iForest - Biogeosciences and Forestry


Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity

M Dury (1)   , A Hambuckers (2), P Warnant (1), A Henrot (3), E Favre (1), M Ouberdous (1), L François (1)

iForest - Biogeosciences and Forestry, Volume 4, Issue 2, Pages 82-99 (2011)
doi: https://doi.org/10.3832/ifor0572-004
Published: Apr 05, 2011 - Copyright © 2011 SISEF

Research Articles

Collection/Special Issue: IUFRO RG 7.01 2010 - Antalya (Turkey)
Adaptation of Forest Ecosystems to Air Pollution and Climate Change
Guest Editors: Elena Paoletti, Yusuf Serengil

Significant climatic changes are currently observed and, according to projections, will be strengthened over the 21st century throughout the world with the continuing increase of the atmospheric CO2 concentration. Climate will be generally warmer with notably changes in the seasonality and in the precipitation regime. These changes will have major impacts on the biodiversity and the functioning of natural ecosystems. The CARAIB dynamic vegetation model driven by the ARPEGE/Climate model under forcing from the A2 IPCC emission scenario is used to illustrate and analyse the potential impacts of climate change on forest productivity and distribution as well as fire intensity over Europe. The potential CO2 fertilizing effect is studied throughout transient runs of the vegetation model over the 1961-2100 period assuming constant and increasing atmospheric CO2 concentration. Without fertilisation effect, the net primary productivity (NPP) might increase in high latitudes and altitudes (by up to 40 % or even 60-100 %) while it might decrease in temperate (by up to 50 %) and in warmer regions, e.g., Mediterranean area (by up to 80 %). This strong decrease in NPP is associated with recurrent drought events occurring mostly in summer time. Under rising CO2 concentration, NPP increases all over Europe by as much as 25-75%, but it is not clear whether or not soils might sustain such an increase. The model indicates also that interannual NPP variability might strongly increase in the areas which will undergo recurrent water stress in the future. During the years exhibiting summer drought, the NPP might decrease to values much lower than present-day average NPP even when CO2 fertilization is included. Moreover, years with such events will happen much more frequently than today. Regions with more severe droughts might also be affected by an increase of wildfire frequency and intensity, which may have large impacts on vegetation density and distribution. For instance, in the Mediterranean basin, the area burned by wildfire can be expected to increase by a factor of 3-5 at the end of the 21st century compared to present.


Productivity, Soil water, Fire disturbance, Climate change, Modelling

Authors’ address

M Dury
P Warnant
E Favre
M Ouberdous
L François
Unité de Modélisation du Climat et des Cycles Biogéochimiques, Université de Liège, Bat. B5c, Allée du Six Août 17, B-4000 Liège (Belgium)
A Hambuckers
Département des Sciences et de Gestion de l’Environnement, Université de Liège, Quai Van Beneden 22, B-4000 Liège (Belgium)
A Henrot
Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Bat. B5c, Allée du Six Août 17, B-4000 Liège (Belgium)

Corresponding author


Dury M, Hambuckers A, Warnant P, Henrot A, Favre E, Ouberdous M, François L (2011). Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity. iForest 4: 82-99. - doi: 10.3832/ifor0572-004

Paper history

Received: Jul 16, 2010
Accepted: Dec 09, 2010

First online: Apr 05, 2011
Publication Date: Apr 05, 2011
Publication Time: 3.90 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 60448
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 48653
Abstract Page Views: 3510
PDF Downloads: 6411
Citation/Reference Downloads: 121
XML Downloads: 1753

Web Metrics
Days since publication: 4851
Overall contacts: 60448
Avg. contacts per week: 87.23

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2011): 69
Average cites per year: 5.31


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Ainsworth EA, Long SP (2005)
What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist 165: 351-371.
CrossRef | Gscholar
Albani M, Medvigy D, Hurtt GC, Moorcroft PR (2006)
The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology 12: 2370-2390.
CrossRef | Gscholar
Allard V, Ourcival JM, Rambal S, Joffre R, Rocheteau A (2008)
Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Global Change Biology 14: 714-725.
CrossRef | Gscholar
Arora VK, Boer GJ (2005)
Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research-Biogeosciences 110.
CrossRef | Gscholar
Ball JT, Woodrow IE, Berry JA (1987)
A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: “Progress in Photosynthesis Research 4” (Biggins J ed). Nijhoff, Dordrecht, The Netherlands, pp. 221.
Bohn U, Gollub G, Hettwer C, Neuhäuslová Z, Raus Th, Schlüter H, Weber H (2003)
Karte der natürlichen vegetation Europas/Map of the Natural Vegetation of Europe, Maßstab/Scale 1: 2.500.000 (Bearb. eds). Interaktive/Interactive CD-ROM - Erläuterungstext, Legende, Karten / Explanatory Text, Legend, Maps. Landwirtschaftsverlag, Münster, Germany.
Box GEP, Jenkins JM (1970)
Time series analysis, forecasting and control. Holden-Day, San Francisco, CA, USA.
Box GEP, Tiao GC (1975)
Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association 70: 70-79.
CrossRef | Gscholar
Cao MK, Tao B, Li KR, Shao XM, Prience SD (2003)
Inter-annual variation in terrestrial ecosystem carbon fluxes in China from 1981 to 1998. Acta Botanica Sinica 45: 552-560.
Online | Gscholar
Cheddadi R, Vendramin GG, Litt T, Francois LM, Kageyama M, Lorentz S, Laurent JM, de Beaulieu JL, Sadori L, Jost A, Lunt D (2006)
Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography 15: 271-282.
CrossRef | Gscholar
Chirici G, Barbati A, Maselli F (2007)
Modelling of Italian forest net primary productivity by the integration of remotely sensed and GIS data. Forest Ecology and Management 246: 285-295.
CrossRef | Gscholar
Ciais P, Reichstein M, Viovy N, et al. (2005)
Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533.
CrossRef | Gscholar
Cogley JG (1998)
GGHYDRO - global hydrographic data, release 2.2 Data set. Department of Geography. Trent University, Peterborough, Ontario, Canada.
Online | Gscholar
Collatz GJ, Ribas-Carbo M, Berry JA, (1992)
Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Australian Journal of Plant Physiology 19: 519-538.
CrossRef | Gscholar
Coops NC, Waring RH (2001)
Assessing forest growth across southwestern Oregon under a range of current and future global change scenarios using a process model, 3-PG. Global Change Biology 7: 15-29.
CrossRef | Gscholar
De Groot RS, Wilson MA, Boumans RMJ (2002)
A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41: 393-408.
CrossRef | Gscholar
De Pury DGG, Farquhar GD (1997)
Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell and Environment 20: 537-557.
CrossRef | Gscholar
De Vries W (1988)
Critical deposition levels for nitrogen and sulphur on Dutch forest ecosystems. Water, Air, and Soil Pollution 42: 221-239.
CrossRef | Gscholar
Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007)
A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biology 13: 577-590.
CrossRef | Gscholar
Duvigneaud P, Paulet E, Kestemont P, Tanghe M, Denayer de Smet S, Schnock G, Timperman J (1972)
Productivité comparée d’une hêtraie (Fagetum) et d’une pessière (Piceetum), établies sur même roche-mère, à Mirwart (Ardenne luxembourgeoise). Bulletin de la Société Royale de Botanique de Belgique 152: 183-195.
Duvigneaud P (1984)
La synthèse écologique. Populations, communautés, écosystèmes, biosphère, noosphère. Doin, Paris, France.
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000)
Climate extremes: observations, modelling, and impacts. Science 289: 2068-2074.
CrossRef | Gscholar
FAO (2006)
Global Forest Resources Assessment 2005. Report on fires in the Mediterranean Region. Fire Management Working Paper 8.
Online | Gscholar
Farquhar GD, von Caemmerer S, Berry JA (1980)
A biogeochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90.
CrossRef | Gscholar
Finzi AC, Norby RJ, Calfapietra C et al. (2007)
Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences USA 104: 14014-14019.
CrossRef | Gscholar
Flannigan MD, Karwchuk MA, De Groot WJ, Wotton BM, Gowman LM (2009)
Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18: 483-507.
CrossRef | Gscholar
François LM, Delire C, Warnant P, Munhoven G (1998)
Modelling the glacial - interglacial changes in the continental biosphere. Global Planetary Change 16-17 (1-4): 37-52.
CrossRef | Gscholar
François LM, Goddéris Y, Warnant P, Ramstein G, de Noblet N, Lorenz S (1999)
Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times. Chemical Geolology 159 (1-4): 163-189.
CrossRef | Gscholar
François LM, Ghislain M, Otto D, Micheels A (2006)
Late Miocene vegetation reconstruction with the CARAIB model. Palaeogeography Palaeoclimatology Palaeoecology 238: 302-320.
CrossRef | Gscholar
Galy V, Francois LM, France-Lanord C, Faure P, Kudrass H, Palhol F, Singh SK (2008)
C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quaternary Science Reviews 27: 1396-1409.
CrossRef | Gscholar
Gérard JC, Nemry B, Francois LM, Warnant P (1999)
The interannual change of atmospheric CO2: contribution of subtropical ecosystems? Geophysical Research Letters 26: 243-246.
CrossRef | Gscholar
Gerdol R (2005)
Growth performance of two deciduous Vaccinium species in relation to nutrient satus in subalpine heath. Flora 200: 168-174.
CrossRef | Gscholar
Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004)
Terrestrial vegetation and water balance - hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology 286: 249-270.
CrossRef | Gscholar
Gibelin AL, Déqué M (2003)
Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Climate Dynamics 20: 327-339.
Gielen B, Calfapietra C, Lukac M, et al. (2005)
Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology 25: 1399-1408.
CrossRef | Gscholar
Gielen B, Verbeeck H, Neirynck J, Sampson DA, Vermeiren F, Janssens IA (2010)
Decadal water balance of a temperate Scots pine forest (Pinus sylvestris L.) based on measurements and modelling. Biogeosciences 7: 1247-1261.
CrossRef | Gscholar
Giorgi F, Bi XQ, Pal J (2004a)
Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Climate change scenarios (1961-1990). Climate Dynamics 22: 733-756.
CrossRef | Gscholar
Giorgi F, Bi XQ, Pal J (2004b)
Mean, interannual variability and trends in a regional climate change experiment over Europe. II. Climate change scenarios (2071-2100). Climate Dynamics 23: 839-858.
CrossRef | Gscholar
Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996)
Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271: 1576-1578.
CrossRef | Gscholar
Granier A, Breda N, Longdoz B, Gross P, Ngao J (2008)
Ten years of fluxes and stand growth in a young beech forest at Hesse, north-eastern France. Annals of Forest Science 65.
CrossRef | Gscholar
Hajar L, François LM, Khater C, Jomaa I, Déqué M, Cheddadi R (2010)
Cedrus libani (A. Rich) distribution in Lebanon: Past, present and future. Comptes Rendus Biologies 333: 622-630.
CrossRef | Gscholar
Hazeu GW, Mücher CA, Kramer H, Kienast F (2007)
Compilation and assessment of Pan European land cover changes. In: Proceedings of Istanbul 28th EARSeL Symposium “Remote Sensing for a Changing Europe”.
Helmisaari HJ, Makkonen K, Kellomäki S, Valonen E, Mälkönen E (2002)
Below- and above-ground biomass, production and nirogen use in Scots pine stands in eastern Finland. Forest Ecology and Management 165: 317-326.
CrossRef | Gscholar
Hickler T, Fronzek S, Araujo MB, Schweiger O, Thuiller W, Sykes MT (2009)
An ecosystem model-based estimate of changes in water availability differs from water proxies that are commonly used in species distribution models. Global Ecology and Biogeography 18: 304-313.
CrossRef | Gscholar
Hubert B, Francois LM, Warnant P, Strivay D (1998)
Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils. Journal of Hydrology 212: 318-334.
CrossRef | Gscholar
Jentsch A, Beierkuhnlein C (2008)
Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geoscience 340: 621-628.
CrossRef | Gscholar
JRC (2008)
Forest fires in Europe 2007. Scientific and technical report 8
Online | Gscholar
Korner C (2006)
Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393-411.
CrossRef | Gscholar
Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010)
Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change-Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management 259: 2213-2222.
CrossRef | Gscholar
Lagergren F, Eklundh L, Grelle A, Lundblad M, Molder M, Lankreijer H, Lindroth A (2005)
Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell and Environment 28: 412-423.
CrossRef | Gscholar
Laurent JM, Bar-Hen A, Francois LM, Ghislain M, Cheddadi R (2004)
Refining vegetation simulation models: from plant functional types to bioclimatic affinity groups of plants. Journal of Vegetation Science 15: 739-746.
Laurent JM, Francois LM, Bar-Hen A, Bel L, Cheddadi R (2008)
European bioclimatic affinity groups: Data-model comparisons. Global and Planetary Change 61: 28-40.
CrossRef | Gscholar
Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009)
Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60: 2859-2876.
CrossRef | Gscholar
Leroy T (2007)
Implémentation d’un module de feu dans un modèle dynamique global de végétation. Application sur la péninsule Ibérique et sur l’Europe de l’ouest. Master thesis, Université de Liège, Liège, Belgium. (In French).
Lossaint P, Rapp M (1971)
Le cycle du carbone dans les forêts de Pinus halepensis. In: Proceedings of Brussels Symposium “Productivity of forest ecosystems” (Duvigneaud P ed), pp. 213-216.
Lütkepohl H, Breitung J, Brüggemann R, Herwatz H, Teräsvirta T, Tschernig R, Krätzig M (2004)
Applied time series econometrics. Cambridge University Press, Cambridge, UK.
Luyssaert S, Inglima I, Jung M, et al. (2007)
CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology 13: 2509-2537.
CrossRef | Gscholar
Magnani F, Mencuccini M, Borghetti M et al. (2007)
The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 848-850.
CrossRef | Gscholar
McCarthy HR, Oren R, Finzi AC, Johnsen KH (2006)
Canopy leaf area constrains CO2-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences of the United States of America 103: 19356-19361.
CrossRef | Gscholar
McGuire AD, Sitch S, Clein JS, et al. (2001)
Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15: 183-206.
CrossRef | Gscholar
Medvigy D, Wofsy SC, Munger JW, Moorcroft PR (2010)
Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proceedings of the National Academy of Sciences USA 107: 8275-8280.
CrossRef | Gscholar
Melillo JM, Mcguire AD, Kicklighter DW, Moore III B, Vorosmarty CJ, Schloss AL (1993)
Global climate change and terrestrial net primary production. Nature 363: 234-240.
CrossRef | Gscholar
Mohamed MAA, Babiker IS, Chen ZM, Ikeda K, Ohta K, Kato K (2004)
The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Science of the Total Environment 332: 123-137.
CrossRef | Gscholar
Möller CM, Müller D, Nielsen J (1954)
Ein Diagramm der Stoffproduktion im Buchenwald. Det Forstlige Forsoegsvaesen i Danmark 21: 327-335.
Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007)
Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Global Change Biology 13: 108-122.
CrossRef | Gscholar
Nakicenovic N, Alcamo J, Davis G, et al. (2000)
Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, UK.
Nemry B, François LM, Warnant P, Robinet F, Gérard JC (1996)
The seasonality of the CO2 exchange between the atmosphere and the land biosphere: a study with a global mechanistic vegetation model. Journal Geophysical Research 101 (D3): 7111-7125.
CrossRef | Gscholar
New M, Hulme M, Jones P (1999)
Representing twentieth-century space-time climate variability. Journal of Climate 12: 829-856.
CrossRef | Gscholar
New M, Lister D, Hulme M, Makin I (2002)
A high-resolution data set of surface climate over global land areas. Climate Research 21: 1-25.
CrossRef | Gscholar
Olesen JE, Carter TR, Diaz-Ambrona CH, Fronzek S, Heidmann T, Hickler T, Holt T, Minguez MI, Morales P, Palutikof JP, Quemada M, Ruiz-Ramos M, Rubaek GH, Sau F, Smith B, Sykes MT (2007)
Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change 81 (1): 123-143.
CrossRef | Gscholar
Otto D, Rasse D, Kaplan J, Warnant P, Francois LM (2002)
Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures. Global Planetary Change 33: 117-138.
CrossRef | Gscholar
Parmesan C, Root TL, Willig MR (2000)
Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society 81: 443-450.
CrossRef | Gscholar
Peng C, Zhou X, Zhao S, Wang X, Zhu B, Piao S, Fang J (2009)
Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Global and Planetary Change 66: 179-194.
CrossRef | Gscholar
Perry DA (1994)
Forest ecosystems. John Hopkins University Press, Baltimore, USA and London, UK.
Rowell DP (2005)
A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Climate Dynamics 25: 837-849.
CrossRef | Gscholar
Salas y Mélia D, Chauvin F, Déqué M, Douville H, Guérémy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005)
Description and validation of CNRM-CM3 global coupled climate model. Note de centre GMGEC, CNRM, 103.
Scholes RJ, Biggs R (2005)
A biodiversity intactness index. Nature 434: 45-49.
CrossRef | Gscholar
Schröter D, Cramer W, Leemans R et al. (2005)
Ecosystem service supply and vulnerability to global change in Europe. Science 310: 1333-1337.
CrossRef | Gscholar
Schulze ED, Koch W (1971)
Measurement of primary production with cuvettes. In: Proceedings of Brussels Symposium “Productivity of forest ecosystems” (Duvigneaud P ed), pp. 141-157.
Schulze ED (1989)
Air-pollution and forest decline in a spruce (Picea abies) forest. Science 244: 776-783.
CrossRef | Gscholar
Sindani KT, Lejoly J (1990)
Phytomass and productivity of 4 forests in the Alpes de Haute-Provence (Southern France). Belgian Journal of Botany 123: 103-116.
Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003)
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9: 161-185.
CrossRef | Gscholar
Stevens GC, Fox JF (1991)
The causes of treeline. Annual Review of Ecology and Systematics 22: 177-191.
CrossRef | Gscholar
Tagesson T, Smith BR, Löfgren A, Ramming A, Eklundh L, Lindroth A (2009)
Estimating net primary production of Swedish forest landscapes by combining mechanistic modelling and remote sensing. Ambio 38: 316-324.
CrossRef | Gscholar
Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L, Carmona-Moreno C (2010)
The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7: 1991-2011.
CrossRef | Gscholar
Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr F, Sykes MT, Zimmermann NE (2008)
Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in plant ecology, evolution and systematics 9: 137-152.
CrossRef | Gscholar
Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao MS, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006)
Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing of Environment 102: 282-292.
CrossRef | Gscholar
Valentini R, De Angelis P, Matteucci G, Monaco R, Dore S, Scarascia Mugnozza GE (1996)
Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biology 2: 199-207.
CrossRef | Gscholar
Van der Linden P, Mitchell JFB (2009)
ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK. pp. 160.
Van Wijk M, Dekker S, Bouten W, Bosveld F, Kohsiek W, Kramer K, Mohren G (2000)
Modelling daily gas exchange of a douglasfir forest: comparison of three stomatal conductance models with and without a soil water stress function. Tree Physiology 20: 115-122.
CrossRef | Gscholar
Vazquez A, Perez B, Fernandez-Gonzalez F, Moreno JM (2002)
Recent fire regime characteristics and potential natural vegetation relationships in Spain. Journal of Vegetation Science 13: 663-676.
CrossRef | Gscholar
Warnant P (1999)
Modélisation du cycle du carbone dans la biosphère continentale à l’échelle globale. PhD thesis, Université de Liège, Liège, Belgium.
Warnant P, François LM, Strivay D, Gérard JC (1994)
CARAIB: a global model of terrestrial biological productivity. Global Biogeochemical Cycles 8 (3): 255-270.
CrossRef | Gscholar
Weissen F, Hambuckers A, Vanpraag HJ, Remacle J (1990)
A decennial control of N-cycle in the Belgian Ardenne forest ecosystems. Plant and Soil 128: 59-66.
CrossRef | Gscholar
Yuste JC, Konopka B, Janssens IA, Coenen K, Xiao CW, Ceulemans R (2005)
Contrasting net primary productivity and carbon distribution between neighboring stands of Quercus robur and Pinus sylvestris. Tree Physiology 25: 701-712.
CrossRef | Gscholar
Zhao MS, Heinsch FA, Nemani RR, Running SW (2005)
Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment 95: 164-176.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info