*
 

iForest - Biogeosciences and Forestry

*

Role of photosynthesis and stomatal conductance on the long-term rising of intrinsic water use efficiency in dominant trees in three old-growth forests in Bosnia-Herzegovina and Montenegro

Chiara Palandrani (1-2)   , Renzo Motta (3), Paolo Cherubini (4-5), Milic Curović (6), Vojislav Dukić (7), Giustino Tonon (8), Christian Ceccon (8), Alessandro Peressotti (2), Giorgio Alberti (2-9)

iForest - Biogeosciences and Forestry, Volume 14, Issue 1, Pages 53-60 (2021)
doi: https://doi.org/10.3832/ifor3414-013
Published: Jan 28, 2021 - Copyright © 2021 SISEF

Research Articles


Old-growth forests have an important role in maintaining animal and plant diversity, are important carbon (C) reservoirs and are privileged sites to study long-term plant physiological responses, long-term forest dynamics and climate change impact on forest ecosystems. Several studies have highlighted how old-living trees undergo age-related declines with hydraulic limitations and reduction in photosynthesis, though some recent works have suggested that such a decline is not always observed. Our study aims at understanding the role of atmospheric CO2 increase on tree C uptake and stomatal conductance (gs) in old-living trees by analysing the long-term patterns of tree growth and intrinsic water use efficiency (iWUE) in three old-growth forests in the Balkans (Bosnia-Herzegovina and Montenegro), using dendrochronology and isotopic analysis. We hypothesised a long-term increase in iWUE in the studied old-growth forests, mostly related to enhanced photosynthesis rather than reduced stomatal conductance. Tree cores were sampled from dominant silver fir (Abies alba Mill.) trees in each forest. Tree-ring widths were measured and basal area increments (BAI) were assessed for each sampled tree and, from the six longest chronologies, five decades were chosen for cellulose extraction, its isotopic analysis (δ13C, δ18O), iWUE and leaf water 18O evaporative enrichment above the source water (Δ18OL) determination. We observed a continuous and significant increase in iWUE from 1800 to 2010 in the sampled dominant trees at all the three old-growth forests. Our BAI data and our estimates of Δ18OL across the study period support the idea that enhanced photosynthesis rather than reduced stomatal conductance is the major driver of the measured iWUE increase. Thus, our results support some recent findings challenging the hypothesis that iWUE in forests is primarily the result of a CO2-induced reduction in stomatal conductance as well as the so called hydraulic limitation hypothesis.

  Keywords


Old-growth Forests, Intrinsic Water-Use Efficiency (iWUE), Basal Area Increment, Stable C Isotopes, Atmospheric CO2 Increase

Authors’ address

(1)
Chiara Palandrani 0000-0001-9717-0740
Department of Life Sciences, University of Trieste, v. Weiss 2, I-34128 Trieste (Italy)
(2)
Chiara Palandrani 0000-0001-9717-0740
Alessandro Peressotti 0000-0001-8804-7935
Giorgio Alberti 0000-0003-2422-3009
Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, v.le delle Scienze 206, I-33100 Udine (Italy)
(3)
Renzo Motta 0000-0002-1631-3840
Department of Agriculture, Forestry and Food Sciences, University of Turin, l.go Paolo Braccini 2, I-10095 Grugliasco, TO (Italy)
(4)
Paolo Cherubini 0000-0002-9809-250X
WSL Swiss Federal Research Institute, CH-8903 Birmensdorf, (Switzerland)
(5)
Paolo Cherubini 0000-0002-9809-250X
Faculty of Forestry, University of British Columbia, Vancouver BC (Canada)
(6)
Milic Curović 0000-0002-5033-758X
University of Montenegro, Biotechnical Faculty, Mihaila Lalica 1, Podgorica (Montenegro)
(7)
Vojislav Dukić
Faculty of Forestry, University of Banja Luka, Bulevar vojvode Stepe Stepanovica 75 a, 78000 Banja Luka (Bosnia and Herzegovina)
(8)
Giustino Tonon 0000-0002-4851-0662
Christian Ceccon
Faculty of Science and Technology, Libera Università di Bolzano, I-39100 Bolzano (Italy)
(9)
Giorgio Alberti 0000-0003-2422-3009
CNR-IBIMET, v. Caproni 8, I-50145 Firenze (Italy)

Corresponding author

 
Chiara Palandrani
claire.13@hotmail.it

Citation

Palandrani C, Motta R, Cherubini P, Curović M, Dukić V, Tonon G, Ceccon C, Peressotti A, Alberti G (2021). Role of photosynthesis and stomatal conductance on the long-term rising of intrinsic water use efficiency in dominant trees in three old-growth forests in Bosnia-Herzegovina and Montenegro. iForest 14: 53-60. - doi: 10.3832/ifor3414-013

Academic Editor

Rossella Guerrieri

Paper history

Received: Mar 27, 2020
Accepted: Nov 30, 2020

First online: Jan 28, 2021
Publication Date: Feb 28, 2021
Publication Time: 1.97 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 25570
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 21736
Abstract Page Views: 1591
PDF Downloads: 1905
Citation/Reference Downloads: 2
XML Downloads: 336

Web Metrics
Days since publication: 1146
Overall contacts: 25570
Avg. contacts per week: 156.19

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Ainsworth EA, Long SP (2005)
What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analysis review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165 (2): 351-372.
CrossRef | Gscholar
(2)
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell D, Vennetier M, Kitzberger T, Rigling A, Bershears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010)
A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259 (4): 660-684.
CrossRef | Gscholar
(3)
Anderegg WRL, Kane JM, Anderegg LDL (2012)
Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change 3: 30-36.
CrossRef | Gscholar
(4)
Barbour MM, Andrews TJ, Farquhar GD (2001)
Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Australian Journal of Plant Physiology 28: 335-348.
Online | Gscholar
(5)
Barbour MM, Farquhar GD (2000)
Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell and Environment 23: 473-485.
CrossRef | Gscholar
(6)
Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Cotrufo MF (2013)
Elevated CO2 increases tree-level intrinsic water-use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytologist 197 (2): 544-554.
CrossRef | Gscholar
(7)
Boncina A (2011)
History, current status and future prospects of uneven-aged forest management in the Dinaric region: an overview. Forestry 84: 467-478.
CrossRef | Gscholar
(8)
Bosela M, Petrás R, Sitková Z, Priwitzer T, Pajtík J, Hlavatá H, Sedmák R, Tobine B (2014)
Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians. Environmental Pollution 184: 211-221.
CrossRef | Gscholar
(9)
Bosela M, Lukac M, Castagneri D, Sedmák R, Biber P, Carrer M, Konôpka B, Nola P, Nagel TA, Popa I, Roibu CC, Svoboda M, Trotsiuk V, Büntgen U (2018)
Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Science of The Total Environment 615: 1460-1469.
CrossRef | Gscholar
(10)
Bottero A, Garbarino M, Dukic V, Govedar Z, Lingua E, Nagel TA, Motta R (2011)
Gap-phase dynamics in the old-growth forest of Lom, Bosnia and Herzegovina. Silva Fennica 45 (5): 875-887.
CrossRef | Gscholar
(11)
Brienen RJW, Gloor E, Zuidema PA (2012)
Detecting evidence for CO2 fertilization from tree ring studies: the potential role of sampling biases. Global Biogeochemical Cycles 26 (1): GB1025.
CrossRef | Gscholar
(12)
Büntgen U, Krusic PJ, Piermattei A, Coomes DA, Esper J, Myglan VS, Kirdyanov AV, Camarero JJ, Crivellaro A, Körner C (2019)
Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications 10: 2171.
CrossRef | Gscholar
(13)
Castagneri D, Nola P, Motta R, Carrer M (2014)
Summer climate variability over the last 250 years differently affected tree species radial growth in a mesic Fagus-Abies-Picea old-growth forest. Forest Ecology and Management 320: 21-29.
CrossRef | Gscholar
(14)
Cavlović J, Bončina A, Boić M, Goršić E, Simončič T, Teslak K (2015)
Depression and growth recovery of silver fir in uneven-aged Dinaric forests in Croatia from 1901 to 2001. Forestry 88: 856-598.
Online | Gscholar
(15)
Cherubini P, Dobbertin M, Innes JL (1998)
Potential sampling bias in long-term forest growth trends reconstructed from tree rings: a case study from the Italian Alps. Forest Ecology and Management 109: 103-118.
CrossRef | Gscholar
(16)
Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008)
Carbon accumulation in European forests. Nature Geoscience 1: 425-429.
CrossRef | Gscholar
(17)
Drake GB, Gonzàlez-Meler MA, Long SP (1997)
More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609-639.
CrossRef | Gscholar
(18)
Duchesne L, Houle D, Ouimet R, Caldwell L, Gloor M, Brienen R (2019)
Large apparent growth increases in boreal forests inferred from tree-rings are an artefact of sampling biases. Scientific Reports 9 (1): 1431.
CrossRef | Gscholar
(19)
Ehleringer JR, Hall AE, Farquhar GD (1993)
Introduction: water use in relation to productivity. In: “Stable Isotopes and Plant Carbon-Water Relations” (Ehleringer JR, Hall AE, Farquhar GD eds). Academic Press, New York, USA, pp. 3-8.
Gscholar
(20)
Farquhar GD, Leary MH, Berry JA (1982)
On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9 (2): 121-137.
Online | Gscholar
(21)
Farquhar GD, Ehleringer JR, Hubick KT (1989)
Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503-537.
CrossRef | Gscholar
(22)
Feng X (1999)
Trends in intrinsic water-use efficiency of natural trees for the past 100-200 years: a response to atmospheric concentration. Geochimica et Cosmochimica Acta 63 (13-14): 1891-1903.
CrossRef | Gscholar
(23)
Ferlin (2002)
The growth potential of understorey silver fir and Norway spruce for uneven-aged forest management in Slovenia. Forestry 75: 375-383.
CrossRef | Gscholar
(24)
Fox J, Weisberg S (2019)
An R companion to applied regression (3rd edn). Sage, Thousand Oaks, CA, USA, pp. 576.
Online | Gscholar
(25)
Francey RJ, Farquhar GD (1982)
An explanation for the 12C/13C variations in tree rings. Nature 297: 28-31.
CrossRef | Gscholar
(26)
Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlström A, Ciais P, Friedlingstein P, Levis S, Lomas A, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, DAlessandro CM, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M (2015)
Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change 5 (6): 579-583.
CrossRef | Gscholar
(27)
Fritts HC (1976)
Tree rings and climate. Academic Press, London, UK, pp. 567.
Gscholar
(28)
Gazol A, Camarero JJ, Gutiérrez E, Popa I, Andreu-Hayles L, Motta R, Nola P, Ribas M, Sangüesa-Barreda G, Urbinati C (2015)
Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography 42 (6): 1150-1162.
CrossRef | Gscholar
(29)
Gessler A, Ferrio JP, Hommel R, Treydte K, Wernerm RA, Monson RK (2014)
Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiology 34: 796-818.
CrossRef | Gscholar
(30)
Green JW (1963)
Wood cellulose. Methods in Carbohydrate Chemistry 3: 9-21.
Gscholar
(31)
Gower ST, McMurtrie RE, Murty D (1996)
Aboveground net primary production decline with stand age: potential causes. Trends in Ecology and Evolution 11 (9): 378-382.
CrossRef | Gscholar
(32)
Grissino-Mayer HD (2001)
Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57 (2): 205-221.
Online | Gscholar
(33)
Guerrieri R, Belmecheri S, Ollinger SV, Asbjornsen H, Jennings K, Xiao J, Stocker BD, Martin M, Hollinger DY, Bracho-Garrillo R, Clark F, Dore S, Kolb T, Munger JW, Novick K, Richardson AD (2019)
Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proceedings of the National Academy of Sciences USA 116: 16909-16914.
CrossRef | Gscholar
(34)
Holmes RL (1983)
Computer-assisted quality control in tree-ring dating and measurements. Tree Ring Bulletin 43: 69-78.
Online | Gscholar
(35)
Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007)
Response to forest trees to increased atmospheric CO2. Critical Reviews in Plant Sciences 26 (5-6): 265-283.
CrossRef | Gscholar
(36)
Hubbard RM, Bond BJ, Ryan MG (1999)
Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiology 19 (3): 165-172.
CrossRef | Gscholar
(37)
IPCC (2014)
Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, Pachauri RK, Meyer LA eds). IPCC, Geneva, Switzerland, pp. 151.
Gscholar
(38)
IPCC (2018)
Summary for policymakers. In: “Global warming of 1.5 °C” (Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen J, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T eds). World Meteorological Organization, Geneva, Switzerland, pp. 32.
Gscholar
(39)
Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Barker TR, Ojo L, Phillips O, Reitsman J, White L, Comiskey J, Djuikouo MN, Ewango C, Feldpausch T, Hamilton A, Gloor M, Hart T, Hladik A, Lloyd J, Lovett J, Makana JR, Malhi Y, Mbago F, Ndangalasi J, Peacock J, Peh K, Sheil D, Sunderland T, Swaine M, Taplin J, Tayor D, Thomas S, Votere R, Wöll H (2009)
Increasing carbon storage in intact African tropical forests. Nature 457: 1003-1006.
CrossRef | Gscholar
(40)
Linares JC, Camarero JJ, Carreira JA (2009)
Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Global Ecology and Biogeography 18 (4): 485-497.
CrossRef | Gscholar
(41)
Lindner M, Fitzgerald J, Zimmermann N, Reyer C, Delzon S, Van Der Maaten E, Schelhaas MJ, Lasch P, Eggers J, Van Der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanekinkel M (2014)
Climate change and European forests: what do we now, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management 146: 69-83.
CrossRef | Gscholar
(42)
Liu X, Shao X, Liang E, Zhao L, Chen T, Qin D, Ren J (2007)
Species dependent responses of juniper and spruce to increasing CO2 concentration and to climate in semi-arid and arid areas of northwestern China. Plant Ecology 193: 195-209.
CrossRef | Gscholar
(43)
Luyssaert S, Schhulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Borner JC (2008)
Old-growth forest as global carbon sinks. Nature 455: 213-215.
CrossRef | Gscholar
(44)
Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff GB, Rayment M, Tedeschi V, Valentini R, Grace J (2007)
The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 849-851.
CrossRef | Gscholar
(45)
Marshall JD, Monserud RA (1996)
Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers. Oecologia 105 (1): 13-21.
CrossRef | Gscholar
(46)
Matthews HD, Caldeira K (2008)
Stabilizing climate requires near-zero emissions. Geophysical Research Letters 35 (4): C09S05.
CrossRef | Gscholar
(47)
McCarroll D, Loader NJ (2004)
Stable isotopes in tree rings. Quaternary Science Reviews 23: 7-8.), 771-801.
CrossRef | Gscholar
(48)
McCarroll D, Loader NJ (2006)
Isotopes in tree rings. In: “Developments in Paleoenvironmental Research”, vol. 10 (Leng MJ ed). Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 67-116.
CrossRef | Gscholar
(49)
Motta R, Berretti R, Castagneri D, Dukić V, Garbarino M, Govedar Z, Lingua E, Maunaga Z, Meloni F (2011)
Toward a definition of the range of variability of central European mixed Fagus-Abies-Picea forests: the nearly steady-state forest of Lom (Bosnia and Herzegovina). Canadian Journal of Forest Research 41 (9): 1871-1884.
CrossRef | Gscholar
(50)
Motta R, Garbarino M, Berretti R, Bjelanovic I, Borgogno-Mondino E, Curović M, Keren S, Meloni F, Nosenzo A (2015)
Structure, spatio-temporal dynamics and disturbance regime of the mixed beech-silver fir-Norway spruce old-growth forest of Biogradska Gora (Montenegro). Plant Biosystems 149 (6): 966-975.
CrossRef | Gscholar
(51)
Nagel TA, Svoboda M (2008)
Gap disturbance regime in an old-growth Fagus-Abies forest in the Dinaric Mountains, Bosnia-Herzegovina. Canadian Journal of Forest Research 38 (11): 2728-2737.
CrossRef | Gscholar
(52)
Nehrbass-Ahles C, Babst F, Klesse S, Nötzli M, Bouriaud O, Neukom R, Dobbertin M, Frank D (2014)
The influence of sampling design on tree-ring-based quantification of forest growth. Global Change Biology 20: 2867-2885.
CrossRef | Gscholar
(53)
Nourtier M, Chanzy A, Cailleret M, Yingge X, Huc R, Davi H (2014)
Transpiration of silver fir (Abies alba Mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Annals of Forest Science 71 (6): 683-695.
CrossRef | Gscholar
(54)
Odum EP (1969)
Strategy of ecosystem development. Science 164: 262-270.
CrossRef | Gscholar
(55)
Peñuelas J, Canadell JG, Ogaya R (2011)
Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography 20 (4): 597-608.
CrossRef | Gscholar
(56)
Phillips NG, Buckley TN, Tissue DT (2008)
Capacity of old trees to response to environmental change. Journal of Integrative Plant Biology 50 (11): 1355-1364.
CrossRef | Gscholar
(57)
Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014)
Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications 5 (1): 1065.
CrossRef | Gscholar
(58)
Ryan MG, Phillips N, Bond NJ (2006)
The hydraulic limitation hypothesis revisited. Plant, Cell and Environment 29 (3): 367-381.
CrossRef | Gscholar
(59)
Ryan M, Binkley D, Fownes J (1997)
Age-related decline in forest productivity: pattern and process. In: “Advances in Ecological Research”, vol. 27, Elsevier, Netherlands, pp. 213-262.
CrossRef | Gscholar
(60)
Ryan MG, Yoder BJ (1997)
Hydraulic limits to tree height and tree growth. BioScience 47 (4): 235-242.
CrossRef | Gscholar
(61)
Saurer M, Siegwolf RTW, Schweingruber FH (2004)
Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology 10 (12): 2109-2120.
CrossRef | Gscholar
(62)
Saurer M, Siegwolf RTW (2007)
Human impacts on tree-ring growth reconstructed from stable isotopes. In: “Stable Isotopes as Indicators of Ecological Change” (Dawson TE, Siegwolf RTW eds). Academic Press, London, UK, pp. 49-62.
CrossRef | Gscholar
(63)
Saurer M, Spahni R, Frank DC, Joos F, Leuenberger M, Loader NJ, McCarroll D, Gagen M, Poulter B, Siegwolf RTW, Andreau-Hayles L, Boettger T, Liñan ID, Fairchild IJ, Friedrich M, Gutierrez E, Haupt M, Hilasvuori E, Heinrich I, Helle G, Grudd H, Jalkanen R, Levanič T, Linderholm HW, Robertson I, Sonninen E, Treydte K, Waterhouse JS, Woodley EJ, Wynn PM, Young GHF (2014)
Spatial variability and temporal trends in water-use efficiency of European forests. Global Change Biology 20 (12): 3700-3712.
CrossRef | Gscholar
(64)
Seidl R, Klonner G, Rammer W, Essl F, Moreno A, Neumann M, Dullinger S (2018)
Invasive alien pests threaten the carbon stored in Europe’s forests. Nature Communications 9: 1626.
CrossRef | Gscholar
(65)
Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014)
Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change 4: 806-810.
CrossRef | Gscholar
(66)
Serna L (2014)
Drawing the future. Plant Signaling and Behavior 3 (4): 214-217.
CrossRef | Gscholar
(67)
Silva LCR, Anand M (2013)
Probing for the influence of atmospheric CO2 and climate change on forest ecosystem across biomes. Global Ecology and Biogeography 22 (1): 83-92.
CrossRef | Gscholar
(68)
Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009)
Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences USA 106: 1704-1709.
CrossRef | Gscholar
(69)
Spies TA (2004)
Ecological concepts and diversity of old-growth forests. Journal of Forestry 102 (3): 14-20.
Online | Gscholar
(70)
Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, Álvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque Á, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana J-R, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su S-H, Sun I-F, Tan F, Thomas D, van Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014)
Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90-93.
CrossRef | Gscholar
(71)
Streit K, Siegwolf RTW, Hagedorn F, Schaub M, Buchman N (2013)
Lack of photosynthetic or stomatal regulation after 9 years of elevated CO2 and 4 years of soil warming in two conifers species in the alpine treeline. Plant, Cell and Environment 37 (2): 315-326.
CrossRef | Gscholar
(72)
Tognetti R, Lombardi F, Lasserre B, Cherubini P, Marchetti M (2014)
Tree-ring stable isotopes reveal twentieth-century increases in water-use efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean mountains. PLoS One 9 (11): e113136.
CrossRef | Gscholar
(73)
Van Der Sleen P, Groenendijk P, Vlam M, Anter NPR, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA (2015)
No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience 8: 24-28.
CrossRef | Gscholar
(74)
Vitali V, Buntgen U, Bauhus J (2017)
Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Global Change Biology 23 (12): 5108-5119.
CrossRef | Gscholar
(75)
Vitasse Y, Bottero A, Rebetez M, Conedera M, Augustin S, Brang P, Tinner W (2019)
European Journal of Forest Research 138 (4): 547-560.
CrossRef | Gscholar
(76)
Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Hemming DL, Loader NJ, Robertson I (2004)
Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quaternary Science Reviews 23 (7-8): 803-810.
CrossRef | Gscholar
(77)
Weiner J, Thomas SC (2001)
The nature of tree growth and the “age-related decline in forest productivity”. Oikos 94 (2): 374-376.
Online | Gscholar
(78)
Wils THG, Robertson I, Woodborne S, Hall G, Koprowski M, Eshetu Z (2016)
Anthropogenic forcing increases the water-use efficiency of African trees. Journal of Quaternary Science 31 (4): 386-390.
CrossRef | Gscholar
(79)
Wu G, Liu X, Chen T, Xu G, Wang W, Zeng X, Wang B, Zhang X (2015)
Long-term variation of tree growth and intrinsic water-use efficiency in Schrenk spruce with increasing CO2 concentration and climate warming in the western Tianshan Mountains, China. Acta Physiologiae Plantarum 37 (8): 660.
CrossRef | Gscholar
(80)
Xu Z, Jiang Y, Jia B, Zhou G (2016)
Elevated-CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science 7 (19120): 258.
CrossRef | Gscholar
(81)
Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994)
Evidence of reduced photosynthetic rates in old trees. Forest Science 40 (3): 513-527.
Online | Gscholar
(82)
Yu G, Liu Y, Wang X, Ma K (2008)
Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees 22 (2): 197-204.
CrossRef | Gscholar
(83)
Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A (2014)
Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biology 20 (12): 3767-3779.
CrossRef | Gscholar
(84)
Zhou G, Liu SG, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006)
Old-growth forests can accumulate carbon in soils. Science 314 (5804): 1417-1417.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info