018
Publication Time: 1.93 months
© SISEF - The Italian Society of Silviculture and Forest Ecology 2018
Open Access
This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Breakdown by View Type
(Waiting for server response...)
Article Usage
Total Article Views: 46416
(from publication date up to now)
Breakdown by View Type
HTML Page Views: 38183
Abstract Page Views: 3429
PDF Downloads: 4030
Citation/Reference Downloads: 16
XML Downloads: 758
Web Metrics
Days since publication: 2429
Overall contacts: 46416
Avg. contacts per week: 133.76
Article Citations
Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)
Total number of cites (since 2018): 24
Average cites per year: 4.00
Publication Metrics
by Dimensions ©
Articles citing this article
List of the papers citing this article based on CrossRef Cited-by.
(1)
Baillie MGL, Pilcher JR (1973)A simple cross-dating programme for tree-ring research. Tree-Ring Bulletin 33: 7-14.
Gscholar
(2)
Bartholy J, Pongrácz R, Gelybó G (2007)Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research 5 (1): 1-17.
CrossRef |
Gscholar
(3)
Beck W, Sanders TG, Pofahl U (2013)CLIMTREG: detecting temporal changes in climate-growth reactions-a computer program using intra-annual daily and yearly moving time intervals of variable width. Dendrochronologia 31 (3): 232-241.
CrossRef |
Gscholar
(4)
Breuer H, Acs F, Skarbit N (2017)Climate change in Hungary during the twentieth century according to Feddema. Theoretical and Applied Climatology 127: 853-863.
CrossRef |
Gscholar
(5)
Cater M, Levanič T (2004)Increment and environmental conditions in two Slovenian pedunculate-oak forest complexes. Ekológia (Bratislava) 23 (4): 353-365.
Online |
Gscholar
(6)
Cater M (2011)Osmotic adaptation of Quercus robur L. under water stress in stands with different tree density - relation with groundwater table. Dendrobiology 65: 29-36.
Online |
Gscholar
(7)
Cook ER, Peters K (1981)The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41: 45-53.
Online |
Gscholar
(8)
Cook ER (1985)A time series analysis approach to tree-ring standardization. PhD thesis, The University of Arizona, Tucson, USA, pp. 171.
Online |
Gscholar
(9)
Cook ER, Briffa K, Shiyatov S, Mazepa V (1990)Tree-ring standardization and growth-trend estimation. In: “Methods of Dendrochronology” (Cook E, Kairiukstis L eds). Applications in the Environmental Sciences, Kluwer Academic Publishers, Netherlands, pp. 104-162.
Gscholar
(10)
Cufar K, De Luis M, Eckstein D, Kajfez-Bogataj L (2008)Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. International Journal of Biometeorology 52: 607-615.
CrossRef |
Gscholar
(11)
Cufar K, Grabner M, Morgós A, Del Castillo EM, Merela M, De Luis M (2014)Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 28 (5): 1267-1277.
CrossRef |
Gscholar
(12)
Dobrovolny P, Rybníček M, Büntgen U, Trnka M, Brázdil R, Stachon Z, Prokop O, Kolár T (2016)Recent growth coherence in long-term oak (
Quercus spp.) ring width chronologies in the Czech Republic. Climate Research 70: 133-141.
CrossRef |
Gscholar
(13)
Drobyshev I, Niklasson M, Eggertsson O, Linderson H, Sonesson K (2008)Influence of annual weather on growth of pedunculate oak in southern Sweden. Annals of Forest Science 65 (5): 512.
CrossRef |
Gscholar
(14)
Ducousso A, Bordács S (2004)EUFORGEN Technical Guidelines for genetic conservation and use for pedunculate and sessile oaks (
Quercus robur and
Quercus petraea). International Plant Genetic Resources Institute, Rome, Italy, pp. 6.
Online |
Gscholar
(15)
Eaton E, Caudullo G, Oliveira S, De Rigo D (2016)Quercus robur and
Quercus petraea in Europe: distribution, habitat, usage and threats. In: “European Atlas of Forest Tree Species” (San-Miguel-Ayanz J, De Rigo D, Caudullo G, Houston Durrant T, Mauri A eds). Publications Office of the EU, Luxembourg, pp. 160-163.
Online |
Gscholar
(16)
Eckstein D, Bauch J (1969)Beitrag zur rationalisierung eines dendrochronologischen verfahrens und zur analyse seiner aussagesicherheit [A contribution to rationalization of a dendrochronological procedure and to analyse the statistical validity]. Forstwissenschaftliches Centralblatt 88 (4): 230-250. [in German]
CrossRef |
Gscholar
(17)
EUFORGEN (2009)Distribution map of pedunculate oak (
Quercus robur). Web site.
Online |
Gscholar
(18)
Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2008)Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiology 29: 39-51.
CrossRef |
Gscholar
(19)
Führer E, Horváth L, Jagodics A, Machon A, Szabados I (2011)Application of a new aridity index in Hungarian forestry practice. Idöjárás (Quarterly Journal of the Hungarian Meteorological Service) 115 (3): 205-216.
Gscholar
(20)
Garamhegyi T, Kovács J, Pongrácz R, Tanos P, Hatvani IG (2017)Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central-Eastern European agricultural region. Hydrogeology Journal 407 (1-4): 28.
CrossRef |
Gscholar
(21)
Gentilesca T, Camarero JJ, Colangelo M, Nolè A, Ripullone F (2017)Drought induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest 10: 796-806.
CrossRef |
Gscholar
(22)
Gribovszki Z, Kalicz P, Balog K, Szabó A, Tóth T (2014)Comparison of an oak forest and of a pasture groundwater uptake and salt dynamics on the Hungarian Great Plain. Acta Silvatica et Lignaria Hungarica 10: 103-114.
CrossRef |
Gscholar
(23)
Gálos B, Hänsler A, Kindermann G, Rechid D, Sieck K, Jacob D (2012)The role of forests in adapting to climate change - a case study for Europe. Acta Silvatica et Lignaria Hungarica 8: 87-102.
CrossRef |
Gscholar
(24)
Helama S, Sohar K, Läänelaid A, Mäkelä HM, Raisio J (2016)Oak decline as illustrated through plant-climate interactions near the northern edge of species range. Botanical Review 82: 1-23.
CrossRef |
Gscholar
(25)
Hlásny T, Mátyás C, Seidl R, Kulla L, Merganičová K, Trombik J, Dobor L, Barcza Z, Konôpka B (2014)Climate change increases the drought risk in Central European forests: what are the options for adaptation? Forestry Journal 60 (1): 5-18.
CrossRef |
Gscholar
(26)
Holmes RL (1983)Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bulletin 44: 69-75.
Online |
Gscholar
(27)
Kern Z, Patkó M, Kázmér M, Fekete J, Kele S, Pályi Z (2013)Multiple tree-ring proxies (earlywood width, latewood width and δ
13C) from pedunculate oak (
Quercus robur L.), Hungary. Quaternary International 29: 257-267.
CrossRef |
Gscholar
(28)
Kolár T, Cermák P, Trnka M, Zid T, Rybníček M (2017)Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agricultural and Forest Meteorology 239: 24-33.
CrossRef |
Gscholar
(29)
Kázmér M, Grynaeus A (2003)The Budapest tree-ring laboratory. Association for Tree-Ring Research Newsletter 1: 5-6.
Gscholar
(30)
Michéli E, Fuchs M, Láng V, Szegi T, Kele G (2014)Methods for modernizing the elements and structure of the Hungarian Soil Classification System. Agrokémia és Talajtan 63 (1): 69-78.
CrossRef |
Gscholar
(31)
Molnár S, Bariska M (2002)Magyarország ipari fái [Wood species of Hungary]. Szaktudás Kiadó Ház, Budapest, Hungary, pp. 168-175.
Gscholar
(32)
Móricz N, Mátyás C, Berki I, Rasztovits E, Vekerdy Z, Gribovszki Z (2012)Comparative water balance study of forest and fallow plots. iForest 5: 188-196.
CrossRef |
Gscholar
(33)
Nechita C, Popa I, Eggertsson O (2017)Climate response of oak (
Quercus spp.), an evidence of a bioclimatic boundary induced by the Carpathians. Science of the Total Environment 599-600: 1598-1607.
CrossRef |
Gscholar
(34)
OMSZ (2016)National Meteorological Service of Hungary, website.
Online |
Gscholar
(35)
Osborn TJ, Briffa KR, Jones PD (1997)Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time-series. Dendrochronologia 15: 89-99.
Online |
Gscholar
(36)
Pilcher JR, Gray B (1982)The relationships between oak tree growth and climate in Britain. Journal of Ecology 70: 297-304.
CrossRef |
Gscholar
(37)
Prokop O, Kolár T, Büntgen U, Kyncl J, Kyncl T, Bošela M, Choma M, Barta P, Rybníček M (2016)On the palaeoclimatic potential of a millennium-long oak ring width chronology from Slovakia. Dendrochronologia 40: 93-101.
CrossRef |
Gscholar
(38)
Pásztor L, Laborczi A, Bakacsi ZS, Szabó J, Illés G (2018)Compilation of a national soil-type map for Hungary by sequential classification methods. Geoderma 311: 93-108.
CrossRef |
Gscholar
(39)
Rinn F (2005)TSAP reference manual. Rinntech, Heidelberg, Germany, pp. 262.
Gscholar
(40)
Rozas V (2015)Individual-based approach as a useful tool to disentangle the relative importance of tree age, size and inter-tree competition in dendroclimatic studies. iForest 8: 187-194.
CrossRef |
Gscholar
(41)
Rybníček M, Cermák P, Prokop O, Zid T, Trnka M, Kolár T (2016)Oak (
Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 75: 55-65.
CrossRef |
Gscholar
(42)
Sohar K, Läänelaid A, Eckstein D, Helama S, Jaagus J (2014)Dendroclimatic signals of pedunculate oak (
Quercus robur L.) in Estonia. European Journal of Forest Research 133: 535-549.
CrossRef |
Gscholar
(43)
Spinoni J, Naumann G, Vogt VJ (2017)Pan-European seasonal trends and recent changes of drought frequency and severity. Global and Planetary Change 148: 113-130.
CrossRef |
Gscholar
(44)
Stojanović DB, Levanič T, Matović B, Orlovic S (2015)Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. European Journal of Forest Research 134: 555-567.
CrossRef |
Gscholar
(45)
Stokes MA, Smiley TL (1996)An introduction to tree-ring dating. The University of Arizona Press, Tucson, USA, pp. 73.
Online |
Gscholar
(46)
Thornthwaite CW (1948)An approach towards a rational classification of climate. Geographical Review 38: 55-102.
CrossRef |
Gscholar
(47)
Tobisch T, Kottek P (2013)Forestry-related databases of the Hungarian Forestry Directorate. National Food Chain Safety Office (NFCSO), Web site, Hungary.
Online |
Gscholar
(48)
Tumajer J, Treml V (2016)Response of floodplain pedunculate oak (
Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. Forest Ecology and Management 379: 185-194.
CrossRef |
Gscholar
(49)
Tóth T, Balog K, Szabó A, Pásztor L, Jobbágy EG, Nosetto MD, Gribovszki Z (2014)Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas. AoB PLANTS 6: 1-15.
CrossRef |
Gscholar
(50)
Török P, Tóthmérész B (2004)A Debreceni Nagyerdö növényzeti arculatának vizsgálata [Botanical survey of the Great Forest of Debrecen]. Természetvédelmi Közlemények 11: 107-116. [in Hungarian with English abstract]
Gscholar
(51)
Wazny T, Eckstein D (1991)The dendrochronological signal of oak (
Quercus spp.) in Poland. Dendrochronologia 9 (35): 35-49.
Gscholar
(52)
Wigley TML, Briffa KR, Jones PD (1984)On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201-213.
CrossRef |
Gscholar