*
 

iForest - Biogeosciences and Forestry

*

Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests

Giorgio Alberti (1-7)   , Sara Vicca (2), Ilaria Inglima (3), Luca Belelli-Marchesini (4-5), Lorenzo Genesio (6), Franco Miglietta (6-7), Hrvoje Marjanovic (8), Cristina Martinez (6-9), Giorgio Matteucci (10-11), Ettore D’Andrea (11), Alessandro Peressotti (1), Fabio Petrella (12), Mirco Rodeghiero (13), Maria Francesca Cotrufo (14)

iForest - Biogeosciences and Forestry, Volume 8, Issue 2, Pages 195-206 (2015)
doi: https://doi.org/10.3832/ifor1196-008
Published: Aug 26, 2014 - Copyright © 2015 SISEF

Research Articles


The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems. Through this process, plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) that sustains gross and net primary production (GPP and NPP, respectively). Root inputs also contribute to SOM formation. In this study, we quantified the annual net root-derived C input to soil (Net-Croot) across six high fertility forests using an in-growth core isotope technique. On the basis of Net-Croot, wood and coarse root biomass changes, and eddy covariance data, we quantified net belowground C sequestration. Belowground C accumulation and GPP were inversely related to soil C:N, but not to climate or stand age. Soil C content and C:N were also related to soil texture. At these high fertility sites, biomass growth did not change with soil C:N; however, biomass growth-to-GPP ratio significantly increased with increasing soil C:N. This was true for both our six forest sites and for another 23 high fertility sites selected at a global scale. We suggest that, at high fertility sites, plant N demand interacts with soil C:N stoichiometry and microbial activity, resulting in higher allocation of C to above ground tree biomass with increasing soil C:N ratio. When C:N is high, microbes have a low C use efficiency, respire more of the fresh C inputs by roots and prime SOM decomposition, thereby increasing N availability for tree uptake. Soil C sequestration would therefore decrease, whereas the extra N released during SOM decomposition can promote tree growth and ecosystem C sink allocation in aboveground biomass. Conversely, C is sequestered in soil when low soil C:N promotes microbial C use efficiency and new SOM formation and stabilization on clay particles.

  Keywords


Net Root-derived Carbon, Ingrowth Cores, Soil C:N, Carbon Sequestration, Carbon Partitioning, Isotopes

Authors’ address

(1)
Giorgio Alberti
Giorgio Matteucci
Alessandro Peressotti
Department of Agriculture and Environmental Sciences, University of Udine, Udine (Italy)
(2)
Sara Vicca
Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)
(3)
Ilaria Inglima
Department of Environmental Science, Second University of Naples, Caserta (Italy)
(4)
Luca Belelli-Marchesini
Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo (Italy)
(5)
Luca Belelli-Marchesini
Earth and Climate Cluster, Department of Earth Sciences, VU University Amsterdam (The Netherlands)
(6)
Lorenzo Genesio
Franco Miglietta
Cristina Martinez
Institute of Biometeorology, National Research Council of Italy - CNR/IBIMET, Firenze (Italy)
(7)
Giorgio Alberti
Franco Miglietta
MOUNTFOR Project Centre, European Forest Institute, Research and Innovation Centre, Fondazione Edmund Mach (FEM), v. E. Mach 1, I-38010 San Michele all’Adige, TN (Italy)
(8)
Hrvoje Marjanovic
Croatian Forest Research Institute, Jastrebarsko (Croatia)
(9)
Cristina Martinez
Foxlab Joint CNR-FEM Initiative, v. E. Mach 1, I-38010 San Michele all’Adige, TN (Italy)
(10)
Giorgio Matteucci
Institute for Agriculture and Forestry System in the Mediterranean, National Research Council of Italy - CNR/ISAFOM, Rende, CS (Italy)
(11)
Giorgio Matteucci
Ettore D’Andrea
Institute of Agroenvironmental and Forest Biology, National Research Council of Italy - CNR/IBAF, Monterotondo, RM (Italy)
(12)
Fabio Petrella
Istituto per le Piante da Legno e l’Ambiente - IPLA, Turin (Italy)
(13)
Mirco Rodeghiero
Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), v. E. Mach 1, I-38010 San Michele all’Adige (Italy)
(14)
Maria Francesca Cotrufo
Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado (USA)

Corresponding author

 
Giorgio Alberti
giorgio.alberti@uniud.it

Citation

Alberti G, Vicca S, Inglima I, Belelli-Marchesini L, Genesio L, Miglietta F, Marjanovic H, Martinez C, Matteucci G, D’Andrea E, Peressotti A, Petrella F, Rodeghiero M, Cotrufo MF (2015). Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests. iForest 8: 195-206. - doi: 10.3832/ifor1196-008

Academic Editor

Giustino Tonon

Paper history

Received: Dec 06, 2013
Accepted: Jul 13, 2014

First online: Aug 26, 2014
Publication Date: Apr 01, 2015
Publication Time: 1.47 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 60759
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 49447
Abstract Page Views: 4454
PDF Downloads: 5579
Citation/Reference Downloads: 56
XML Downloads: 1223

Web Metrics
Days since publication: 3740
Overall contacts: 60759
Avg. contacts per week: 113.72

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2015): 32
Average cites per year: 3.56

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Andrén O, Kätterer T (1997)
ICBM: the introductory carbon balance model for exploration of soil carbon balances. Ecological Applications 7: 1226-1236.
CrossRef | Gscholar
(2)
Aubinet M, Vesala T, Papale D (2012)
Eddy covariance. A practical guide to measurement and data analysis. Springer, Berlin, Germany, pp. 438.
Online | Gscholar
(3)
Baldocchi D (2003)
Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems’ past, present and future. Global Change Biology 9: 479-492.
CrossRef | Gscholar
(4)
Binkley D, Kaye J, Barry M, Ryan MG (2004)
First-rotation changes in soil carbon and nitrogen in a eucalyptus plantation in Hawaii. Soil Science Society of America Journal 68: 1713-1719.
CrossRef | Gscholar
(5)
Bingeman CW, Varner JE, Martin WP (1953)
The effect of the addition of organic materials on the decomposition of an organic soil. Soil Science Society of America Journal 29: 692-696.
CrossRef | Gscholar
(6)
Campbell JL, Sun OJ, Law BE (2004)
Disturbance and net ecosystem production across three climatically distinct forest landscapes. Global Biogeochemical Cycles 18: 1-11.
CrossRef | Gscholar
(7)
Cardon ZG, Hungate BA, Cambardella CA, Chapin FS, Field CB, Holland EA, Mooney HA (2001)
Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biology and Biochemistry 33: 365-373.
CrossRef | Gscholar
(8)
Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, Santos Jd, Araújo AC, Kruijt B, Nobre AD, Trumbore SE (2004)
Respiration from a tropical ecosystem: partitioning of sources and low carbon use efficiency.Ecological Applications 14 (sp4): 72-88.
CrossRef | Gscholar
(9)
Christensen BT (1992)
Physical fractionation of soil and organic matter in primary particles and density separates. Advances in Soil Science 20: 1-90.
CrossRef | Gscholar
(10)
Clark DA, Brown A, Kicklighter DW, Chambers JQ, Gower ST, Thomlinson J, Ni J (2001)
Measuring net primary production in forests: a synthesis of current concepts and field methods. Ecological Applications 11: 356-370.
CrossRef | Gscholar
(11)
Claus A, George E (2005)
Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research 35: 1617-1625.
CrossRef | Gscholar
(12)
Cotrufo MF, Alberti G, Inglima I, Marjanovi H, LeCain D, Zaldei A, Peressotti A, Miglietta F (2011)
Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland. Biogeosciences 8: 2729-2739.
CrossRef | Gscholar
(13)
Cotrufo MF, Wallenstein MD, Boot C, Denef K, Paul E (2013)
The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19 (4): 988-995.
CrossRef | Gscholar
(14)
Craine JM, Morrow C, Fierer N (2007)
Microbial nitrogen limitation increases decomposition. Ecology 88: 2105-2113.
CrossRef | Gscholar
(15)
Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schid HP, Wilson KB (2002)
Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology 113: 3-19.
CrossRef | Gscholar
(16)
De Deyin GB, Cornelissen HC, Bardgett RD (2008)
Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11: 516-531.
CrossRef | Gscholar
(17)
Del Galdo I, Six J, Peressotti A, Cotrufo MF (2003)
Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology 9 (8): 1204-1213.
CrossRef | Gscholar
(18)
De Graaff MA, Classen AT, Castro HF, Schadt CW (2010)
Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist 188: 1055-1064.
CrossRef | Gscholar
(19)
Dilly O, Bachb H-J, Buscot F, Eschenbach C, Kutsch WL, Middelhoff U, Pritsch K, Munch JC (2000)
Characteristics and energetic strategies of the rhizosphere in ecosystems of the Bornhöved Lake district. Applied Soil Ecology 15: 201-210.
CrossRef | Gscholar
(20)
Dijkstra FA, Cheng WX (2007)
Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters 10: 1046-1053.
CrossRef | Gscholar
(21)
Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJP, Oren R, Palmroth S, Phillips RP, Pippen JS, Pritchard SG, Treseder KK, Schlesinger WH, DeLucia EH, Finzi AC (2011)
Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters 14: 349-357.
CrossRef | Gscholar
(22)
Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2013)
Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences 10: 821-838.
CrossRef | Gscholar
(23)
Dunn A, Barford CC, Wofsy S, Goulden ML, Daube BC (2007)
A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability and decadal trends. Global Change Biology 13: 577-590.
CrossRef | Gscholar
(24)
Field CB, Randerson JT, Malmstrom CM (1995)
Global net primary production: combining ecology and remote sensing. Remote Sensing of the Environment 51: 74-88.
CrossRef | Gscholar
(25)
Flechard CR, Nemitz E, Smith RI, Fowler D, Vermeulen AT, Bleeker A, Erisman JW, Simpson D, Zhang L, Tang YS, Sutton MA (2011)
Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmospheric Chemistry and Physics 11 (6): 2703-2728.
CrossRef | Gscholar
(26)
Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004)
Carbon input to soil may decrease soil carbon content. Ecology Letters 7: 314-320.
CrossRef | Gscholar
(27)
Galantini J, Rosell R, Andriulo A, Miglierina A, Iglesias J (1992)
Humification and nitrogen mineralization of crop residues in semi-arid Argentina. Science of the Total Environment 117: 263-270.
CrossRef | Gscholar
(28)
Gholz HL, Fisher RF (1982)
Organic matter production and distribution in slash pine (Pinus elliottii) plantations. Ecology 63: 1827-1839.
CrossRef | Gscholar
(29)
Gholz HL, Fisher RF, Prichett WL (1985)
Nutrient dynamics in slash pine plantation ecosystems. Ecology 66: 647-689.
CrossRef | Gscholar
(30)
Gholz HL, Hendry LC, Cropper WPJ (1986)
Organic matter dynamics of fine roots in plantations of slash pine (Pinus elliottii) in north Florida. Canadian Journal of Forest Research 16: 529-538.
CrossRef | Gscholar
(31)
Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK (1997)
Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research 102: 29029-29041.
CrossRef | Gscholar
(32)
Grandy AS, Neff JC (2008)
Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Science of the Total Environment 404: 297-307.
CrossRef | Gscholar
(33)
Hamilton EW, Frank DA (2001)
Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82: 2397-2402.
CrossRef | Gscholar
(34)
Harmon ME, Sexton J (1996)
Guidelines for measurements of woody debris in forest ecosystems. US Long Term Ecological Research Network Office, University of Washington, Washington, DC, USA, pp. 42.
Online | Gscholar
(35)
Harris WF, Sollins P, Edwards NT, Kinger BE, Shugart HH (1975)
Analysis of carbon flow and productivity in a temperate deciduous forest ecosystem. In: “Productivity of World Ecosystems” (Reichle DE, Franklin JF, Goodall DW eds). National Academy of Sciences, Washington, DC, USA, pp. 116-122.
Gscholar
(36)
Harris D, Horwath WR, Van Kessel C (2001)
Acid fumigation of soils to remove carbonates prior to total organic carbon or Carbon-13 isotopic analysis. Soil Science Society of America Journal 65: 1853-1856.
CrossRef | Gscholar
(37)
He L, Chen JM, Pan Y, Birdsey R, Kattge J (2012)
Relationships between net primary productivity and forest stand age in U. S. forests, Global Biogeochemical Cycles 26 (3): GB3009.
CrossRef | Gscholar
(38)
Hessen DO, Agren GI, Anderson TR, Elser JJ, De PC R (2004)
Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85: 1179-1192.
CrossRef | Gscholar
(39)
Hobbie EA, Johnson MG, Rygiewicz PT, Tingey DT, Olszyk DM (2004)
Isotopic estimates of new carbon inputs into litter and soils in a four-year climate change experiment with Douglas-fir. Plant and Soil 259: 331-343.
CrossRef | Gscholar
(40)
Hoosbeek MR, Lukac M, Van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, De Angelis P, Scarascia-Mugnozza G (2004)
More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect? Global Biogeochemical Cycles 18 (1): GB1040.
CrossRef | Gscholar
(41)
Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003)
Nitrogen and climate change. Science 302: 1512-1513.
CrossRef | Gscholar
(42)
Hsu JS, Powell J, Adler PB (2012)
Sensitivity of mean annual primary production to precipitation. Global Change Biology 18: 2246-2255.
CrossRef | Gscholar
(43)
Ineson P, Cotrufo MF, Bol R, Harkness DD, Blum H (1995)
Quantification of soil carbon inputs under elevated CO2: C-3 plants in a C-4 soil. Plant Soil 187: 345-350.
CrossRef | Gscholar
(44)
Karlen DL, Cambardella CA (1996)
Conservation strategies for improving soil quality and organic matter storage. In: “Structure and Organic Matter Storage in Agricultural Soils” (Carter R, Stewart BA eds). CRC Press, Boca Raton, FL, USA, pp. 395-420.
Gscholar
(45)
Kelliher F, Ross D, Law B, Baldocchi D, Rodda N (2004)
Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests. Forest Ecology and Management 191 (1-3): 201-213.
CrossRef | Gscholar
(46)
Kinerson RS, Ralston CW, Wells CG (1977)
Carbon cycling in a loblolly pine plantation. Oecologia 29: 1-10.
CrossRef | Gscholar
(47)
Kirkby CA, Richardson AE, Wade LJ, Batten GD, Blanchard C, Kirkegaard JA (2013)
Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biology and Biochemistry 60: 77-86.
CrossRef | Gscholar
(48)
Kleber M, Sollins P, Sutton R (2007)
A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85: 9-24.
CrossRef | Gscholar
(49)
Kutsch WL, Staack A, Wötzel J, Middelhoff U, Kappen L (2001)
Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist 150: 157-168.
CrossRef | Gscholar
(50)
Kuzyakov Y, Domanski G (2000)
Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science 163: 421-431.
CrossRef | Gscholar
(51)
Kuzyakov Y (2006)
Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38: 425-448.
CrossRef | Gscholar
(52)
Janssens IA, Dieleman W, Luyssaert S (2010)
Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3: 315-322.
CrossRef | Gscholar
(53)
Lal R (2005)
Forest soils and carbon sequestration. Forest Ecology and Management 220: 242-258.
CrossRef | Gscholar
(54)
Lynch JM, Whipps JM (1990)
Substrate flow in the rhizosphere. Plant Soil 129: 1-10.
CrossRef | Gscholar
(55)
Litton CM, Raich JW, Ryan MG (2007)
Carbon allocation in forest ecosystems. Global Change Biology 13: 2089-2109.
CrossRef | Gscholar
(56)
Lohnis F (1926)
Nitrogen availability of green manures. Soil Science 22: 253-290.
CrossRef | Gscholar
(57)
Luizao RCC, Luizao FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004)
Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biology 10: 592-600.
CrossRef | Gscholar
(58)
Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze E-, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond J, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, GrÜnwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith M, Tang J, Valentini R, Vesala T, Janssens IA (2007)
CO2 balance of boreal, temperate, and tropical forests derived from a global database . Global Change Biology 13 (12): 2509-2537.
CrossRef | Gscholar
(59)
Luyssaert S, Ciais P, Piao SL, Schulze ED, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, van der Werf GR, Janssens IA (2010)
The European carbon balance. Part 3: forests. Global Change Biology 16 (5): 1429-1450.
CrossRef | Gscholar
(60)
Malhi Y, Baldocchi DD, Jarvis PG (1999)
The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment 22: 715-740.
CrossRef | Gscholar
(61)
Malhi Y, Aragào LE, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, da Costa AC, Hutyra LR, Oliveira P, Patino S, Pyle EH, Robertson AL, Teixeira LM (2009)
Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology 15 (5): 1255-1274.
CrossRef | Gscholar
(62)
Manzoni S, Taylor P, Richter A, Porporato A, Agren GI (2012)
Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196: 79.
CrossRef | Gscholar
(63)
Marland G, Garten Jr CT, Post WM, WestLuizao TO (2004)
Studies on enhancing carbon sequestration in soils. Energy 29: 1643-1650.
CrossRef | Gscholar
(64)
Marjanovic H, Alberti G, Balogh J, Czóbel Sz Horváth L, Jagodics A, Nagy Z, Ostrogovic MZ, Peressotti A, Führer E (2010)
Measurements and estimations of biosphere-atmosphere exchange of greenhouse gases - Forests. In: “Atmospheric Greenhouse Gases: The Hungarian Perspective” (Haszpra L ed). Springer Science + Business Media, Berlin, Germany, pp. 121-156.
Gscholar
(65)
Marjanovic H, Ostrogovic MZ, Alberti G, Balenovic I, Paladinic E, Indir K, Peressotti A, Vuletic D (2011)
Carbon dynamics in younger stands of pedunculate oak during two vegetation periods. Sumarski List 135: 59-73.
Gscholar
(66)
Matson P, Johnson L, Billow C, Miller J, Pu RL (1994)
Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecological Applications 4: 280-298.
CrossRef | Gscholar
(67)
Melillo JM, Aber JD, Muratore JF (1982)
Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621-626.
CrossRef | Gscholar
(68)
Mokany K, Raison RJ, Prokushkin AS (2006)
Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology 12: 84-96.
CrossRef | Gscholar
(69)
Moorhead DL, Sinsabaugh RL (2006)
A theoretical model of litter decay and microbial interaction. Ecological Monographs 76: 151-174.
CrossRef | Gscholar
(70)
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, Mcguire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011)
A large and persistent carbon sink in the world’s forests. Science 333 (6045): 988-993.
CrossRef | Gscholar
(71)
Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006)
Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3: 571-583.
CrossRef | Gscholar
(72)
Parton WJ, Ojima DS, Schimel DS (1996)
Models to evaluate soil organic matter storage and dynamics. In: “Structure and Organic Matter Storage in Agricultural Soils” (Carter R, Stewart BA eds). CRC Press, Boca Raton, FL, USA, pp. 420-448.
Gscholar
(73)
Persson T, Van Oene H, Harrison AF, Karlsson P, Bauer G, Cenry J, Couteaux MM, Dambrine E, Hogberg P, Kioller A, Mateucci G, Rudebeck A, Schulze ED, Paces T (2000)
Experimental sites in the NYPHYS/CANIF project. In: “Carbon and nitrogen cycling in European forest ecosystems” (Schulze DE ed). Ecological Studies, 142, Springer Verlag, Heidelberg, Germany, pp. 14-48.
Gscholar
(74)
Phillips RP, Finzi AC, Bernhardt ES (2011)
Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters 14 (2): 187-194.
CrossRef | Gscholar
(75)
Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC (2012)
Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters 15: 1042-1049.
CrossRef | Gscholar
(76)
Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982)
Soil carbon pools and world life zone. Nature 298: 156-159.
CrossRef | Gscholar
(77)
Quesada CA, Lloyd J, Schwarz M, Patiño S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJ, Hodnett MG, Herrera R, Luizão FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes Filho JO, Carvalho FP, Araujo Filho RN, Chaves JE, Cruz Junior OF, Pimentel TP, Paiva R (2010)
Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7 (5): 1515-1541.
CrossRef | Gscholar
(78)
Raison RJ, Khanna PK, Connell MJ, Falkiner RA (1990)
Effects of water availability and fertilization on N cycling in a stand of Pinus radiata. Forest Ecology and Management 30: 31-43.
CrossRef | Gscholar
(79)
Raison RJ, Khanna PK, Benson ML, Myers BJ, McMurtrie RE, Lang ARG (1992)
Dynamics of Pinus radiata foliage in relation to water and nitrogen stress: II. Needle loss and temporal changes in total foliage mass. Forest Ecology and Management 52: 159-178.
CrossRef | Gscholar
(80)
Ralston CW (1973)
Annual primary productivity in a loblolly pine plantation. IUFRO biomass studies, College of Life Sciences and Agriculture, University of Maine, Orono, ME, USA, pp. 107-118.
Gscholar
(81)
Randerson JT, Chapin FS, Harden JW, Neff JC, Harmon ME (2002)
Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecological Applications 12: 937-947.
CrossRef | Gscholar
(82)
Rasse DP, Rumpel C, Dignac MF (2005)
Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil 269: 341-356.
CrossRef | Gscholar
(83)
Rastetter EB, Agren GI, Shaver GR (1997)
Responses of N-limited ecosystems to increased CO2: a balanced nutrition, coupled-element-cycles model. Ecological Applications 7: 444-460.
CrossRef | Gscholar
(84)
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen 25 J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005)
On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11: 1424-1439.
CrossRef | Gscholar
(85)
Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N, Cramer W, Granier A, Ogée J, Allard V, Aubinet M, Bernhofer C, Buchmann N, Carrara A, Grunwald T, Heimann M, Heinesch B, Knohl A, Kutsch W, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J, Pilegaard K, Pumpanen J, Rambal S, Schaphoff S, Seufert G, Soussana JF, Sanz MJ, Vesala T, Zhao M (2007a)
Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology 13 (3): 634-651.
CrossRef | Gscholar
(86)
Reichstein M, Papale D, Valentini R, Aubinet M, Bernhofer C, Knohl A, Laurila T, Lindroth A, Moors E, Pilegaard K, Seufert G (2007b)
Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophysical Research Letters 34 (1): L01402-262.
CrossRef | Gscholar
(87)
Rey A, Pegoraro E, Tedesci V, De Parri I, Jarvis PG, Valentini R (2002)
Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology 8: 851-866.
CrossRef | Gscholar
(88)
Robinson TMP, La Pierre KJ, Vadeboncoeur MA, Byrne KM, Thomey ML, Colby SE (2012)
Seasonal, not annual precipitation drives community productivity across ecosystems. Oikos 122 (5): 727-738.
CrossRef | Gscholar
(89)
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001)
A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543-562.
CrossRef | Gscholar
(90)
Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996)
Foliage, fine-root, woody-tissue and stand respirationin Pinus radiata in relation to nutrient status. Tree Physiology 16: 333-343.
CrossRef | Gscholar
(91)
Ryan MG, Lavigne MB, Gower ST (1997)
Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. Journal of Geophysical Research 102: 28871-28883.
CrossRef | Gscholar
(92)
Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004)
An experimental test of the causes of forest growth decline with stand age. Ecological Monographs 74: 393-414.
CrossRef | Gscholar
(93)
Sanchez PA (1989)
Soils. In: “Tropical Rain Forest Ecosystems: Biogeographical and Ecological Studies” (Lieth H, Werger MJA eds). Elsevier, New York, USA, pp. 132-161.
Gscholar
(94)
Scandellari F, Ventura M, Gioacchini P, Antisari LV, Tagliavini M (2010)
Seasonal pattern of net nitrogen rhizodeposition from peach (Prunus persica (L.) Batsch) trees in soils with different textures. Agriculture Ecosystems and Environment 136: 162-168.
CrossRef | Gscholar
(95)
Scartazza A, Mata C, Mateucci G, Yakir D, Moscatello S, Brugnoli E (2004)
Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their resposnses to seasonal climate variability. Oecologia 140: 340-351.
CrossRef | Gscholar
(96)
Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001)
Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414 (6860): 169-172.
CrossRef | Gscholar
(97)
Schimel JP, Schaeffer SM (2012)
Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3: 348.
Gscholar
(98)
Schrumpf M, Schulze ED, Kaiser K, Schumacher J (2011)
How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences 8: 1193-1212.
CrossRef | Gscholar
(99)
Six J, Frey SD, Thiet RK, Batten KM (2006)
Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal 70: 555-569.
CrossRef | Gscholar
(100)
Sollins P, Homann P, Caldwell BA (1996)
Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74: 65-105.
CrossRef | Gscholar
(101)
Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004)
Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology 10: 601-617.
CrossRef | Gscholar
(102)
Stace HCT, Hubble GD, Brewer R, Northcote KH, Sleeman JR, Mulcahy MJ, Hallsworth EG (1968)
A handbook of Australian soils. Rellim, Adelaide, Australia, pp. 435.
Gscholar
(103)
Steingrobe B, Schmid H, Claassen N (2000)
The use of the ingrowth core method for measuring root production of arable crops - influence of soil conditions inside the ingrowth core on root growth. Journal of Plant Nutrition and Soil Science 163: 617-622.
CrossRef | Gscholar
(104)
Subke JA, Inglima I, Cotrufo MF (2006)
Trends and methodological impacts in soil CO2 efflux partitioning: A meta-analytical review. Global Change Biology 12: 921-943.
CrossRef | Gscholar
(105)
Sun OJ, Campbell J, Law BE, Wolf V (2004)
Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biology 10 (9): 1470-1481.
CrossRef | Gscholar
(106)
Tavares F, Fränzle O, Müller F, Schimmig C-G (2010)
Long-term ecosystem research in a beech forest of northern Germany. In: “Long-Term Ecolgical Research: Between Theory and Application” (Müller F, Baessler C, Schubert H, Klotz S eds). Springer Science + Business Media BV, The Netherlands, pp. 253-261.
CrossRef | Gscholar
(107)
Tedeschi V, Rey A, Manca G, Valentini R, Jarvis PG, Borghetti M (2006)
Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Global Change Biology 12: 110-121.
CrossRef | Gscholar
(108)
Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010)
Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience 3 (1): 13-17.
CrossRef | Gscholar
(109)
USDA Soil Conservation Service Soil Survey Staff (1975)
Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA Handbook 436, US Government Printing Office, Washington, DC, USA, pp. 754.
Gscholar
(110)
Valentini R, De Angelis P, Matteucci G, Monaco R, Dore S, Scarascia Mugnozza GE (1996)
Seasonal net carbon dioxide exchange of a Beech forest with the atmosphere. Global Change Biology 2: 199-207.
CrossRef | Gscholar
(111)
Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ (2000)
Respiration as the main determinant of carbon balance in European forests. Nature 404: 861-865.
CrossRef | Gscholar
(112)
Van Veen JA, Liljeroth E, Lekerkerk LJA, Van De Geijn SC (1991)
Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecological Applications 1: 175-181.
CrossRef | Gscholar
(113)
Vicca S, Janssens IA, Wong SC, Cernusak LA, Farquhar GD (2010)
Zea mays rhizosphere respiration, but not soil organic matter decomposition was stable across a temperature gradient. Soil Biology and Biochemistry 42: 2030-2033.
CrossRef | Gscholar
(114)
Vicca S, Luyssaert S, Peñuelas J, Campioli M, Chapin FS, Ciais P, Heinemeyer A, Högberg P, Kutsch WL, Law BE, Malhi Y, Papale D, Piao SL, Reichstein M, Schulze ED, Janssens IA (2012)
Fertile forests produce biomass more efficiently. Ecology Letters 15 (6): 520-526.
CrossRef | Gscholar
(115)
Vogel CS, Curtis PS, Thomas RB (1997)
Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L) Gaertn under elevated carbon dioxide. Plant Ecology 130: 63-70.
CrossRef | Gscholar
(116)
Wardle DA, Bardgett RD, Klironomos JN, Setala H, Van Der Putten WH, Wall DH (2004)
Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633.
CrossRef | Gscholar
(117)
Woodwell GM, Botkin DB (1970)
Metabolism of terrestrial ecosystems by gas exchange techniques: the Vrookhaven approach. In: “Analysis of temperate forest ecosystems” (Reichle DE eds). Springer-Verlag, New York, USA, pp. 73-85.
Gscholar
(118)
Yang Y, Luo Y (2011)
Carbon: nitrogen stoichiometry in forest ecosystems during stand development. Global ecology and Biogeography 20: 354-361.
CrossRef | Gscholar
(119)
Yin H, Yufei L, Xiao J, Xu Z, Cheng X, Liu Q (2013)
Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology 19 (7): 2158-2167.
CrossRef | Gscholar
(120)
Zha TS, Barr AG, Bernier PY, Lavigne MB, Trofymow JA, Amiro BD, Arain MA, Bhatti JS, Black TA, Margolis HA, McCaughey JH, Xing ZS, Van Rees KCJ, Coursolle C (2013)
Gross and aboveground net primary production at Canadian forest carbon flux sites. Agricultural and Forest Meteorology 174-175: 54-64.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info