*
 

iForest - Biogeosciences and Forestry

*

Measured and modelled source water δ18O based on tree-ring cellulose of larch and pine trees from the permafrost zone

Olga V Churakova-Sidorova (1-2)   , Sebastian Lienert (3-4), Galina Timofeeva (2), Rolf Siegwolf (2), John Roden (5), Fortunat Joos (3-4), Matthias Saurer (2)

iForest - Biogeosciences and Forestry, Volume 13, Issue 3, Pages 224-229 (2020)
doi: https://doi.org/10.3832/ifor3212-013
Published: Jun 19, 2020 - Copyright © 2020 SISEF

Research Articles


To identify source water for trees growing on permafrost in Siberia, we applied mechanistic models that quantify physical and biochemical fractionation processes, leading to oxygen isotope variation (δ18O) in plant organic matter. These models allowed us to investigate the influence of a variety of climatic factors on tree-ring cellulose from two dominant species: Larix cajanderi Mayr. from northeastern Yakutia (69° 22′ N, 148° 25′ E, ~ 250 m a.s.l.) and Pinus sylvestris L. from Central Yakutia (62°14′ N, 129°37′ E, ~ 220 m a.s.l.). The climate of the region is highly continental with short growing seasons, low amount of precipitation and these forest ecosystems are growing on permafrost, which in turn impact the water cycle and climate variation in the δ18O of source water. We compared outputs of the Land surface Processes and eXchanges (LPX-Bern v. 1.3), and Roden-Lin-Ehleringer (RLE) models for the common period from 1945 to 2004. Based on our findings, trees from northeastern and central Yakutia may have access to additional thawed permafrost water during dry summer periods. Owing to differences in the soil structure, active thaw soil depth and root systems of trees at two Siberian sites, Larix cajanderi Mayr. trees can access water not more than from 50 cm depth, in contrast to Pinus sylvestris L. in Central Yakutia which can acquire water from up to 80 cm soil depth. The results enhance our understanding of the growth and survival of the trees in this extreme environment.

  Keywords


Conifers, Climate, Drought, Permafrost Thaw Depth, Siberia, δ18O of Source Water

Authors’ address

(1)
Olga V Churakova-Sidorova 0000-0002-1687-1201
Siberian Federal University, Krasnoyarsk, Svobodniy pr 79, RU-660041 (Russia)
(2)
Olga V Churakova-Sidorova 0000-0002-1687-1201
Galina Timofeeva
Rolf Siegwolf 0000-0002-0249-0651
Matthias Saurer 0000-0002-3954-3534
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111 CH-8903 Birmensdorf (Switzerland)
(3)
Sebastian Lienert 0000-0003-1740-918X
Fortunat Joos 0000-0002-9483-6030
University of Bern, Climate and Environmental Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern (Switzerland)
(4)
Sebastian Lienert 0000-0003-1740-918X
Fortunat Joos 0000-0002-9483-6030
Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, CH-3012 Bern (Switzerland)
(5)
John Roden 0000-0001-8641-1625
Southern Oregon University, Biology Department, Ashland, OR 97520 (USA)

Corresponding author

 
Olga V Churakova-Sidorova
ochurakova@sfu-kras.ru

Citation

Churakova-Sidorova OV, Lienert S, Timofeeva G, Siegwolf R, Roden J, Joos F, Saurer M (2020). Measured and modelled source water δ18O based on tree-ring cellulose of larch and pine trees from the permafrost zone. iForest 13: 224-229. - doi: 10.3832/ifor3212-013

Academic Editor

Rossella Guerrieri

Paper history

Received: Aug 07, 2019
Accepted: Apr 24, 2020

First online: Jun 19, 2020
Publication Date: Jun 30, 2020
Publication Time: 1.87 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 34975
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 30803
Abstract Page Views: 2004
PDF Downloads: 1678
Citation/Reference Downloads: 9
XML Downloads: 481

Web Metrics
Days since publication: 1616
Overall contacts: 34975
Avg. contacts per week: 151.50

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2020): 3
Average cites per year: 0.75

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Allen ST, Kirchner JW, Braun S, Siegwolf RTW, Goldsmith GR (2019)
Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences 23: 1199-1210.
CrossRef | Gscholar
(2)
Arneth A, Lloyd J, Santruckova H (2002)
Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration. Global Biogeochemical Cycles 16 (1): 5.1-5.13.
CrossRef | Gscholar
(3)
Abaimov AP, Bondarev AI, Ziryanova OA, Shitova CA (1997)
Polar forests of Krasnoyarsk region. Nauka, Novosibirsk, Russia, pp. 207.
Gscholar
(4)
Boike J, Kattenstroth B, Abramova K, Bornemann N, Cherverova A, Fedorova I, Fröb K, Grigoriev M, Grüber M, Kutzbach L, Langer M, Minke M, Muster S, Piel K, Pfeiffer E-M, Stoff G, Westermann S, Wischnewski K, Wille C, Hubberten H-W (2013)
Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998-2011). Biogeosciences 10: 2105-2128.
CrossRef | Gscholar
(5)
Cable JM, Ogle K, Bolton Bentley RWLP, Romanovsky V, Iwata H, Harazono Y, Welker J (2014)
Permafrost thaw affects boreal deciduous plant transpiration through increased soil water, deeper thaw and warmer soil. Ecohydrology 7 (3): 982-997.
CrossRef | Gscholar
(6)
Churakova-Sidorova OV, Shashkin AV, Siegwolf R, Spahni R, Launois T, Saurer M, Bryukhanova MV, Benkova AV, Kupzova AV, Vaganov EA, Peylin P, Masson-Delmotte V, Roden J (2016a)
Application of eco-physiological models to the climatic interpretation of δ13C and δ18O measured in Siberian larch tree rings. Dendrochronologia 39: 51-59.
CrossRef | Gscholar
(7)
Churakova-Sidorova OV, Saurer M, Bryukhanova M, Siegwolf R, Bigler C (2016b)
Site-specific water-use strategies of mountain pine and larch to cope with recent climate change. Tree Physiology 36: 942-953.
CrossRef | Gscholar
(8)
Churakova-Sidorova OV, Fonti MV, Saurer M, Guillet S, Corona S, Fonti P, Myglan VS, Kirdyanov AV, Naumova OV, Ovchinnikov DV, Shashkin AV, Panyushkina IP, Büntgen U, Hughes MK, Vaganov EA, Siegwolf RTW, Stoffel M (2019)
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Climate of the Past 15: 685-700.
CrossRef | Gscholar
(9)
Craig H, Gordon LI (1965)
Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: “Stable Isotopes in Oceanographic Studies and Paleotemperatures” (Tongiorgi E, Lishi FV eds). Pisa, Italy, pp. 9-130.
Gscholar
(10)
Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974)
On the enrichment of H218O in the leaves of transpiring plants. Radiation and Environmental Biophysics 11: 41-52.
CrossRef | Gscholar
(11)
Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1998)
Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. In: “Trends: a Compendium of Data on Global Change”. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, TX, USA, web site.
Online | Gscholar
(12)
Fan R, Morozumi T, Maximov TC, Sugimoto A (2018)
Effect of floods on the δ13C values in plant leaves: a study of willows in Northeastern Siberia. PeerJ 6: e5374.
CrossRef | Gscholar
(13)
Farquhar GD, Lloyd J (1993)
Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: “Stable Isotopes and Plant Carbon-water Relations” (Ehleringer JR, Hall AE, Farquhar GD eds). Academic Press, San Diego, CA, USA, pp. 47-70.
CrossRef | Gscholar
(14)
Fischer HK, Meissner J, Mix AC, Abram NJ, Austermann J, Brovkin V, Capron E, Colombaroli D, Daniau A-L, Dyez KA, Felis T, Finkelstein SA, Jaccard SL, McClymont EL, Rovere A, Sutter J, Wolff EW, Affolter S, Bakker P, Ballesteros-Cánovas JA, Barbante C, Caley T, Carlson AE, Churakova Sidorova OV, Cortese G, Cumming BF, Davis BAS, De Vernal A, Emile-Geay J, Fritz SC, Gierz P, Gottschalk J, Holloway MD, Joos F, Kucera M, Loutre MF, Lunt DJ, Marcisz K, Marlon JR, Martinez P, Masson-Delmotte V, Nehrbass-Ahles C, Otto-Bliesner BL, Raible CC, Risebrobakken B, Sánchez Goñi MF, Saleem Arrigo J, Sarnthein M, Sjolte J, Stocker TF, Velasquez Alvárez PA, Tinner W, Vogel H, Wanner H, Yan Q, Yu Z, Ziegler M, Zhou L (2018)
Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience 11: 474-485.
CrossRef | Gscholar
(15)
Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999)
A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51: 170-193.
CrossRef | Gscholar
(16)
Fyodorov-Davydov DG, Kholodov VE, Ostroumov VE, Kraev GN, Sorokovikov VA, Davydov SP, Merekalova AA (2008)
Seasonal thaw of soils in the North Yakutian ecosystems. In: Proceedings of the 9th International Conference on “Permafrost on a Warming Planet: Impacts on Ecosystems, Infrastructure and Climate”. University of Alaska, Fairbanks (AK, USA) 29 Jun - 3 Jul 2008, pp. 481-486.
Online | Gscholar
(17)
Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004)
Terrestrial vegetation and water balance - Hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology 286 (1-4): 249-270.
CrossRef | Gscholar
(18)
Haese B, Werner M, Lohmann G (2013)
Stable water isotopes in the coupled atmosphere-land surface model ECHAM5- JSBACH. Geoscientific Model Development 6 (5): 1463-1480.
CrossRef | Gscholar
(19)
Harris I, Jones PD, Osborn TJ, Lister DH (2014)
Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset. International Journal of Climatology 34 (3): 623-642.
CrossRef | Gscholar
(20)
Ikeda T (1983)
Maximum principle in finite element models for convection-diffusion phenomena. North Holland, Amsterdam, Netherlands, pp. 170.
Gscholar
(21)
Keel SG, Joos F, Spahni R, Saurer M, Weigt RB, Klesse S (2016)
Simulating oxygen isotope ratios in tree-ring cellulose using a dynamic global vegetation model. Biogeosciences 13: 3869-3886.
CrossRef | Gscholar
(22)
Keller KM, Lienert S, Bozbiyik A, Stocker TF, Churakova-Sidorova OV, Frank DC, Klesse S, Koven CD, Leuenberger M, Riley WJ, Saurer M, Siegwolf RTW, Weigt RB, Joos F (2017)
20th-century changes in carbon isotopes and water-use efficiency: tree-ring based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences 14 (10): 2641-2673.
CrossRef | Gscholar
(23)
Körner C (2012)
Alpine tree lines. Springer, Basel, Switzerland, pp. 122.
Gscholar
(24)
Kropp H, Loranty MM, Natali SM, Kholodov AL, Alexander HD, Zimov NS, Mack MC, Spawn SA (2019)
Tree density influences ecohydrological drivers of plant-water relations in a larch boreal forest in Siberia. Ecohydrology 12 (7): e2132.
CrossRef | Gscholar
(25)
Kurita N, Sugimoto A, Fujii Y, Fukazawa T, Makarov VN, Watanabe O, Ichiyanagi K, Numaguti A, Yoshida N (2005)
Isotopic composition and origin of snow over Siberia. Journal of Geophysical Research 10: D13102.
CrossRef | Gscholar
(26)
Lamarque J-F, Dentener F, McConnell J, Ro C-U, Shaw M, Vet R, Bergmann D, Cameron-Smith P, Dalsoren S, Doherty R, Faluvegi G, Ghan SJ, Josse B, Lee YH, MacKenzie IA, Plummer D, Shindell DT, Skeie RB, Stevenson DS, Strode S, Zeng G, Curran M, Dahl-Jensen D, Das S, Fritzsche D, Nolan M (2013)
Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP): evaluation of historical and projected future changes. Atmospheric Chemistry Physics 13: 7997-8018.
CrossRef | Gscholar
(27)
Luo YH, Sternberg L (1992)
Hydrogen and oxygen isotope fractionation during heterotrophic cellulose synthesis. Journal of Experimental Botany 43: 47-50.
CrossRef | Gscholar
(28)
MacFarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, Van Ommen T, Smith A, Elkins J (2006)
Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters 33 (14): L14810.
CrossRef | Gscholar
(29)
Majoube M (1971)
Fractionation in O-18 between ice and water vapor. Journal de Chimie Physique et de Physico-Chimie Biologique 68: 1424-1436.
Gscholar
(30)
Melnikov ES, Leibman MO, Moskalenko NG, Vasiliev AA (2004)
Active-layer monitoring in the cryolithozone of West Siberia. Polar Geography 28 (4): 267-285.
CrossRef | Gscholar
(31)
Merlivat L (1978)
Molecular diffusivities of H216O, HD16O, and H218O in gases. Journal of Chemical Physics 69 (6): 2864.
CrossRef | Gscholar
(32)
Nikolaev AN (2003)
The influence of soil temperature on radial increments of larch and pine stems in Central Yakutia. In: Proceedings of the “8th International Conference on Permafrost” (Phillips M, Springman SM, Arenson LU eds). Zurich (Switzerland) 21-25 Jul 2003. Swets and Zeitlinger, Lisse, Netherlands, pp. 811-814.
Online | Gscholar
(33)
Overland JE, Hanna E, Hanssen-Bauer I, Kim S-J, Walsh JE, Wang M, Bhatt US, Thoman RL (2015)
Surface Air Temperature. Arctic Report Card: Update for 2015. Arctic Essays, NOAA Arctic Program, web site.
Online | Gscholar
(34)
Pavlov AV, Skachkov Yu B, Kakunov NB (2004)
An interaction between the active layer depth changing and meteorological factors. Earth Cryosphere 8 (4): 3-11. [in Russian]
Gscholar
(35)
Pearcy RW, Schulze E-D, Zimmermann R (1989)
Measurement of transpiration and leaf conductance. In: “Plant Physiological Ecology” (Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW eds). Chapman and Hall, London, UK, pp. 137-160.
Gscholar
(36)
Roden JS, Lin G, Ehleringer JR (2000)
A mechanistic model for interpretation of hydrogen and oxygen isotopic ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta 64: 21-35.
CrossRef | Gscholar
(37)
Saurer M, Kirdyanov AV, Prokushkin AS, Rinne KT, Siegwolf RTW (2016)
The impact of an inverse climate-isotope relationship in soil water on the oxygen-isotope composition of Larix gmelinii in Siberia. New Phytologist 209 (3): 955-964.
CrossRef | Gscholar
(38)
Saurer M, Robertson I, Siegwolf R, Leuenberger M (1998)
Oxygen isotope analysis of cellulose: an inter laboratory comparison. Analytical Chemistry 70: 2074-2080.
CrossRef | Gscholar
(39)
Sidorova OV, Siegwolf R, Saurer M, Naurzbaev M, Shashkin AV, Vaganov EA (2010)
Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Global Change Biology 16: 1003-1018.
CrossRef | Gscholar
(40)
Sidorova OV, Siegwolf RTW, Saurer M, Naurzbaev MM, Vaganov EA (2008)
Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. Journal of Geophysical Research Biogeosciences 113 (G2): 1-13.
CrossRef | Gscholar
(41)
Sternberg LS, DeNiro MJ (1983)
Biogeochemical implications of the isotopic equilibrium fractionation factor between the oxygen atoms of acetone and water. Geochimica Cosmochimica Acta 47: 2271-2274.
CrossRef | Gscholar
(42)
Streit K, Siegwolf RTW, Hagerdon FH, Schaub M, Buchmann N (2014)
Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine tree line. Plant, Cell and Environment 37: 315-326.
CrossRef | Gscholar
(43)
Sugimoto A, Yanagisawa N, Fujita N, Maximov TC (2002)
Importance of permafrost as a source of water for plants in east Siberian taiga. Ecological Research 17 (4): 493-503.
CrossRef | Gscholar
(44)
Timofeeva G (2017)
Elucidating the drought response of Scots pine (Pinus sylvestris L.) using stable isotopes. Doctoral Thesis, ETH, Zurich, Switzerland, pp. 208.
CrossRef | Gscholar
(45)
Yakir D, Berry JA, Giles L, Osmond CB (1993)
The 18O of water in the metabolic compartment of transpiring leaves. In: “Stable Isotopes and Plant Carbon/Water Relation” (Ehleringer JR, Hall AE, Farquhar GD eds), Academic Press, S. Diego, CA, USA, pp. 529-540.
CrossRef | Gscholar
(46)
Yakir D, DeNiro MJ (1990)
Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. Plant Physiology 93 (1): 325-332.
CrossRef | Gscholar
(47)
Young-Robertson JM, Ogle K, Welker JM (2017)
Thawing seasonal ground ice: an important water source for boreal forest plants in Interior Alaska. Ecohydrology 10: 1-16.
CrossRef | Gscholar
(48)
Yuan W, Zheng Y, Piao S, Ciais P, Lombardozzi D, Wang Y, Ryu Y, Chen G, Dong W, Hu Z, Jain AK (2019)
Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances 5 (8): eaax1396.
CrossRef | Gscholar
(49)
Weigt RB, Bräunlich S, Zimmermann L, Saurer M, Grams TEE, Dietrich HP, Siegwolf RTW, Nikolova PS (2015)
Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Communications in Mass Spectrometry 29 (23): 2233-2244.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info