Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands

Jan Cermák   , Nadezhda Nadezhdina, Miroslav Trcala, Jaroslav Simon

iForest - Biogeosciences and Forestry, Volume 8, Issue 3, Pages 226-278 (2015)
doi: https://doi.org/10.3832/ifor1116-008
Published: Sep 03, 2014 - Copyright © 2015 SISEF

Review Papers

This illustrated review is aimed to provide succinct account of different methods applicable for obtaining objective information about the functional ecology of forest sites and stands (and also, e.g., orchards, watersheds, parks or alleys) for the purposes of phytotechnology or precise forestry. Management strategies must consider preservation of many important functions of forests in the landscape. Management methodologies include classical forestry approaches based on classification of the natural environment according to climatic zones, soil characteristics and composition of herbaceous as well as woody vegetation. One possibility for obtaining objective information came with the development of ecologically applicable instrumentation, allowing studies on the whole tree and stand levels to be undertaken anywhere in the field. Information may be derived at sites that are not permanently observed and are not equipped with additional constructions, such as towers, masts, or greenhouses. These field applicable methods are focused especially on tree and stand macrostructure, water relations and functional parameters of trees. In addition, problems associated with interactions between trees and different organisms are also discussed. A series of methods based on different principles is useful to measure mostly quantitative, operative or effective tree parameters as tree crowns and leaf distribution, stems (or large tree trunks) and root systems including skeleton and absorptive fine roots. This is sometimes possible to do with rather simple methods, but instrumental methods prevail especially for root studies. In addition to several classical measurement principles including anatomical or mechanical sensing, the methods work with sound speed (acoustic tomography) using electromagnetic rays of different wavelength (from radar to optical), electric conductivity or impedance, supersonic air stream and thermodynamics for example. Methods for data evaluation and examples of application are also included. The whole complex system approach should serve for different scientific fields (including hydrology, landscape care, horticulture, forensic engineering, etc.) and especially to support precise forestry.


Instrumental and Simple Methods, Geometrical and Effective Parameters, Tree Crown, Stem (trunk) and Root System, Complex Studies, Water and Energy

Authors’ address

Jan Cermák
Nadezhda Nadezhdina
Miroslav Trcala
Jaroslav Simon
Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelská 3, 61300 Brno (Czech Republic)

Corresponding author

Jan Cermák


Cermák J, Nadezhdina N, Trcala M, Simon J (2015). Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. iForest 8: 226-278. - doi: 10.3832/ifor1116-008

Academic Editor

Marco Borghetti

Paper history

Received: Aug 31, 2013
Accepted: May 13, 2014

First online: Sep 03, 2014
Publication Date: Jun 01, 2015
Publication Time: 3.77 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 22399
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 17611
Abstract Page Views: 445
PDF Downloads: 3441
Citation/Reference Downloads: 55
XML Downloads: 847

Web Metrics
Days since publication: 1970
Overall contacts: 22399
Avg. contacts per week: 79.59

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Jan 2020)

Total number of cites (since 2015): 10
Average cites per year: 1.67


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Alexandr P, Cermák J, Fér F (2006)
Background for objectification of forensic expertises based on historical data and functional diagnostics of trees applied on an example of Šumava Mountains national park In: Proceedings of the Meeting “Historie a vývoj lesu v českých zemích” [Forest history and their development in Czechia] (Neuhoferová P ed). Šumava na Srní (Czech Republic) 17-18 Sep 2006, pp. 71-80. [in Czech with English abstract]
Alexandr P, Fér F, Matejícek J, Rebrošová K, Stanek J, Soukup M (2010)
Forensic ecotechnics - forest and woody species. Acad Publ, CERM, Brno, Czech Republic, pp. 626. [in Czech] [ISBN 978-80-7204-681-2]
Amato M, Ritchie JT (2002)
Spatial distribution of roots and water uptake by Maize (Zea mays L.). Crop Science 42 (3): 773-780.
CrossRef | Gscholar
Amato M, Basso B, Celano G, Bitella G, Morelli G, Rossi R (2008)
In situ detection of tree root distribution and biomass by multielectrode resistivity imaging. Tree Physiology 28: 1441-1448.
CrossRef | Gscholar
Amato M, Lapenna V, Rossi R, Bitella G (2012)
Multi-electrode resistivity imaging. In: “Measuring roots, and updated approach” (Mancuso S ed). Springer-Verlag, Berlin, Heidelberg, Germany, pp. 189-212.
Annan AP (2004)
Ground penetrating radar, principles, procedures and applications. Sensors and Software, Mississauga, Canada, pp. 203.
Assman E (1968)
Waldertragskunde [Forest yield science]. Bayerischer Landwirtschaftsverlag GmbH V Verlaggesellschaft, Munchen, Bonn, Wien, pp. 488.
Aubrecht L, Stanek Z, Koller J (2006)
Electric measurement of the absorbing surfaces in whole tree roots by the earth impedance method - I. Theory. Tree Physiology 26: 1105-1112.
CrossRef | Gscholar
Bagar R, Nekovár J (2003)
Contribution to climate development in Central Europe. In: “Tharandter Klimaprotokolle Band 9. Tagungsband 5, BIOMET-Tagung Mensch-Pflanze-Atmosphere”. Eigenverlag der Technischen Universität Dresden, Dresden, Germany, pp. 190-192. [ISSN 14 36-5235]
Bagar R, Nejedlík P, Nekovár J (2009)
Growing conditions comparison inside the 1st to 4th forest vegetation layer. Meteorologický časopis 12: 17-23.
Balek J, Cermák J, Kuera J, Palouš M, Prax A (1985)
The possibilities to estimate transpiration by remote sensing. Vodohospodárský časopis 33 (5): 497-505. [in Czech]
Barton CVM, Montagu KD (2004)
Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiology 24: 1323-1331.
CrossRef | Gscholar
Bele J (1975)
The importance of evapotranspiration for silviculture of spruce forests in different vegetation zones. Lesnická práce 54: 312-316. [in Czech]
Bredemeier M, Cohen S, Godbold D, Lode E, Pichler V, Schleppi P (2011)
Forest management and the water cycle. Ecological studies, vol. 212, part 1, Springer, The Netherlands, pp. 532.
CrossRef | Gscholar
Bucek A, Kopecká V (2001)
Trend of vegetation belts shifts as a result of possible global climatic changes. Problematika lesnické typologie 3: 12-16. [in Czech]
Bucek A, Lacina J (1999)
Geobiocenology II. Geobiocenological typology of Czech landscape. Mendel Univ. Brno, Czech Republic, pp. 250. [in Czech]
Bucek A, Vlcková V (2009)
Scenario of vegetation zone changes in the Czech Republic: ten years after. Ochrana prírody [Nature Protection] 64: 8-11.
Bucek A, Vlcková V (2011)
Collection of maps with prognosis of possible impacts of global climatic changes on the nature in the Czech Republic. Acta Pruhoniciana 98: 83-88.
Bucek A (2009)
Geobiocenology and landscape ecology. Zivotné Prostredie 43 (2): 69-71.
Bucek A (2010)
Biogeographic and geobiocenologic frames of management strategy. In: “Management strategy of forested areas with special levels of protection” (Simon J et al. eds). Lesnická práce, Kostelec n/čl, Czech Republic, pp. 92-106.
Burgess SO, Dawson TE (2008)
Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: a caution. Plant and Soil 305: 5-13.
CrossRef | Gscholar
Burgess SSO, Adams M, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001)
An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology 21: 589-598.
CrossRef | Gscholar
Butler AJ, Barbier N, Cermák J, Koller J, Thornily C, McEvoy C, Nicoll B, Perks MP, Grace J, Meir P (2010)
Estimates and relations between aboveground and belowground resource exchange surface areas in a Sitka spruce managed forest. Tree Physiology 30: 705-714.
CrossRef | Gscholar
Butnor JR, Doolittle JA, Kress L, Cohen S, Johansen KH (2001)
Use of ground-penetrating radar to study tree roots in southeastern United States. Tree Physiology 21: 1269-1278.
CrossRef | Gscholar
Butnor JR, Barton C, Day FP, Johansen KH, Mucciardi AN, Schroeder R, Stover DB (2012)
Using ground penetrating radar to detect tree roots and estimate biomass. 213-246pp. In: “Measuring roots, and updated approach” (Mancuso S ed). Springer-Verlag, Berlin, Heidelberg, Germany, pp. 382.
Cajander AK (1905)
Die Alluvionen des unteren Lena-Thales [The alluvial deposits of the lower Lena-Thales]. Acta Soc Sci Fenn, Helsingfors, Finland, vol. 32/1, pp. 182. [in German]
Cajander AK (1926)
The theory of forest types. Acta Forestalia Fennica, Helsingfors, Finland, vol. 29, pp. 108.
Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P (2010a)
An appraisal of the electrical resistance method for assessing root surface area. Journal of Experimental Botany 61: 2491-2497.
CrossRef | Gscholar
Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P (2010b)
Analysis of the willow root system by electrical impedance spectroscopy. Journal of Experimental Botany 62 (1): 351-358.
CrossRef | Gscholar
Cermák J, Nadezhdina N (1998)
Sapwood as the scaling parameter- defining according to xylem water content or radial pattern of sap flow? Annales des Sciences Forestières 55 (5): 509-521.
CrossRef | Gscholar
Cermák J, Kucera J (1990a)
Water uptake in healthy and ill trees under drought and hypoxia and non-invasive assessment of the effective size of root systems. In: Proceedings of the COST 612 Workshop “Above and belowground interactions in forest trees in acidified soils” (Persson H ed). Simlangsdalen (Sweden) 21-23 May 1990, pp. 185-195.
Cermák J, Kucera J (1990b)
Scaling up transpiration data between trees, stands and watersheds. Silva Carelica 15: 101-120.
Cermák J, Kucera J (1991)
Extremely fast changes of xylem water flow rate in mature trees, caused by atmospheric, soil and mechanical factors. In: Proceedings of the CEC International Workshop “Methodologies to assess the impacts of climatic changes on vegetation: Analysis of water transport in plants and cavitation of xylem transport in plants and cavitation of xylem conduits” (Raschi A, Borghetti M eds). Firenze (Italy) 29-31 May 1991, pp. 181-190.
Cermák J, Michálek J (1991)
Selection of sample trees in forest stands using the “quantils of total”. Lesnictvi (Forestry) 37 (1): 49-60. [in Czech]
Cermák J, Nadezhdina N (2009)
Application of sap flow technique for characterizing the whole tree architecture, especially root distribution. In: Proceeedings of the “7th International Workshop on Sap Flow”. Seville (Spain) 21-24 October 2008. Acta Horticulturae (ISHS) 846: 219-228.
Cermák J, Nadezhdina N (2011a)
Field studies of whole-tree leaf and roots distribution and water relations in several European forests. In: “Forest Management and the Water Cycle” (Bredemeier M, Cohen S, Godbold D, Lode E, Pichler V, Schleppi P eds). Ecological studies, vol. 212, Part 1, Springer, Berlin, Germany, pp. 380.
CrossRef | Gscholar
Cermák J, Nadezhdina N (2011b)
Sap flow technology used in a non-traditional way including relations to tree structure. In: Proceedings of the “8th International Workshop on Sap Flow”. Volterra (Italy) 8-12 May 2011. Acta Horticulturae 951: 215-223.
Cermák J, Nadezhdina N (2011c)
Instrumental approaches for studying tree water relations along gradients of tree size and forest age. In: “Size- and Age-Related Changes in Tree Structure and Function” (Meinzer FC, Dawson T, Lachenbruch B). Springer, Dordrecht, Heidelberg, London, New York, pp. 385-426.
Cermák J, Novák J (1987)
Composition of organic volatile compounds in the atmosphere of forest ecosystems as studied by gas-chromatography. Ekologia 6 (3): 251-264.
Cermák J, Prax A (2001)
Water balance of a Southern Moravian floodplain forest under natural and modified soil water regimes and its ecological consequences. Annals of Forest Science 58 (1): 15-29.
CrossRef | Gscholar
Cermák J, Prax A (2009)
Transpiration and soil water supply in floodplain forests. Ekologia 28 (3): 248-254.
CrossRef | Gscholar
Cermák J, Urban J (1995)
Volatile organic substances released by forest trees - primary attraction and indication of stresses. In: Proceedings of the Workshop “Zvelebení lesních ekosystému”. VÚLHM-SB-NLK, Opocno (Czech Republic) 5-9 Nov 1995. [in Czech with English abstract]
Cermák J (1986)
Short- and long-term response of transpiration flow rate in full-grown trees to water stress. In: Proceedings of the “18th IUFRO World Congress, Whole-Plant Physiology Working Party (S 2.01-15)”. Ljubljana (Yugoslavia) 7-21 Sep 1986. Yugoslav IUFRO World Congress Organizing Committee, Plesko, Ljubljana, Slovenia, pp. 187-193.
Cermák J (1987)
Monoterpene hydrocarbon contents of the resin from seeds of silver fir (Abies alba Mill.). Trees 1: 94-101.
CrossRef | Gscholar
Cermák J (1989)
Solar equivalent leaf area as the efficient biometric parameter of individual leaves, trees and stands. Tree Physiology 5: 269-289.
CrossRef | Gscholar
Cermák J (1991)
Tree transpiration and its importance in forest ecology. PhD Thesis, Faculty of Forestry, Mendel University in Brno, Czech Republic, pp. 97+317.
Cermák J (1998)
Leaf distribution in large trees and stands of the floodplain forests in southern Moravia. Tree Physiology 18: 727-737.
CrossRef | Gscholar
Cermák J (1999)
Vertical distribution of foliage in Moravian floodplain forests. Ekologia 18: 15-24.
Cermák J, Deml M, Penka M (1973)
A new method of sap flow rate determination in trees. Biologia Plantarum 15 (3): 171-178.
CrossRef | Gscholar
Cermák J, Úlehla J, Kucera J, Penka M (1982)
Sap flow rate and transpiration dynamics in the full-grown oak (Quercus robus L.) in floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions. Biologia Plantarum 24 (6): 446-460.
CrossRef | Gscholar
Cermák J, Jeník J, Kucera J, Zidek V (1984)
Xylem water flow in a crack willow tree (Salix fragilis L.) in relation to diurnal changes of environment. Oecologia 64: 145-151.
CrossRef | Gscholar
Cermák J, Kucera J, Prax A, Stepánková M (1985)
Transpiration der Fichte (Picea abies (L.) Karst. ) unter Feuchtigkeitstress in Gebiet des Tharandter Waldes [Transpiration of Norway spruce (Picea abies (L.) Karst.) under moisture stress in area of Tharandter forest]. In: Proceedings of the Symposium “Ausgewählte Probleme der Gehölzphysiologie” (Tesche M, Feiler S eds). Techical University Dresden, Tharandt, Dresden, Germany, pp. 77-81. [in German]
Cermák J, Janícek R, Tesar V, Oszlányi J (1990a)
Estimation of needle distribution in crowns of large trees. Agr Univ, Brno, Czech Republic, pp. 30. [in Czech]
Cermák J, Kucera J, Bednárová E (1990b)
Measurement and evaluation of transpiration of woody species (oak and spruce). In: “Mlynáruv luh, Krivoklátsko region”. Research Report, Institute of Forest Ecology, Agriculture Univeristy, Brno, Czech Republic (for the Central Geological Institute, Prague), pp. 60.[in Czech]
Cermák J, Kucera J, Janíček R (1992a)
The “Roof” project in Rajec. In: Proceedings of the Symposium “Experimental Manipulations of Ecosystems”. Copenhagen (Denmark) 18-20 May 1992, pp. 1-7.
Cermák J, Cienciala E, Kucera J, Lindroth A, Hallgren J-E (1992b)
Radial velocity profiles of water flow in stems of spruce and oak and response of spruce tree to severing. Tree Physiology 10: 367-380.
CrossRef | Gscholar
Cermák J, Matyssek R, Kucera J (1993a)
Rapid response of large, drought stressed beech trees to irrigation. Tree Physiology 12: 281-290.
CrossRef | Gscholar
Cermák J, Matyssek R, Kucera J (1993b)
The causes of beech decline on heavy soils after sudden reduction of stand density. Lesnictví-Forestry 39 (5): 175-183. [in Czech]
Cermák J, Riguzzi F, Ceulemans R (1998)
Scaling up from the individual tree to the stand level in Scots pine. I. Needle distribution, overall crown and root geometry. Annales des Sciences Forestières 55 (1-2): 63-88.
CrossRef | Gscholar
Cermák J, Hruška J, Martinková M, Prax A (2000a)
Urban tree root systems and their survival near houses analyzed using ground penetrating radar and sap flow techniques. Plant and Soil 219 (1-2): 103-115.
Cermák J, Jimenez MS, Gonzalez-Rodriguez AM, Morales D (2000b)
Laurel forests in Tenerife, Canary Islands: efficiency of water conducting systems in Laurus azorica trees. Trees 16: 538-546.
CrossRef | Gscholar
Cermák J, Kucera J, Prax A, Bednárová E, Tatarinov F, Nadyezhdin V (2001)
Long-term course of transpiration in a floodplain forest in southern Moravia associated with changes of underground water table. Ekologia 20 (1): 92-115.
Cermák J, Kucera J, Nadezhdina N (2004)
Sap flow measurements with two thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees - Structure and Function 18: 529-546.
CrossRef | Gscholar
Cermák J, Ulrich R, Stanek Z, Koller J, Aubrecht L (2006)
Electric measurement of the absorbing surfaces in whole tree roots by the earth impedance method - II. Verification based on allometric relationships and root severing experiments. Tree Physiology 26: 1113-1121.
CrossRef | Gscholar
Cermák J, Gašpárek J, De Lorenzi F, Jones HG (2007a)
Stand biometry and leaf area distribution in an old olive grove at Andria, southern Italy. Annals of Forest Science 64 (5): 491-501.
CrossRef | Gscholar
Cermák J, Kucera N, Bauerle WL, Phillips J, Hinckley TM (2007b)
Tree water storage and its diurnal dynamics related to sap flow and changes of trunk volume in old-growth Douglas-fir trees. Tree Physiology 27: 181-198.
CrossRef | Gscholar
Cermák J, Tognetti R, Nadezhdina N, Raschi A (2008a)
Stand structure and foliage distribution in Quercus pubescens and Quercus cerris forests in Tuscany (central Italy). Forest Ecology and Management 255: 1810-1819.
CrossRef | Gscholar
Cermák J, Ulrich R, Culek I, Cermák M (2008b)
Visualization of root systems by the supersonic air stream. In: “Determination of damage to soil and root system of forest trees by the operation of logging machines” (Neruda J ed). Mendel University of Agriculture and Forestry Publishing House, Brno, Czech Republic, pp. 89-95.
Cermák J, Nadezhdina N, Meiresonne L, Ceulemans R (2008c)
Scots pine root distribution derived from radial sap flow patterns in stems of large leaning trees. Plant and Soil 305 (1-2): 61-75.
Cermák J, Simon J, Kánová H, Tichá S (2013)
Absorptive root areas of large pedunculate oak trees differing in health status along a road in South Bohemia, Czech Republic. Urban Forestry and Urban Greening 12: 238-245.
CrossRef | Gscholar
Cerny M, Malík J, Parez J (2004)
Methods for forest management planning on the basis of forestry inventory data. Institute for Forest Ecology Research, Ministerstvo Zemedelství, Prague, Czech Republic, pp. 214. [in Czech]
Champion GG, Seth SK (1968)
A revised surway of the forest types in India. Government of India, Delhi, India, pp. 404.
Chiesi M, Maselli F, Bindi M, Fibbi L, Bonora L, Raschi A, Cermák J, Nadezhdina N (2001)
Calibration and application of forest-BCG in a Mediterranean area by the use of conventional and remote sensing data. Ecological Modeling 154: 251-262.
CrossRef | Gscholar
Chytry M, Kucera T, Kočí M, Grulich V, Lustyk P (2010)
Catalogue of biotopes of the Czech Republic. Agentura ochrany prírody a krajiny Ceské republiky, Prague, Czech Republic, pp. 446.
Clements FE (1904)
The development and structure of vegetation. Studies in the vegetation of the state, III. Botanical Surway, Lincoln, Nebraska, USA, pp. 176.
Danon F, Reubens B (2008)
Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and Soil 303: 1-34.
CrossRef | Gscholar
Daum CR (1967)
A method for determining water transport in trees. Ecology 48 (3): 425-431.
CrossRef | Gscholar
David TS, David JS, Pinto CA, Cermak J, Nadezhdin V, Nadezhdina N (2012)
Hydraulic connectivity from roots to branches depicted through sap flow: analysis on a Quercus suber tree. Functional Plant Biology 39: 103-115.
CrossRef | Gscholar
David TS, Pinto CA, Nadezhdin V, Nadezhdina N, Cermak J, David JS (2013)
Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: a modeling approach based on root sap flow. Forest Ecology and Measurement 307: 136-146.
CrossRef | Gscholar
Deml M, Kucera J, Cermák J (1993)
Measurement of the xylem water flow in trees with the method of trunk heat balance. In: Proceedings of the Symposium of the National Committee IMECO “Flow’93”. Prague (Czech Republic) May 1993, Tech-Market, Prague, Czech Republic, pp. 31-40.
Ellenberg V (1963)
Vegetation Mittleuropas mit den Alpen in okologischer, dynamischer and historical Sicht [Vegetation of Central Europe and the Alps in ecological, dynamic and historical perspective]. Eugen Ulmer GmbH and Co, Stuttgart-Hohenheim, Germany, pp. 1095.
Fabrika M, Pretzsch H (2011)
Analysis and modeling of forest ecosystems. Publ. House of Tech. Univ. Zvolen, Slovakia, pp. 600. [in Slovak]
Federer CA, Vorosmary C, Fekete B (1996)
Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resources research, 32 (7): 2315-2321.
CrossRef | Gscholar
Fujimori T, Whitehead D (1986)
Crown and canopy structure in relation to productivity. In: Proceedings of the International workshop “Forest Crown and Productivity”. Tokio (Japan) 14-20 Oct 1985. Tokyo University, Japan, pp. 1-6.
Gebauer R, Martinková M (2008)
Determining the impact of heavy machines on the Norway spruce - Histology and morphology of roots. In: “Determination of damage to soil and root system of forest trees by the operation of logging machines” (Neruda J ed). Mendel University of Agriculture and Forestry Publishing House, Brno, Czech Republic, pp. 82-84.
Habrová H, Buček A (2010)
Vegetation and geobiocoenological typology of the Soquotra Island. In: “Tropentag 2010. World food system / A contribution from Europe”. Cuvillier Verlag, Gottingen, Germany, pp. 206. [ISBN 978-3-86955-455-6]
Habrová H (2004)
Geobiocoenological differentiation as a tool for sustainable land-use of Socotra Island (Republic of Yemen). Ekológia 23 (Suppl. 1): 47-57.
Hagrey SA (2007)
Geophysical imaging of root-zone, trunk and moisture heterogeneity. Journal of Experimental Botany 58: 839-854.
CrossRef | Gscholar
Hagrey SA (2012)
Geophysical imaging techniques. In: “Measuring Roots: an Updated Approach” (Mancuso S ed). Springer-Verlag, Berlin, Heidelberg, Germany, pp. 151-188.
Hagrey SA, Meissner R, Werban U, Rabbel W, Ismaeil A (2004a)
Hydro-bio-geophysics. The Leading Edge 23: 670-674.
Hagrey SA, Meissner R, Ismaeil A (2004b)
Hydro geophysical study at an olive farm, S. Italy. In: Proceedings of the Meeting “Near Surface 2004 - 10th European Meeting of Environmental and Engineering Geophysics”. EarthDoc, EAGE, Utrecht, The Netherlands, pp. 1-4.
Online | Gscholar
Halaj J, Grék J, Pánek F, Petráš R, Rehák J (1987)
Growth tables of main tree species of Czechoslovakia. Príroda, Bratislava, Slovakia, pp. 362. [in Czech]
Hales S (1727)
Vegetable statics, or, an account of some statical experiments on the sap in vegetables. W and J Innys, and T Woodward, London, UK.
Hanafy SM, Hagrey SA (2006)
Radar tomography for soil moisture heterogeneity. Geophysics 71: k9-k18. Publ. House of Technical Univ, Zvolen, Slovakia, pp. 600.
Honzová M, Cermák J (2012)
Calculation of the size of the surface area of deciduous trees and their potential for eventual use in a forensic-expert practice. In: Proceedings of the XXI International Scientific Conference on Forensic Engineering “ExFoS - Expert Forensic Science”. Brno (Czech Republic) 20-21 Jan 2012, pp. 1-11.
Hruška J (2002)
Estimates of the health state of tree stems in the park of the castle Sychrov. Research report for municipial authorities by Kolejservis s.r.o., Brno, Czech Republic, pp. 12.
Hruška J, Cermák J, Sustek S (1999)
Mapping of tree root systems by means of the ground penetrating radar. Tree Physiology 19: 125-130.
CrossRef | Gscholar
Hruška J (2008)
Visualization of root systems by georadar. In: “Determination of damage to soil and root system of forest trees by the operation of logging machines” (Neruda J ed). Mendel University of Agriculture and Forestry, Brno, Czech Republic, pp. 85-88.
Huber B (1926)
Ist der Baum ein System konstanter Wasserleitfahigkeit? [Is the tree a system of constant water conductivity?] Ber. d. dtsch. Bot. Ges 44: 16-36. [in German]
Huber B (1928)
Weitere quantitative Untersuchungen uber die Wasserleitung System der Pflanzen [Further quantitative studies on the water supply system of plants]. Jahrb. f. wiss. Bot 67: 879-959. [in German]
Huttunen S, Heikkila H, Bucher J, Sundberg B, Jarvis P, Matyssek R (2001)
Trends in European forest tree physiology research. Eurosilva, Kluwer Academic Publishing, Dordrecht, Boston, London, pp. 264.
Ishihara MI, Hiura T (2011)
Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest. Agricultural and Forest Meteorology 151: 1016-1022.
CrossRef | Gscholar
Ivanov LA (1961)
Biological background of turpentine exploitation in the USSR. Goslesbumizdat, Moscow-Leningrad, Russia, pp. 292. [in Russian]
Jeník J (2014)
Roots and root system of trees. Opera rhizologica, Botanical Garden, Liberec, Czech Republic, pp. 326.
Jeník J, Lokvenc T (1962)
Die alpine Waldgrenze im Krkonoše Gebirge [The alpine timberline on the Krkonoše Mountains]. Rozpravy Cs. Akademie ved, rada matematických a prírodních ved, 72/1, pp. 67. [in German]
Jeník J (1957)
Root system of pedunculate and sessile oaks. Rozpravy Cs. Akademie ved, rada matematických a prírodních ved, 67/14, pp. 85. [in Czech]
Jimenez MS, Cermák J, Kucera J, Morales D (1996)
Laurel forests in Tenerife, Canary Islands: the annual course of sap flow in Laurus trees and stand. Journal of Hydrology 183 (3-4): 305-319.
Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004)
Review of methods for in situ leaf area index determination: part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology 121: 19-35.
CrossRef | Gscholar
Kasyakhenko AI (1980)
Root systems of grafted fruit trees. Naukova Dumka, Kiev, Ukraine, pp. 220. [in Russian]
Kimmins JP (2004)
Forest ecology. A foundation for sustainable forest management and environmental ethics in forestry. Prentice Hall, Upper Saddle River, New Jersey, USA, pp. 712.
Klika J (1933)
The basis of geobotanical mapping in agriculture and forestry. Zemedelská Architektura 24: 403-412. [in Czech]
Klika J, Novák V, Gregor A (1954)
Practicing phytocenology, ecology, climatology and soil science. Czech Academy of Sciences, Prague, Czech Republic, pp. 773. [in Czech]
Konopka B, Tsukahara H (2000)
Biomass of fine and small roots in two Japanese black pine stands of different ages. Journal of Forest Research 5: 71-76.
CrossRef | Gscholar
Konopka B, Tsukahara H (2001)
Production and vertical distribution of fine and small roots in Japanese black pine on sandy soil. Journal of Forest Science 6: 277-284.
Konopka B (2002)
Relationship between parameters of the aboveground parts and root system in Norway spruce with respect to soil drainage. Ekológia 21: 155-165.
Kopecká V, Buček A (1999)
Modeling the possible global climate change impacts in the Czech Republic. Agency for Natural Conservation and Landscape Protection of the Czech Republic, Prague - Mendel University of Agriculture and Forestry, Brno, Czech Republic, pp. 27.
Korf V (1955)
Forest management planning. National Agricult Publ House (SZN), Prague Czech Republic, pp. 364. [in Czech]
Korf V, Hubač K, Wolf J (1972)
Dendrometrie. National Agricult Publ House (SZN), Prague, Czech Republic, pp. 376. [in Czech]
Kormanik PP, Brown CL (1967)
Root buds and the development of root suckers in sweetgum. Forest Sciences 13: 338-345.
Kostler JN, Bruckner E, Bibelriether H (1968)
Die Wurzeln der Waldbaume [The roots of forest trees]. Verlag Parey, Hamburg and Berlin, Germany, pp. 284. [in German]
Kostner B, Schulze E-D, Kelliher FM, Holliger DY, Byers JN, Hunt JE, McSeveny TM, Meserth R, Weir PL (1992)
Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia 91: 350-359.
CrossRef | Gscholar
Kozlowski TT, Wignet CH (1963)
Patterns of water movement in forest trees. Botanical Gazette 124: 301-311.
CrossRef | Gscholar
Kraft G (1884)
Beitrage zur Lehre v. d. Durchforstungen usw. Hannover, Germany. [in German]
Krajina VJ (1957)
Bioclimatic zones in British Columbia. Vancouver, Dept. of Botany, Botany series 1: 1-47.
Krajina VJ (1970)
Ecology of western north of America (voll. 1 and 2). Vancouver, BC, Canada, pp. 218.
Kramer H (1988)
Waldwachstumslehre [Forest growth teaching]. Paul Parey Verlag, Hamburg and Berlin, Germany, pp. 374.[in German]
Kravka M, Krejzar T, Cermák J (1999)
Water content in stem wood of large pine and spruce trees in natural forests in central Sweden. Agricultural and Forest Meteorology 98-99: 555-562.
CrossRef | Gscholar
Krejzar T, Kravka M (1998)
Sap flow and vessel distribution in annual rings and petioles of large oaks. Lesnictvi-Forestry 44 (5): 193-201.
Krečmer V (1981)
Impact of forest management on landscape water relations. Acta Ecologica Naturale ac Regione, Prague, Czech Republic, pp. 41-52. [in Czech]
Kusbach A (2002)
Regional plans of forest development. Brandys nad Labem, Lesnická práce, s.r.o. Kostelec nad Cernými lesy, Prague, Czech Republic, pp. 190. [in Czech]
Kutschera L, Lichtenegger E (2002)
Wurzelatlas, mittleeuropaischer Waldbaume und Sträucher [Root Atlas, Central European forest trees and shrubs]. Leopold Stocker Verlag, Graz-Stuttgart, Germany, pp. 604. [in German]
Kucera J, Cermák J, Penka M (1977)
Improved thermal method of continual recording the transpiration flow rate dynamics. Biologia Plantarum 19 (6): 413-420..
CrossRef | Gscholar
Lamee G (1837)
Sur les surfaces isothermes dans les corps homogenes en equilibre de temperature. J Math Pures Appl 2: 147-188. [in French]
Larcher W (1995)
Physiological plant ecology. Ecophysiology and stress physiology of functional groups. Springer Verlag, Berlin, Heidelberg, New York, pp. 506.
Lehman F, Green AG (1999)
Semi automated georadar data acquisition in three dimensions. Geophysics 64: 719-731.
CrossRef | Gscholar
Lindroth A, Cermák J, Kucera J, Cienciala E, Eckersten H (1995)
Sap flow by heat balance method applied to small size Salix-trees in a short-rotation forest. Biomass and Bioenergy 8 (1): 7-15.
CrossRef | Gscholar
Lyr H, Polster H, Fiedler H-J (1967)
Physiology of woody species. VEB Gustav Fischer Verlag, Jena, Germany, pp. 420.
Makarieva AM, Gorshkov VG (2007)
Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences 11: 1013-1033.
CrossRef | Gscholar
Makarieva AM, Gorshkov VG (2008)
The forest biotic pump of river basins. Russian Journal of Ecology 39 (7): 537-540.
CrossRef | Gscholar
Makarieva AM, Gorshkov VG (2009)
Condensation induced kinematics and dynamics of cyclones, hurricanes and tornadoes. Physical letters A 343 (46): 4201-4205.
CrossRef | Gscholar
Makarieva AM, Gorshkov VG, Bai-Lian L (2008)
Precipitation on land versus distance from the ocean: Evidence for a forest pump of atmospheric moisture. Ecological complexity
CrossRef | Gscholar
Mancuso S (2012)
Measuring roots, an updated approach. Springer, Heidelberg, Dordrecht, London, New York, pp. 382.
CrossRef | Gscholar
Martinková M, Cermák J (1994)
Physiological predisposition of forest woody species to an attack by phytophages and possibility of defense reactions. In: Proceedings of the National Conference “Bark-beetle calamity: causes, extent, defense”. Brno (Czech Rep), 17 Feb 1994. Publications of the Mendel Agricultural and Forestry University , Brno, Czeck Republic, pp. 25-37.
Matyssek R, Cermák J, Kucera J (1991)
Ursacheneingrenzung eines lokalen Buchensterbens mit einer Messmethode der Kronentranspiration [Localisation of causes of tree damage using the sap flow measurement method]. Schweiz Z Forstwes 142 (10): 809-828. [in German]
McDowell NG, Phillips N, Lunch C, Bond BJ, Ryan MG (2002)
An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiology 22: 763-774.
CrossRef | Gscholar
Mednikov FA (1980)
Biological basis and technology of resin harvest. Lesnaya promyshlennost, Moscow, pp. 176. [in Russian]
Meinzer FC, James SA, Goldstein G, Woodruff D (2003)
Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell and Environment 26: 1147-1155.
CrossRef | Gscholar
Meinzer FC, Dawson T, Lachenbruch B (2011)
Size- and Age-Related Changes in Tree Structure and Function. Springer, Dordrecht, Heidelberg, London, New York, pp. 510.
Meyer HA (1953)
Forest mensuration. Pennsylvania Valley Publ. Inc., State College, PA, USA, pp. 250.
Morales D, Jimenez MS, Gonzalez-Rodriguez AM, Cermák J (1996a)
Laurel forests in Tenerife, Canary Islands: I. The site stand structure and leaf distribution. Trees 11: 34-40.
CrossRef | Gscholar
Morales D, Jimenez MS, Gonzalez-Rodriguez AM, Cermák J (1996b)
Laurel forests in Tenerife, Canary Islands: II. Leaf distribution patterns in individual trees. Trees 11: 41-46.
CrossRef | Gscholar
Morales D, Gonzalez-Rodriguez AM, Cermák J, Jimenez MS (1996c)
Laurel forests in Tenerife, Canary Islands: the vertical profiles of leaf characteristics. Phyton 36 (2): 1-13.
Morales D, Jimenez MS, Gonzalez-Rodriguez AM, Cermák J (2000)
Laurel forests in Tenerife, Canary Islands: vessel distribution in stems and petioles of Laurus azorica trees. Trees 16: 529-537.
CrossRef | Gscholar
Moravec J (1994)
Phytocoenologie. Academia, Prague, Czech Republic, pp. 403. [in Czech]
Mráz K (1981)
Research results of the forest soil water relations 1970-1980. Lesnictví, Prague 27: 727-740. [in Czech]
Nadezhdina N, Cermák J (2000)
Changes in sap flow rate in tree trunks and roots after mechanical damage. In: Proceedings of the International Conference “Spruce Monocultures in Central Europe - Problems and Prospects” (Klimo E, Hager H, Kulhavý J eds). Brno (Czech Republic) 22-25 June 1998. EFI Proceedings 33: 167-175.
Nadezhdina N (1988)
Apple tree water relations and their optimization under conditions of southern Ukraine. PhD Thesis, Kiev, Ukraine, pp. 166. [in Russian]
Nadezhdina N (1989)
A physiological algorithm of woody plant irrigation control under air drought. Fiziologiaya rastenii 36 (5): 972-979. [in Russian]
Nadezhdina N (1999)
Sap flow index as an indicator of plant water status. Tree Physiology 19: 885-891.
CrossRef | Gscholar
Nadezhdina N (2000)
Specificity of sap flow index for mist irrigation control. In: Proceedings of the “3rd Internatationl Symposium on Irrigation of Horticultural Crops” (Ferreira MI ed). Estoril (Portugal) 28 Jun - 2 July 1999, pp. 479-486.
Nadezhdina N (2009)
Additional information derived from detail analysis of raw temperature data measured with the HFD-method. Acta horticulturae 846 (1): 77-84.
Nadezhdina N (2010)
Integration of water transport pathways in a maple tree: responses of sap flow to branch severing. Annals of Forest Science 67: 107.
CrossRef | Gscholar
Nadezhdina N, Cermák J, Nadezhdin V (1998)
Heat field deformation method for sap flow measurements. In: Proceedings of the “4th International Workshop on Measuring Sap Flow in Intact Plants”. Zidlochovice (Czech Republic) 3-5 Oct 1998. IUFRO Publications, Publishing house of Mendel University, Brno, Czech Republic, pp. 72-92.
Nadezhdina N, Cermák J, Ceulemans R (2002)
Radial pattern of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology 22: 907-918.
CrossRef | Gscholar
Nadezhdina N, Cermák J, Gašpárek J, Nadezhdin V, Prax A (2006a)
Vertical and horizontal water redistribution within Norway spruce (Picea abies) roots in the Moravian Upland. Tree Physiology 26: 1277-1288.
CrossRef | Gscholar
Nadezhdina N, Cermák J, Neruda J, Prax A, Ulrich R, Nadezhdin V, Gašpárek J, Pokorny E (2006b)
Roots under the load of heavy machinery in spruce trees. European Journal of Forest Research 125: 111-128.
CrossRef | Gscholar
Nadezhdina N, Cermák J, Meiresonne L, Ceulemans R (2007)
Transpiration of Scots pine in Flanders growing on soil with irregular substratum. Forest Ecology and Management 243: 1-9.
CrossRef | Gscholar
Nadezhdina N, Steppe K, De Pauw DJW, Bequet R, Cermak J, Ceulemans R (2009)
Stem-mediated hydraulic redistribution in large roots on opposing sides of a Douglas-fir tree following localized irrigation. New Phytologist 184 (4): 932-943.
CrossRef | Gscholar
Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesar M, Gartner K, Leitgeb E, Nadezhdin V, Cermák J, Jimenez MS, Morales M (2010)
Trees never rest: the multiple faces of hydraulic redistribution. Ecohydrology 3: 431-444.
CrossRef | Gscholar
Nadezhdina N, Vandegehuchte MW, Steppe K (2012a)
Sap flow measurements based on Heat Field Deformation method. Trees 26: 1439-1448.
CrossRef | Gscholar
Nadezhdina N, David TS, David JS, Nadezhdin V, Cermak J, Gebauer R, Ferreira MI, Conceicao N, Dohnal M, TesaÅ M, Gartner K, Ceulemans R (2012b)
Root function: in situ studies through sap flow research. In: “Measuring Roots: an Updated Approach” (Mancuso S ed). Springer-Verlag, Berlin, Heidelberg, Germany, pp. 267-290.
CrossRef | Gscholar
Nadezhdina N, David TS, David JS, Nadezhdin V, Cermák J, Gebauer R, Ferreira MI, Conceicao N, Dohnal M, Tesar M, Gartner K, Ceulemans R (2012c)
Root structure: in situ studies through sap low research In: “Measuring Roots: An Updated Approach” (Mancuso S ed). Springer-Verlag, Berlin, Heidelberg, Germany, pp. 247-266.
CrossRef | Gscholar
Nathenson R, Jarabak A (2001)
The evolution of air tools for use in arboriculture. Tree Care Industry 2001: 47-48.
Nekovár J, Koch E, Kubín E, Nejedlík P, Sparks T, Wielgolaski F-E (2008)
The history and current status of plant phenology in Europe. COST Action 725, Vammalan Kirjapaino Oy, Finland, pp. 182. [ISBN 978-951-40-2091-9]
Neumann HH, Den Hartog G, Shaw RH (1989)
Leaf area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agricutural and Forest Meteorology 45: 325-345.
CrossRef | Gscholar
Nielsen CN (1995)
Detailed instructions for root architecture assessment with the root arch-method. Internal report No. 7, Project TREEARCH, Arboretum Royal Vet and Agricultural University, Hoersholm, Denmark, pp. 12.
Novák J (1975)
Quantitative analysis by gas-chromatography. Marcel Dekker Inc., New York, USA, pp. 176.
Oltchev A, Cermák J, Nadezhdina N, Tatarinov F, Tischenko A, Ibrom A, Gravenhorst G (2002a)
Transpiration of a mixed forest stand: field measurements and simulation using SVAT models. Boreal Environental Research 7 (4): 389-397.
Oltchev A, Cermák J, Gurtz J, Tischenko A, Kiely G, Nadezhdina N, Zappa M, Lebedeva N, Vitvar T, Albertson JD, Tatarinov F, Tischenko D, Nadezhdin V, Kozlov B, Ibrom A, Vygodskaya N, Gravenhorst G (2002b)
The response of the water fluxes of the boreal forest region at the Volga’s source area to climatic and land-use changes. Physics and Chemistry of the Earth 27: 675-690.
CrossRef | Gscholar
Pardé J (1962)
Dendrométrie. Eaux et Forêts, Imprimerie Louis-Jean Cap, Nancy, France, pp. 330. [in French]
Penman HL (1948)
Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A 193 (1032): 120-145.
CrossRef | Gscholar
Perina V, Krečmer V (1979)
Management systems and their forms in forests with prevailing economical importance. Výzkumný ústav lesního hospodárství a myslivosti, Opočno, Czech Republic, pp. 85. [in Czech]
Petersen T, Hagrey SA (2009)
Mapping root zones of small plants using surface and boreholes resistivity tomography. The Leading Edge 28 (10): 1220-1224.
CrossRef | Gscholar
Philip MS (1994)
Measuring of trees and forests. CAB International, Wallingford, UK, pp. 310.
Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Cermák J (2003)
Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology 23: 237-245.
CrossRef | Gscholar
Pietsch S, Hasenauer H, Kucera J, Cermák J (2003)
Modelling the effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains. Tree Physiology 23: 735-746.
CrossRef | Gscholar
Plíva K, Pruša E (1969)
Typological background of silviculture. National Agricult Publ House (SZN), Prague, Czech Republic, pp. 400. [in Czech]
Plíva K, Zlábek I (1989)
Production planning systems in forestry. Ústav hospodárské úpravy lesu Brandýs nad Labem, Prague, Czech Republic, pp. 208. [in Czech]
Plíva K (2000)
Sustainable forest management based on forest typology classification. Brandys nad Labem, Ministerstvo zemedelství, Prague, Czech Republic, pp. 222. [in Czech]
Pretzsch H (2009)
Forest dynamics, growth and yield. From measurements to model. Springer Verlag, Berlin, Heidelberg, Germany, pp. 664.
Qi Y, Jin G, Liu Z (2013)
Optical and litter collection methods for measuring leaf area index in an old-growth temperate forest in northeastern China. Journal of Forest Research 18: 430-439.
CrossRef | Gscholar
Randuška D, Vorel J, Plíva K (1986)
Phytocenology and forest typology. SZN, Prague, Czech Republic, pp. 340.
Repo T, Laukkanen J, Sivennoinen R (2005)
Measuring tree root growth using electrical impedance spectroscopy. Silva Fennica 39: 159-166.
Repo T, Cao Z, Silvennoinnen R, Ozier-Lafontaine H (2012)
Electrical impedance spectroscopy and roots. In: “Measuring Roots an Updated Approach” (Mancuso S ed). Springer Heidelberg, Dordrecht, London, New York, pp. 25-49.
CrossRef | Gscholar
Rinn F (2003)
Holzanatomische Grundlagen mechanischer impuls - Tomographie an Baumen [Wood anatomy background through mechanical pulses - tomografy of trees]. Allgemeine Forstwirtschaft 8: 450-456. [in German]
Rinn F (2008)
Wurzeldiagnose mit einem Schalltomographen [Root diagnosis using tomography]. Allgemeine Forstwirtschaft 12: 603-631. [in German]
Rizzo DM, Gross R (2000)
Rizzo DM, Gross R (2000): Distribution of Armillaria mellea on pear root systems and comparison of excavation techniques. In: “The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology” (Stokes A ed). Developments in Plant and Soil Sciences, vol. 87, Kluwer Academic Publishers, Dordrecht, The Neteherlands, pp. 305-311.
Roberts J, Cabral OMR, Aguiar LF (1990)
Stomatal and boundary layer conductances in Amazonian terra firme forest. Journal of Applied Ecology 27: 336-353.
CrossRef | Gscholar
Rudinsky JA, Svihra P (1970)
Struktury transpiracneho prudu vody ihlicnatych stromov a ich ekologicke a fylogeneticke vztahy [Structures of sap flow in coniferous species and their ecological and phylogenetic relationships]. Lesnický časopis 16 (2): 143-156. [in Czech]
Rudinsky JA (1959)
Systematics in the control of forest insects. Journal of Forestry 57 (4): 284-286.
Ryan MG, Phillips N, Bond BJ (2006)
The hydraulic limitation hypothesis revisited. Plant, Cell and Environment 29: 367-381.
CrossRef | Gscholar
Schulze ED, Cermák J, Matyssek R, Penka M, Zimermann R, Vašícek F, Gries W, Kucera J (1985)
Canopy transpiration and flow rate fluxes in the xylem of the trunk of Larix and Picea trees - a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475-483.
CrossRef | Gscholar
Schulze ED, Beck E, Muller-Hohenstein K (2002)
Plant ecology. Springer Verlag, Berlin, Heidelberg, New York, pp. 702. [ISBN 3-540-20833-X]
Schwappach A (1923)
Leitfaden der Holzmesskunde [Yield tables]. Verlag Julius Springer, Berlin, Germany, pp. 173. [in German]
Sevanto S, Nikinmaa E, Riikonen A, Daley M, Pettijohn JC, Mikkelsen TN, Phillips N, Holbrook NM (2008)
Linking xylem diameter variations with sap low measurements. Plant Soil 305: 77-90.
CrossRef | Gscholar
Simon J, Cermák J (2011)
Assessment of rot in stem base and roots. Lesnická práce 90 (12): 40/833-41/834. [in Czech]
Simon J, Buček A, Skoup A, Vacek S (2010)
Management strategy of forested areas with special status of protection. General part I, Publ. Lesnická práce, s. r. o. Prague, Czech Republic, pp. 448. [in Czech]
Slavík B, Slavíková J, Jeník J (1957)
Ecology of of mixed forests. Series of mathematical and natural sciences, Rozpr. Cs. Acad. Sci. Prague, Czech Republic, vol. 67/2, pp. 158. [in Czech]
Slavíková J (1986)
Plant ecology. SPN, Prague, Czech Republic, pp. 366. [in Czech]
Smelko S (2007)
Dendrometrie. Technical University in Zvolen, Zvolen, Slovakia, pp. 326. [in Slovak]
Smelko S, Wenk G, Antanajtis V (1992)
Growth, structure and production of forests. Publ. Priroda, Bratislava, Slovakia, pp. 342. [in Slovak]
Sprugel D, Brooks JR, Hinckley TM (1998)
Effect of light on shoot geometry and needle morphology in Abies amabilis. Tree physiology 16: 91-98.
CrossRef | Gscholar
Srámek M, Cermák J (2012)
The vertical leaf distribution of Ulmus laevis Pall. Trees 26: 1781-1792.
CrossRef | Gscholar
Stanek Z (1997)
Physical aspects of resistance measurement in plants and their ecological applications. Dept. of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic, pp. 166. [in Czech]
Stepánek V, Penka M, Cermák J (1972)
Physiology of nourishment of juvenile woody species - transpiration and shoot water content in oak. Research Report, Forest Faculty, Agriculture University, Brno, Czech Republic, VU: VI-5-1, pp. 45. [in Czech]
Sterba P (2004)
National forest inventory in the Czech Republic 2001-2004. Universität Bodenkultur, Wien, Österreich, pp. 224. [in Czech]
Stokes A, Fourcaud T, Hruska J, Cermák J, Nadyezhdina N, Nadyezhdin V, Praus L (2002)
An evaluation of different methods to investigate root system architecture of urban trees in situ. I. Ground penetrating radar. Journal of Arboriculture 28-1: 1-9.
Sukatchev VN (1958)
Forest biogeocenology and its importance for agriculture. Akademia nauk SSSR, Lenigrad, Russia, pp. 573. [in Russian]
Tatarinov F, Cermák J (1999)
Daily and seasonal variation of stem radius in oak. Annales des Sciences Forestiere 56: 579-590.
CrossRef | Gscholar
Tatarinov F, Cermák J, Kucera J, Prax A (2000)
Transpiration of spruce in a mature plantation in Drahanska Vrchovina uplands, Moravia. I. Variation between individual trees. Ekologia 19 (Suppl 1): 48-62.
Tatarinov F, Bochkarev Y, Oltchev A, Nadezhdina N, Cermák J (2005)
Effect of contrasting water supply on the diameter growth of Norway spruce and aspen in mixed stands: a case study from the southern Russian taiga. Annals of Forest Sciences 62: 1-10.
CrossRef | Gscholar
Tatarinov F, Urban J, Cermák J (2008)
The application of “clump technique” for root system studies of Quercus robur and Fraxinus excelsior. Forest Ecology and Management 255: 495-505.
CrossRef | Gscholar
Thimonier A, Sedivy I, Schleppi P (2010)
Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. European Journal of Forest Research 129 (4): 543-562.
CrossRef | Gscholar
Tjurin AV (1938)
Forest inventory. Publ. AN USSR Nauka, Moscow, Russia, pp. 360.
Tognetti R, Raschi A, Nadezhdina N, Cermak J (2003)
Stand structure and foliage distribution patterns in individual trees of Quercus pubescens and Quercus cerris forests in Tuscany (central Italy). In: Proceedings of the “5th International Workshop on Measuring Sap Flow in Intact Plants” (Tognetti R, Raschi A eds). Florence (Italy), 09-10 Nov 2000. Fondazione per la Meteorologia Applicata, Campi Bisenzio, Firenze, Italy, pp. 1-27.
Trcala M, Cermák J (2012)
Improvement of the trunk heat balance method including measurements of zero and reverse sap flows. Agricultural and Forest Meteorology 166-167: 120-126.
CrossRef | Gscholar
Tselniker YL, Malkina IS (1992)
Structural and functional characteristics of pine and spruce needles depending on shoot length. Inst For, Acad Sci Russ, Uspenskoye, Russia. Lesovedenie (5): 46-55. [in Russian]
Turc L (1961)
Evaluation des besoins en eau d’irrigation, evapotranspiration potentielle [Assessment of the needs of irrigation water, potential evapotranspiration]. Annales Agronomique 12: 13-49. [in French]
Ulehla V (1947)
Let’s feed water sources - about suffering of our forests. Státní zemedelské nakladatelství, Prague, Czech Republic, pp. 164. [in Czech]
Urban J, Tatarinov F, Nadezhdina N, Cermák J, Ceulemans R (2009)
Crown structure and leaf area of the understorey species Prunus serotina. Trees - Structure and Function 23: 391-399.
CrossRef | Gscholar
Urban J, Cermák J, Ceulemans R (2014)
Spatial distribution of above- and below-ground biomass, surface area, volume and water in a mature Scots pine stand. Trees [in press].
Vacek S, Simon J (2007)
Forest management measures in widely structured and near to nature forests. Publ house Lesnická práce s.r.o., Czech Republic, pp. 448. [in Czech]
Van Der Zande D, Mereu S, Nadezhdina N, Cermak J, Muys B, Coppin P, Manes F (2009)
3D upscaling of transpiration from leaf to tree using ground-based LiDAR: application on a Mediterranean Holm oak (Quercus ilex L.) tree. Agricultural and Forest Meteorology 149 (10): 1573-1583.
CrossRef | Gscholar
Viewegh J, Kusbach A, Mikeška M (2003)
Czech forest ecosytem classification. Journal of Forest Science 49 (2): 74-82.
Vyskot M (1976)
Tree story biomass in lowland forests in South Moravia. Proceedings of the Czechoslovak Academy of Sciences, Academia, Prague, Czech Republic, vol. 86, pp. 170.
Vyskot M (1981)
Biomass of the tree layer of a spruce forest in the Bohemian Upland. Academia, Prague, Czech Republic, pp. 400.
Vyskot M (1982)
Larix decidua in biomass. Proceedings of the Czechoslovak Academy of Sciences, Academia, Prague, Czech Republic, vol. 92, pp. 400.
Walker BH (1994)
Landscape to regional scale responses of terrestrial ecosystems to global change. Ambio 23: 67-73.
Waring RH, Running SW (1998)
Forest ecosystems, analysis at multiple scales. Academic Press, San Diego, CA, USA, pp. 370.
West GB, Brown JH, Enquist BJ (1999)
A general model for the structure and allometry of plant vascular systems. Nature 189: 664-667.
CrossRef | Gscholar
Wielopolski L, Hendry G, Daniels J, McGuigan M (2000)
Imaging tree root systems in situ. In: Proceedings of the “8th International Conference on Ground Penetrating Radar” (Noon DA, Stickley GF, Longstaff D eds). SPIE, Washington, DC, USA, vol. 4084, pp. 642-646.
Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR, Melillo JM, Munger JW, Fan SM, Nadelhoffer KJ (1996)
Modeling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant, Cell and Environment 19: 911-927.
CrossRef | Gscholar
Williams M, Bond BJ, Ryan MG (2001)
Evaluation different soil and plant hydraulic constrains on tree function using a model and sap flow data from ponderosa pine. Plant, Cell and Environment 24: 679-690.
CrossRef | Gscholar
Zavarin E (1968a)
Monoterpenoids in coniferales. Bull Int Assoc Wood Anat 1, ETH, Zurich, Switzerland, vol. 1, pp. 3-12.
Zavarin E (1968b)
Chemotaxonomy of the genus Abies - II. Within tree variation of the terpenes in cortical oleoresin. Phytochemistry 10: 3229-3237.
CrossRef | Gscholar
Zlatník A (1976)
Forest phytocenology. SZN, Prague, Czech Republic, pp. 500.
Zlatník A, Pelikán J, Stolina M (1973)
Fundamentals of ecology. SZN, Prague, Czech Republic, pp. 270.

This website uses cookies to ensure you get the best experience on our website. More info