*
 

iForest - Biogeosciences and Forestry

*

Wildland fire typologies and extreme temperatures in NE Spain

Adrián Cardil   , David Merenciano, Domingo Miguel Molina-Terrén

iForest - Biogeosciences and Forestry, Volume 10, Issue 1, Pages 9-14 (2016)
doi: https://doi.org/10.3832/ifor1939-009
Published: Nov 01, 2016 - Copyright © 2016 SISEF

Research Articles


Understanding instrumental factors dealing with the development of large wildland fires is a need. Fire spread typologies and extreme temperature days were studied in the 1978-2012 period in Aragón (NE Spain). Temperature was examined at 850 hPa to characterize the low troposphere state and wildfires were grouped in three fire spread typologies: convective fires, wind-driven fires and topography-driven fires. The analysis of wildland fire propagation typologies revealed that convective fires burned the majority of total area burned, resulting in the larger and the most closely typology related to high temperature days (HTDs). Drought Code (DC) correlation with HTDs and wildland fire size was weak.

  Keywords


Wildland Fire, Fire Spread Patterns, Forestry, Heat Waves, Climate Change

Authors’ address

(1)
Adrián Cardil
David Merenciano
Domingo Miguel Molina-Terrén
School of Agrifood and Forestry Science and Engineering, University of Lleida (Spain)

Corresponding author

 
Adrián Cardil
adriancardil@gmail.com

Citation

Cardil A, Merenciano D, Molina-Terrén DM (2016). Wildland fire typologies and extreme temperatures in NE Spain. iForest 10: 9-14. - doi: 10.3832/ifor1939-009

Academic Editor

Davide Ascoli

Paper history

Received: Dec 09, 2015
Accepted: Aug 16, 2016

First online: Nov 01, 2016
Publication Date: Feb 28, 2017
Publication Time: 2.57 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 41577
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 34544
Abstract Page Views: 2489
PDF Downloads: 3491
Citation/Reference Downloads: 50
XML Downloads: 1003

Web Metrics
Days since publication: 2733
Overall contacts: 41577
Avg. contacts per week: 106.49

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Feb 2023)

Total number of cites (since 2017): 10
Average cites per year: 1.43

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
AEMET (2012)
Iberian climate atlas. Air temperature and precipitation (1971-2000). State meteorological Agency of Spain and Department of Meteorology and Climatology of the Institute of Meteorology, Portugal. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, Spain, pp. 80.
Gscholar
(2)
Anderson HE (1969)
Heat transfer and fire spread. Research Paper INT-69, Intermountain Forest and Range Experiment Station, USDA Forest Service, Ogden, UT, USA, pp. 23.
Online | Gscholar
(3)
Arpaci A, Eastaugh CS, Vacik H (2013)
Selecting the best performing fire weather indices for Austrian ecozones. Theoretical and Applied Climatology 114 (3/4): 393-406.
CrossRef | Gscholar
(4)
Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011)
The hot summer of 2010: redrawing the temperature record map of Europe. Science 332: 220-224.
CrossRef | Gscholar
(5)
Cardil A, Molina DM, Ramirez J, Vega-García C (2013)
Trends in adverse weather patterns and large wildland fires in Aragón (NE Spain) from 1978 to 2010, Natural Hazards and Earth System Sciences 13: 1393-1399.
CrossRef | Gscholar
(6)
Cardil A, Eastaugh CS, Molina DM (2014a)
Extreme temperature conditions and wildland fires in Spain. Theoretical and Applied Climatology 122: 219-228.
CrossRef | Gscholar
(7)
Cardil A, Molina DM, Kobziar LN (2014b)
Extreme temperature days and potential impacts in Southern Europe. Natural Hazards and Earth System Sciences 14: 3005-3014.
CrossRef | Gscholar
(8)
Castellnou M, Pagés J, Miralles M, Piqué M (2009)
Tipificación de los incendios forestales de Cataluña. Elaboración del mapa de incendios de diseño como herramienta para la gestión forestal [Wildland fire typologies in Catalonia. Fire mapping design as a tool for forest management]. In: Proceedings of “5° Congreso Forestal Español”. Ávila (Spain), 21-25 Sep 2009. pp. 16. [in Spanish]
Gscholar
(9)
Charney JJ, Keyser D (2010)
Mesoscale model simulation of the meteorological conditions during the 2 June 2002 Double Trouble State Park wildfire. International Journal of Wildland Fire 19: 427-448.
CrossRef | Gscholar
(10)
Crimmins MA (2006)
Synoptic climatology of extreme fire - weather conditions across the southwest United States. International Journal of Climatology 26: 1001-1016.
CrossRef | Gscholar
(11)
Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007)
Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters 34: L11706.
CrossRef | Gscholar
(12)
Duane A, Pique M, Castellnou M, Brotons L (2015)
Predictive modelling of fire occurrences from different fire spread patterns in Mediterranean landscapes. International Journal of Wildland Fire 24 (3): 407-418.
CrossRef | Gscholar
(13)
Eastaugh CS, Vacik H (2012)
Fire size/frequency modelling as a means of assessing wildfire database reliability. Austrian Journal of Forest Science 129 (3/4): 228-247.
Online | Gscholar
(14)
Flannigan MD, Krawchuk MA, De Groot WJ, Wotton BM, Gowman LM (2009)
Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18: 483-507.
CrossRef | Gscholar
(15)
García-Ortega E, Trobajo MT, López L, Sánchez JL (2011)
Synoptic patterns associated with wildfi res caused by lightning in Castile and Leon, Spain. Natural Hazards and Earth System Sciences 11: 851-863.
CrossRef | Gscholar
(16)
Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009)
Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global Planet Change 68: 209-224.
CrossRef | Gscholar
(17)
Giorgi F, Lionello P (2008)
Climate change projections for the Mediterranean region. Global Planet Change 63: 90-104.
CrossRef | Gscholar
(18)
Giorgi F (2006)
Climate change hot-spots. Geophysical Research Letters 33, L08707.
CrossRef | Gscholar
(19)
Heim RR (2002)
A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society 83: 1149-1165.
CrossRef | Gscholar
(20)
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KJ, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996)
The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77: 437-471.
CrossRef | Gscholar
(21)
Lázaro MA (2014)
Análisis meteorológico de incendios históricos para la determinación y seguimiento diario de los incendios tipo en Aragón [Analysis of historical fire weather for determining and monitoring daily fire typologies in Aragón]. Msc Thesis, Escuela Técnica Superior de Ingeniería Agraria, Lleida, Spain, pp. 91. [in Spanish]
Gscholar
(22)
Lázaro-Palacios MA, Cortés-Rabinad FC, Hernández-Villamayor R, López-del-Río R, Martín-Martín V (2016)
Meteorología sinóptica y comportamiento del fuego en Aragón [Synoptic meteorology and fire behavior in Aragon]. Dirección General Gestión Forestal, Caza y Pesca, Gobierno de Aragón, Zaragoza, Spain, pp. 72. [in Spanish]
Online | Gscholar
(23)
Lecina-Diaz J, Alvarez A, Retana J (2014)
Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests. PLoS ONE 9 (1): e85127.
CrossRef | Gscholar
(24)
Millán MM, Estrela MJ, Badenas C (1998)
Meteorological processes relevant to forest fire dynamics on the Spanish Mediterranean coast. Journal of Applied Meteorology 37: 83-100.
CrossRef | Gscholar
(25)
Minnesota Department of Natural Resources (2013)
Fire danger indexes, Canadian Model. Web site.
Online | Gscholar
(26)
Miralles M, Kraus D, Molina DM, Loureiro C, Delogu G, Ribet N, Vilalta O (2010)
Improving suppression fire capacity. Research Report, European Forest Institute, EFI, Joensuu, Finland, pp. 203-215.
Online | Gscholar
(27)
Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006)
Potential impact of climate change on fire risk in the Mediterranean area. Climate Research 31: 85-95.
CrossRef | Gscholar
(28)
Ogi M, Yamazaki K, Tachibana Y (2005)
The summer northern annular mode and abnormal summer weather in 2003. Geophysical Research Letters 32: L04706.
CrossRef | Gscholar
(29)
Pereira MG, Malamud BD, Trigo RM, Alves PJ (2011)
The history and characteristics of the 1980-2005 Portuguese rural fire database. Natural Hazards and Earth System Sciences 11: 3343-3358.
CrossRef | Gscholar
(30)
Regato P (2008)
Adapting to global change: Mediterranean forests. IUCN Centre for Mediterranean Cooperation, Malaga, Spain, pp. 254
Gscholar
(31)
Rothermel RC (1983)
How to predict the spread and intensity of forest and range fires. General Technical Report INT-143, Intermountain Forest and Range Experiment Station, USDA Forest Service, Ogden, UT, USA, pp. 161.
Online | Gscholar
(32)
Salis M, Ager AA, Arca B, Finney MA, Bacciu V, Duce P, Spano D (2013)
Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. International Journal of Wildland Fire 22: 549-565.
CrossRef | Gscholar
(33)
San Miguel-Ayanz J, Schulte E, Schmuck G, Camia A (2013)
The European Forest Fire Information System in the context of environmental policies of the European Union. Forest Policy and Economics 4: 19-25.
CrossRef | Gscholar
(34)
Trigo RM, García-Herrera R, Díaz J, Trigo IF, Valente MA (2005)
How exceptional was the early August 2003 heatwave in France? Geophysical Research Letters 32: L10701.
CrossRef | Gscholar
(35)
Trouet V, Taylor AH, Carleton AM, Skinner CN (2009)
Interannual variations in fire weather, fire extent, and synoptic - scale circulation patterns in northern California and Oregon. Theoretical and Applied Climatology 95: 349-360.
CrossRef | Gscholar
(36)
Turco M, Llasat MC, Von Hardenberg J, Provenzale A (2014)
Climate change impacts on wildfires in a Mediterranean environment. Climatic Change 125 (3-4): 369-380.
CrossRef | Gscholar
(37)
Turner JA (1972)
The drought code component of the Canadian forest fire behavior system. Publication no. 1316, Environment Canada, Canadian Forestry Service, Ottawa, Canada, pp. 14.
Online | Gscholar
(38)
Vega-García C, Chuvieco E (2006)
Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes, Landscape Ecology 21: 595-605.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info